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Abstract

In this paper, we introduce a new iterative algorithm with Bregman
distance approach for approximating a common solution of a finite fam-
ily of Mixed Equilibrium Problem (MEP) with a relaxed monotone map-
ping and a countable family of Bregman multi-valued quasi-nonexpansive
mappings in a reflexive Banach space. Under standard and mild as-
sumption of relaxed monotonicity of the MEP associated mapping, we
establish the strong convergence of the iterative sequence. A numerical
example is presented to illustrate the performance of our method. The
results obtained in this work extend and complement many related re-
sults in literature.
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1 Introduction

Let E be a reflexive Banach space with E∗ its dual and Q be a nonempty
closed and convex subset of E. Let f : E → (−∞,+∞] be a proper, lower
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semicontinuous and convex function, then the Fenchel conjugate of f denoted
as f∗ : E∗ → (−∞,+∞] is defined as

f∗(x∗) = sup{⟨x∗, x⟩ − f(x) : x ∈ E}, x∗ ∈ E∗.

Let the domain of f be denoted as domf = {x ∈ E : f(x) < +∞}, hence for
any x ∈ intdomf and y ∈ E, we define the right-hand derivative of f at x in
the direction of y by

f0(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
.

The function f is said to be

(i) Gâteaux differentiable at x if limt→0+
f(x+ty)−f(x)

t exists for any y. In
this case, f0(x, y) coincides with ▽f(x) (the value of the gradient ▽f of
f at x);

(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈ intdomf ;

(iii) Fréchet differentiable at x, if its limit is attained uniformly in ||y|| = 1;

(iv) Uniformly Fréchet differentiable on a subset Q of E, if the above limit is
attained uniformly for x ∈ Q and ||y|| = 1.

Let f : E → (−∞,+∞] be a function, then f is said to be:

(i) essentially smooth, if the subdifferential of f denoted as ∂f is both locally
bounded and single-valued on its domain, where ∂f(x) = {w ∈ E :
f(x)− f(y) ≥ ⟨w, y − x⟩, y ∈ E};

(ii) essentially strictly convex, if (∂f)−1 is locally bounded on its domain and
f is strictly convex on every convex subset of dom ∂f ;

(iii) Legendre, if it is both essentially smooth and essentially strictly convex.
See [7, 8, 34] for more details on Legendre functions.

Alternatively, a function f is said to be Legendre if it satisfies the following
conditions:

(i) The intdomf is nonempty, f is Gâteaux differentiable on intdomf and
dom▽ f = intdomf ;

(ii) The intdomf∗ is nonempty, f∗ is Gâteaux differentiable on intdomf∗

and dom▽ f∗ = intdomf .

Let E be a Banach space and Bs := {z ∈ E : ||z|| ≤ s} for all s > 0. Then, a
function f : E → R is said to be uniformly convex on bounded subsets of E, [
see pp. 203 and 221] [42] if ρst > 0 for all s, t > 0, where ρs : [0,+∞) → [0,∞]
is defined by

ρs(t) = inf
x,y∈Bs,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(α(x) + (1− α)y)

α(1− α)
,
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for all t ≥ 0, with ρs denoting the gauge of uniform convexity of f . The
function f is also said to be uniformly smooth on bounded subsets of E, [ see
pp. 221] [42], if limt↓0

σs

t for all s > 0, where σs : [0,+∞) → [0,∞] is defined
by

σs(t) = sup
x∈B,y∈SE ,α∈(0,1)

αf(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
,

for all t ≥ 0. The function f is said to be uniformly convex if the function
δf : [0,+∞) → [0,+∞) defined by

δf(t) := sup
{1
2
f(x) +

1

2
f(y)− f(

x+ y

2
) : ||y − x|| = t},

satisfies limt↓0
δf(t)

t = 0.

Definition 1.1. [33] Let f : E → (−∞,+∞] be a convex and Gâteaux differ-
entiable function. Then, the function Df : E × E → [0,+∞) defined by

Df (x, y) := f(x)− f(y)− ⟨▽f(y), x− y⟩

is called the Bregman distance with respect to f .

It is well-known that Bregman distance Df does not satisfy the properties of
a metric because Df fail to satisfy the symmetric and triangular inequality
property. However, the Bregman distance satisfies the following so-called three
point identity: for any x ∈ domf and y, z ∈ intdomf ,

Df (x, y) +Df (y, z)−Df (x, z) = ⟨▽f(z)−▽f(y), x− y⟩.(1.1)

Recall that f is said to be totally convex at a point x ∈ Domf , if the function
vf : intdomf × [0,+∞) → [0,+∞) defined by

vf (x, t) := inf{Df (y, x) : y ∈ intdomf, ||y − x|| = t},

is positive whenever t > 0. Readers should check the following articles [10, 12,
16, 35] for more details on uniformly convex and totally convex functions.
Let E be a real Banach space with E∗ its dual and C be a nonempty subset
of E. An element p ∈ C is called a fixed point of a single-valued mapping
T : C → C, if p = Tp and of a multi-valued mapping T : C → 2C if p ∈ Tp.
We denote by F (T ), the set of all fixed points of T .

Definition 1.2. Let E be a Banach space and let f : E → (−∞,+∞) be
a proper, lower semicontinuous function. Let C be a nonempty subset of
intdomf. A mapping T : C → intdomf is said to be:

(i) Bregman firmly nonexpansive (BFNE) if

⟨Tx− Ty,▽f(Tx)−▽f(Ty) ≤ ⟨Tx− Ty,▽f(x)−▽f(y)⟩,

for any x, y ∈ C. Alternatively

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y)(1.2)

≤ Df (Tx, y) +Df (Ty, x).
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(ii) Bregman quasi firmly nonexpansive (BQFNE) if F (T ) ̸= ∅ and

⟨Tx− p,▽f(x)−▽f(Tx)⟩ ≥ 0, ∀x ∈ C, p ∈ F (T ),

alternatively

Df (p, Tx) +Df (Tx, x) ≤ Df (p, x).

(iii) Bregman quasi nonexpansive (BQNE) if F (T ) ̸= ∅ and

Df (p, Tx) ≤ Df (p, x), ∀x ∈ E, p ∈ F (T ).

Recall that a mapping T : C → C is said to be:

(i) nonexpansive, if ||Tx− Ty|| ≤ ||x− y||, ∀ x, y ∈ C,

(ii) quasi-nonexpansive, if F (T ) ̸= ∅ and ||Tx − p|| ≤ ||x − p||,∀ x ∈ C, p ∈
F (T ).

Let CB(E) denote the family of all nonempty closed bounded subsets of E and
P (C) denote the family of all nonempty closed proximinal bounded subset of
C. A subset K of E is said to be proximinal, if for each x ∈ E, there exists an
element k ∈ K such that d(x, k) = d(x,K), where d(x,K) = inf{||x− y|| : y ∈
K} is the distance from the point x to the set K.
For a multi-valued mapping, T : C → P (C), we define a multi-valued mapping
PT : C → P (C) by

PT (x) = {y ∈ T (x) : ||x− y|| = d(x, T (x))}, ∀ x ∈ C.(1.3)

Let T : C → P (C) be a multi-valued mapping and PT : C → P (C) be the
mapping defined by (1.3), then, F (T ) = F (PT ) and PT (p) = {p}, for each
p ∈ F (T ), see [14].
The Hausdorff metric on CB(E) is defined by

H(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
, ∀ A,B ∈ CB(E).(1.4)

A multi-valued mapping T : C → CB(C) is said to be
(i) nonexpansive, if for all x, y ∈ C,

H(Tx, Ty) ≤ ||x− y||, ∀ x, y ∈ C;

(ii) quasi-nonexpansive, if F (T ) ̸= ∅ and

H(Tx, Tp) ≤ ||x− p||, ∀ x ∈ C, p ∈ F (T ).

In 1967, Bregman [10] discovered an effective technique (the Bregman distance
function Df ) in the process of designing and analysing feasibility and opti-
mization algorithms. In 2010, Reich and Sabach [37] introduced the class of
Bregman strongly nonexpansive mappings and studied the convergence of two
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iterative algorithms for finding common fixed points of finitely many Bregman
strongly nonexpansive mappings in reflexive Banach spaces.
Also in 2012, Suantai et al. [38] considered the strong convergence results for
fixed points of Bregman strongly nonexpansive mappings in reflexive Banach
spaces. Very recently, Chang and Wang [14] proposed a shrinking projection
method for a countable family of multi-valued Bregman quasi-nonexpansive
mappings and obtained a strong convergence result under some mild conditions
in the framework of a real reflexive Banach space. In fact, they proved the
following theorem.

Theorem 1.3. Let C be a nonempty, closed and convex subset of a real re-
flexive Banach space E. Let f : E → (−∞,+∞] be a Legendre function which
is bounded on bounded subsets of E. For i = 1, 2 . . . , let Ti : C → P (C) be
Bregman multi-valued nonexpansive mappings with Γ := ∩∞

i=1F (Ti) ̸= ∅ such
that all PTi

: C → P (C) defined by (1.3) are Bregman quasi-nonexpansive. Let
{xn} be a sequence generated by
x1 ∈ C, chosen arbitrarily, C1 = C,

yn,m = ▽f∗[αn ▽ f(x1) + (1− αn)▽ f(un,m)], un,m ∈ PTm
xm, m ≥ 1,

Cn+1 =
{
z ∈ Cn : supm≥1Df (z, yn,m) ≤ αnDf (z, x1) + (1− αn)Df (z, xn)

}
,

xn+1 = ProjfCn+1
(x1), ∀n ≥ 1,

where ProjfCn+1
is the Bregman projections of intdomf onto Cn+1 and {αn} is

a sequence in (0, 1) satisfying αn → 0 as n→ ∞, then {xn} converges strongly
to ProjΓCn+1

(x1).

Let E be a real reflexive Banach space and f : E → (−∞,+∞] be a Legendre
function. Let C be a subset of intdom(f) and T : C → P (C) be a multivalued
mapping. T is said to be multivalued Bregman quasi-nonexpansive, if F (T ) ̸= ∅
and the mapping defined by (1.3) satisfies the following condition

Df (p, w) ≤ Df (p, x), ∀x ∈ C, w ∈ PT (x), p ∈ F (T ).

In particular, if T : C → C is a single valued mapping (It is easy to show that
PT = T ). Then, T is said to be single valued Bregman quasi-nonexpansive, if
F (T ) ̸= ∅ and the following condition is satisfied:

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ).

An example of a multi-valued Bregman quasi-nonexpansive mapping can be
found in [15].
Equilibrium Problems (EP) involving monotone bifunctions, their generaliza-
tions and related optimization problems have been studied extensively by many
authors, (see [1, 2, 9, 19, 18, 23, 22, 26, 27, 30, 31, 32, 39]). Let C be a nonempty,
closed and convex subset of a reflexive Banach space E, the EP for a bifunction
g : C × C → R is defined as follows: Find x∗ ∈ C such that

g(x∗, y) ≥ 0, ∀ y ∈ C.(1.5)
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We denote the set of solutions of (1.5) by △. To solve EP (1.5), the bifunction
g is assumed to satisfy the following conditions, see [4, 21, 20, 28]:

(L1) g(x, x) = 0, for all x, y ∈ C,

(L2) g is monotone, that is g(x, y) + g(y, x) ≤ 0, for all x, y ∈ C,

(L3) for all x, y, z ∈ C, lim sup
t↓0

g(tz + (1− t)x, y) ≤ g(x, y),

(L4) for all x ∈ C, g(x, ·) is convex and lower semicontinuous.

Let ϕ : C → R ∪ {+∞} be a function. The Generalized Equilibrium Problem
(GEP) is finding x∗ ∈ C such that

g(x∗, y) + ϕ(y)− ϕ(x∗) ≥ 0, ∀y ∈ C.(1.6)

The set of solution of GEP (1.6) is denoted by GEP(g,ϕ). If ϕ = 0, (1.1) reduces
to (1.6) and if g = 0, then (1.6) reduces to the following Convex Minimization
Problem (CMP):

Find x∗ ∈ C such that ϕ(y) ≥ ϕ(x∗),∀y ∈ C.(1.7)

The set of solutions of (1.7) is denoted by CMP(ϕ), (see [5, 29]).
Fang and Huang [17] introduced the concept of relaxed η-αmonotone mappings
for solving mixed equilibrium problems.

Definition 1.4. A mapping A : C → E∗ is said to be relaxed η-α monotone,
if there exists a mapping η : C × C → E and a function α : E → R with
α(tz) = tpα(z) for all t > 0 and z ∈ E, where p > 1 such that

⟨Ax−Ay, η(x, y)⟩ ≥ α(x− y),∀x, y ∈ C.(1.8)

In particular, if η(x, y) = x− y for all x, y ∈ C and α(z) = k||z||p, where p > 1
and k > 1 are two constants, then A is called p monotone (see [17]).

The Mixed Equilibrium Problem (MEP) with relaxed η-α monotone mapping
consists of finding a point x̄ ∈ C such that

g(x̄, y) + ⟨Ay, η(y, x̄)⟩+ ϕ(y)− ϕ(x̄) ≥ 0.(1.9)

We shall denote the set of solutions of (1.9) by EP (g,A).
The MEP with relaxed η-α monotone mapping reduces to a Variational-Like
Inequality Problem (VLIP) if in (1.9), we set g = 0. That is, the VLIP is to
find a point x̄ ∈ C such that

⟨Ay, η(y, x̄)⟩+ ϕ(y)− ϕ(x̄) ≥ 0.(1.10)

We shall denote by V LIP (C,A) the set of solutions of (1.10).
In 2016, Bashir and Harbau [6] introduced and proved the existence of solutions
of the mixed equilibrium problem with relaxed η-αmonotone mapping in reflex-
ive Banach spaces. Using the Bregman distance, they introduced the concept of
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K-mapping for a finite family of Bregman quasi-asymptotically nonexpansive
mappings. They proposed an iterative algorithm for finding a common element
in the set of fixed points of a finite family of Bregman quasi-asymptotically non-
expansive mappings and the set of solutions of mixed equilibrium problem with
relaxed η-α monotone mapping.

Definition 1.5. Let C be a nonempty, closed and convex subset of a real
Banach space E. Let {Ti}Ni be a finite family of Bregman quasi-asymptotically
nonexpansive mappings. For any n ∈ N, define a mapping Kn : C → C as
follows:

Sn,0x = x

Sn,1x = P f
C(▽f

∗(αn,1 ▽ f(Tn
1 x) + (1− αn,1)▽ f(x)))

Sn,2x = P f
C(▽f

∗(αn,2 ▽ f(Tn
2 Sn,1x) + (1− αn,2)▽ f(Sn,1x)))

Sn,3x = P f
C(▽f

∗(αn,3 ▽ f(Tn
1 Sn,2x) + (1− αn,3)▽ f(Sn,2x)))

...

Sn,N−1x = P f
C(▽f

∗(αn,N−1 ▽ f(Tn
1 Sn,N−2x)

+(1− αn,N−1)▽ f(Sn,N−2x)))

Knx = Sn,Nx = P f
C(▽f

∗(αn,N ▽ f(Tn
1 Sn,N−1x)(1.11)

+(1− αn,N )▽ f(Sn,N−1x))).

Such a mapping Kn is called the Bregman K-mapping generated by Ti and
αn,i ∈ (0, 1), with i = 1, 2, 3 · · · , N.

They proved a strong convergence theorem using the following iterative method:
Let {xn} be iteratively defined as follows:

x0 = x ∈ C, chosen arbitrarily,

C1,j = C = C0

yn = ▽f∗[βn ▽ f(xn) + (1− βn)▽ f(Knxn)],

un,j ∈ C, such that

gj(un,j , y) + ⟨Ajun,j , η(y, un,j)⟩+ ψj(y)− ψj(un,j)

+
1

rn
⟨▽f(un,j)−▽f(yn), y − un,j⟩ ≥ 0,∀y ∈ C,

Cn+1,j = {z ∈ Cn : Df (z, un,j) ≤ Df (z, xn) + θn},
Cn+1 = ∩M

j=1Cn+1,j ,

xn+1 = P f
Cn+1

x0, n ≥ 0.

where {βn} is a sequence in (0, 1) satisfying lim inf
n→∞

βn(1 − βn) > 0, {rn} ⊂
(a,∞) for some a > 0 and θn = (1 − βn)tn supp∈ΓDf (p, xn). Then, {xn}
converges to u = P f

Γx0.
Motivated by the above works, we introduce an iterative algorithm and employ
the Bregman distance approach for approximating a common solution of a finite
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family of mixed equilibrium problem with a relaxed η-α monotone mappings
and a countable family of Bregman multivalued quasi-nonexpansive mappings
in a real reflexive Banach space. Using our iterative algorithm, we state and
prove a strong convergence result for the aformentioned problems. We give
some consequences of our main result and we display a numerical example to
show the applicability of the main result.

2 Preliminaries

We state some known and useful results which will be needed in the proof of
our main theorem. In the sequel, we denote strong and weak convergence by
”→” and ”⇀”, respectively.

Definition 2.1. A function f : E → R is said to be super coercive if

lim
x→∞

f(x)

||x||
= +∞,

and strongly coercive if

lim
||xn||→∞

f(xn)

||xn||
= ∞.

Lemma 2.2. [16] Let g : C × C → R be a bifunction satisfying conditions
(L1)-(L4), then △ is closed and convex.

Definition 2.3. [10] Let C be a nonempty, closed and convex subset of a
reflexive real Banach space E. A Bregman projection of x ∈ intdomf onto
C ⊂ intdomf is the unique vector ProjfC ∈ C which satisfies

Df (Proj
f
Cx, x) = inf{Df (y, x) : y ∈ C}.

Lemma 2.4. [13] Let C be a nonempty, closed and convex subset of E and
x ∈ E. Let f : E → R be a Gâteaux differentiable and totally convex function.
Then

(i) q = ProjfC(x) if and only if ⟨▽f(x)−▽f(q), y − q⟩, for all y ∈ C;

(ii) Df (y, Proj
f
C(x)) +Df (Proj

f
C(x), x) ≤ Df (y, x), for all y ∈ C.

Lemma 2.5. [25] Let E be a Banach space, r > 0 be a constant, ρr be the
gauge of uniform convexity of f and f : E → R be a continuous uniformly
convex function on bounded subset of E. Then, for any x, y ∈ Br, we have

f

( ∞∑
k=0

αkxk

)
≤

∞∑
k=0

αkf(xk)− αiαjρr(||xi − xj ||)

for all i, j ∈ N ∪ {0}, xk ∈ Br, αk ∈ (0, 1) and k ∈ N ∪ {0} with
∞∑
k=0

αk = 1.

Here, Br := {z ∈ E : ||z|| ≤ r}.
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Lemma 2.6. [13] Let E be a reflexive Banach space, f : E → R be a strongly
coercive Bregman function and V be a function defined by

V (x, x∗) = f(x)− ⟨x, x∗⟩+ f∗(x∗), x ∈ E, x∗ ∈ E∗.

The following assertions also hold:

Df (x,▽f∗(x∗)) = V (x, x∗), for all x ∈ E and x∗ ∈ E∗.

V (x, x∗) + ⟨▽f∗(x∗)− x, y∗⟩ ≤ V (x, x∗ + y∗) for all x ∈ Eand x∗, y∗ ∈ E∗.

Lemma 2.7. [6] Let E be a reflexive Banach space with the dual E∗ and let C
be a nonempty closed convex and bounded subset of E. Let f : E → (−∞,+∞]
be a Legendre and Gâteaux differentiable function. Let A : C → E∗ be η-
hemicontinuous and relaxed η-α monotone mapping and g : C × C → R be a
bifunction satisfying (L1), (L2) and (L4). Let ψ : C → R be proper, convex
and lower semicontinuous. For r > 0 and x ∈ E, define a map Tr : E → 2C by

Tr(x) = {z ∈ C : g(z, y) + ⟨Ay, η(y, z)⟩+ ψ(y)− ψ(z)(2.1)

+
1

r
⟨▽f(z)−▽f(x), y − z⟩ ≥ 0, ∀ y ∈ C}.(2.2)

Assume that

(i) η(x, x) = 0, for all x ∈ C;

(ii) η(z, y) + η(y, z) = 0, ∀ y, z ∈ C;

(iii) ⟨Au, η(., v)⟩ is convex and lower semicontinuous for fixed u, v ∈ C;

(iv) α : E → R is weakly lower semicontinuous;

(v) α(x− y) + α(y − z) ≥ 0, ∀ x, y ∈ C.

Then,

(1) Tr is single-valued,

(2) Tr is a Bregman firmly nonexpansive type mapping, that is

⟨▽f(Trx)−▽f(Try), Trx− Try⟩ ≤ ⟨▽f(x)−▽f(y), Trx− Try⟩,

∀ x, y ∈ C;

(3) F (Tr) = EP (g,A);
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(4) Tr is Bregman quasi nonexpansive satisfying

Df (u, Trx) +Df (Trx, x) ≤ Df (u, x);

(5) EP(g, A) is closed and convex.

Lemma 2.8. [13] Let E be a Banach space and f : E → R a Gâteaux dif-
ferentiable function which is uniformly convex on bounded subsets of E. Let
{xn}n∈N and {yn}n∈N be bounded sequences in E. Then,

lim
n→∞

Df (yn, xn) = 0 ⇒ lim
n→∞

||yn − xn|| = 0.

Lemma 2.9. [42] Let E be a reflexive Banach space and f : E → R a convex
function which is bounded on bounded subsets of E. Then, the following asser-
tions are equivalent:
(i) f is strongly coercive and uniformly convex on bounded subsets of E;
(ii) dom f∗ = E∗, f∗ is bounded on bounded subsets and uniformly smooth on
bounded subsets of E∗;
(iii) dom f∗ = E∗, f∗ is Fréchet differentiable and ▽f∗ is uniformly norm-to-
norm continuous on bounded subset of E∗.

Lemma 2.10. [11] If domf contains at least two points, then the function f
is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Lemma 2.11. [37] Let f : E → R be a Gâteaux differentiable and totally
convex function. If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then the
sequence {xn} is also bounded.

Lemma 2.12. [42] Let f : E → R be a continuous convex function which is
strongly coercive. Then, the following assertions are equivalent:

(i) f is bounded on bounded subsets and uniformly smooth on bounded subsets
of E,

(ii) f is Fréchet differentiable and ▽f∗ is uniformly norm-to-norm continu-
ous on bounded subset of E∗,

(iii) domf∗ = E∗, f∗ is strongly coercive and uniformly convex on bounded
subsets of E∗.

Definition 2.13. Let E be a reflexive Banach space and C be a nonempty
closed and convex subset of E. A Bregman projection of x ∈ intdomf onto
C ⊂ intdomf is the unique vector P f

C(x) ∈ C satisfying

Df (P
f
C(x), x) = int{Df (y, x) : y ∈ C}.

Lemma 2.14. [36] Let C be a nonempty closed and convex subset of a reflexive
Banach space E and x ∈ E. Let f : E → R be a Gâteaux differentiable and
totally convex function. Then,
(i) z = P f

C(x) if and only if ⟨▽f(x)−▽f(z), y − z⟩ ≤ 0, ∀ y ∈ C.

(ii) Df (y, P
f
C(x)) +Df (P

f
C(x), x) ≤ Df (y, x) ∀ y ∈ C.
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Lemma 2.15. [13] Let f : E → R∪{+∞} be a convex function whose domain
contains at least two points. Then, the following statement hold:
(i) f is sequentially consistent if and only if it is totally convex on bounded
subsets.
(ii) If f is lower semicontinuous, then f is sequentially consistent if and only
if it is uniformly convex on bounded subsets.
(iii) If f is uniformly strictly convex on bounded subsets, then it is sequentially
consistent, and the converse implication holds when f is lower semicontinu-
ous, Fréchet differentiable on its domain and the Fréchet differentiable ▽f is
uniformly continuous on bounded subsets.

Lemma 2.16. [24, 40] Let {an}n∈N be a sequence of real numbers such that
there exists a subsequence {ni}i∈N of {n}n∈N such that ani

< ani+1
for all

i ∈ N. Then there exists a subsequence {mk}k∈N ⊂ N such that mk → ∞ and
the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1

and ak ≤ ak+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.17. [3, 41] Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− σn)an + σnδn, n > 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that

(i)
∞∑

n=1
σn = ∞;

(ii) lim sup
n→∞

δn ≤ 0 or
∞∑

n=1
|σnδn| <∞.

Then, lim
n→∞

an = 0.

3 Main Results

Theorem 3.1. Let E be a real reflexive Banach space with E∗ its dual and C
be a nonempty closed convex subset of intdomf . Let f : E → (−∞,+∞) be a
strongly coercive, Legendre, uniformly Fréchet differentiable and totally convex
function which is bounded on bounded subsets of E. Let Ti : C → P (C), i =
1, 2, ... be multivalued nonexpansive mappings such that PTi

: C → P (C) are
Bregman quasi-nonexpansive. For each j = 1, 2, 3, ..M let Aj : C → E∗ be η-
hemicontinuous and relaxed η-α monotone mappings satisfying the assumptions
of Lemma 2.7, gj : C×C → R be bifunctions satisfying (L1)−(L4), ψj : C → R
be proper, convex and lower semi-continuous functions. Suppose Γ :=

[
∩∞
i=1

F (Ti)
⋂
∩M
j=1EP (gj , Aj)

]
̸= ∅. For arbitrary u, x1 ∈ C, let {xn} be the sequence
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generated by

yn = ▽f∗[βn,0 ▽ f(xn) +
∞∑
i=1

βn,i ▽ f(zin)], z
i
n ∈ PTixn;

unj
∈ C, such that,

g(un,j , y) + ⟨Ajun,j , η(y, unj
)⟩+ ψj(y)− ψj(un,j)

+ 1
rn
⟨▽f(un,j)−▽f(yn), y − unj

⟩ ≥ 0, ∀ y ∈ C;

jn ∈ Argmax{Df (unj
, yn), j = 1, 2, ...,M}, un = unj

;

xn+1 = ▽f∗
[
αn ▽ f(u) + (1− αn)▽ f(un)

]
, n ∈ N;

(3.1)

where {rn} ⊂ [a,∞) for some a > 0, {αn} and {βn} are sequences in (0, 1)
satisfying the following conditions:

(i)
∞∑

n=0
αn = ∞, and lim inf

n→∞
αn = 0;

(ii) lim inf
n→∞

βn,i > 0 and
∞∑
i=0

βn,i = 1.

Then {xn} converges strongly to z = ProjfΓu, where ProjfΓ is the Bregman
projection of C onto Γ.

Proof. Let x̄ ∈ Γ, then from (3.1) and (2.1), we have that un,j = T j
rnyn,

j = 1, 2 · · · ,M. Using Lemma 2.7 (3), we obtain that

Df (x̄, un,j) = Df (x̄, T
j
rnyn) ≤ Df (x̄, yn).(3.2)

From (3.1) and using the assumption that PTi , i = 1, 2, ... are Bregman quasi-
nonexpansive mappings, we obtain

Df (x̄, yn) = Df (x̄,▽f∗(βn,0 ▽ f(xn) +
∞∑
i=1

βn,i ▽ f(zin)))

≤ βn,0Df (x̄, xn) +

∞∑
i=1

βn,iDf (x̄, z
i
n)

≤ βn,0Df (x̄, xn) +

∞∑
i=1

βn,iDf (x̄, xn)

= Df (x̄, xn).(3.3)

We conclude from (3.2), (3.3) and the definition of un,j in (3.1) that

Df (x̄, un) ≤ Df (x̄, xn).(3.4)

Now, using (3.1) and (3.4), we have that

Df (x̄, xn+1) = Df (x̄,▽f∗(αn ▽ f(u) + (1− αn)▽ f(un)))

≤ αnDf (x̄, u) + (1− αn)Df (x̄, un)
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≤ αnDf (x̄, u) + (1− αn)Df (x̄, xn)

≤ max{Df (x̄, u), Df (x̄, xn)}.(3.5)

By induction, we obtain

Df (x̄, xn+1) ≤ max{Df (x̄, u), Df (x̄, x1)}.

From Lemma 2.12, we have that f∗ is bounded on bounded subsets of E∗.
Hence, ▽f∗ is also bounded on bounded subsets of E∗. Therefore, {Df (x̄, xn)}
is bounded and in view of Lemma 2.11, we obtain that {xn} is bounded. Let
s ≥ sup{|| ▽ f(xn)||, || ▽ f(zin)|| : n ∈ N} and let ρ∗r : E∗ → R be the gauge
of uniform convexity of the conjugate function f∗. We have from Lemma 2.5,
Lemma 2.6, (3.3) and the assumption that PTi

, i = 1, 2, ... are Bregman quasi-
nonexpansive mappings that

Df (x̄, yn) = Df (x̄,▽f∗[βn,0 ▽ f(xn) +

∞∑
i=1

βn,i ▽ f(zin)])

= Vf (x̄, βn,0 ▽ f(xn) +

∞∑
i=1

βn,i ▽ f(zin))

= f(x̄)− ⟨x̄, βn,0 ▽ f(xn) +

∞∑
i=1

βn,i ▽ f(zin)⟩

+ f∗(βn,0 ▽ f(xn) +

∞∑
i=1

βn,i ▽ f(zin))

≤ βn,0f(x̄) +

∞∑
i=1

βn,if(x̄)− βn,0⟨x̄,▽f(xn)⟩

−
∞∑
i=1

βn,i⟨V,▽f(zin)⟩+ βn,0f
∗(▽f(xn))

+

∞∑
i=1

βn,if
∗(▽f(zin))− βn,0

∞∑
i=1

βn,iρ
∗
r(|| ▽ f(xn)−▽f(zin)||)

= βn,0[f(x̄)− ⟨x̄,▽f(xn)⟩+ f∗(▽f(xn))]

+

∞∑
i=1

βn,i[f(x̄)− ⟨x̄,▽f(zin)⟩+ f∗(▽f(zin))]

− βn,0

∞∑
i=1

βn,iρ
∗
r(|| ▽ f(xn)−▽f(zin)||)

= βn,0Df (x̄, xn) +

∞∑
i=1

βn,iDf (x̄, z
i
n)

− βn,0

∞∑
i=1

βn,iρ
∗
r(|| ▽ f(xn)−▽f(zin)||)
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≤ βn,0Df (x̄, xn) +

∞∑
i=1

βn,iDf (V, xn)

− βn,0

∞∑
i=1

βn,iρ
∗
r(|| ▽ f(xn)−▽f(zin)||)

= Df (x̄, xn)− βn,0

∞∑
i=1

βn,iρ
∗
r(|| ▽ f(xn)−▽f(zin)||).(3.6)

Using (3.2), (3.5) and (3.6), we have that

Df (x̄, xn+1) ≤ αnDf (x̄, u) + (1− αn)Df (x̄, un)

≤ αnDf (x̄, u) + (1− αn)Df (x̄, xn)

− (1− αn)βn,0

∞∑
i=1

βn,iρ
∗
s(|| ▽ f(xn)−▽f(zin)||).(3.7)

The rest of the proof will be divided into two parts:
Case 1: Assume that there exists n0 ∈ N such that {Df (x̄, xn)} is monotone
decreasing for all n ≥ n0, then {Df (x̄, xn)} is convergent. Thus, we have that

Df (x̄, xn)−Df (x̄, xn+1) → 0, as n→ ∞.

Now, from (3.7) and condition (i), we have that

lim
n→∞

βn,0

∞∑
i=1

βn,iρ
∗
r(|| ▽ f(xn)−▽f(zin)||) = 0.

Also, from condition (ii) and property of ρ∗r , we obtain that

lim
n→∞

|| ▽ f(xn)−▽f(zin)|| = 0, for all i = 1, 2, ...(3.8)

By Lemma 2.12, we have that ▽f∗ is uniformly norm-to-norm continuous on
bounded subsets, using this fact in (3.8), we obtain

lim
n→∞

||xn − zin|| = 0 = lim
n→∞

d(xn, Tixn).(3.9)

From (3.1), we have

|| ▽ f(xn)−▽f(yn)|| =
∞∑
i=1

βn,i|| ▽ f(xn)−▽f(zin)||.

Hence, from (3.8), we obtain that

lim
n→∞

|| ▽ f(xn)−▽f(yn)|| = 0.(3.10)

Since ▽f∗ is uniformly continuous, we have that

lim
n→∞

||xn − yn|| = 0.(3.11)



Mixed equilibrium problem and fixed point problem 47

Since f is uniformly Fréchet differentiable on bounded subset of E, we have
that f is uniformly continuous on bounded subset of E. Thus we obtain from
(3.11), that

lim
n→∞

||f(xn)− f(yn)|| = 0.(3.12)

From (3.1) and Lemma 2.7 (4), we have

Df (un,j , yn) ≤ Df (x̄, yn)−Df (x̄, un,j)

≤ Df (x̄,▽f∗(βn,0 ▽ f(xn) +

∞∑
i=1

▽f(zin)))−Df (x̄, unj )

βn,0Df (x̄, xn) +

∞∑
i=1

βn,iDf (x̄, z
i
n)−Df (x̄, unj

)

≤ βn,0Df (x̄, xn) +

∞∑
i=1

βn,iDf (x̄, xn)−Df (x̄, un,j)

= Df (x̄, xn)−Df (x̄, un,j)

≤ Df (x̄, xn) + αn[Df (x̄, u)−Df (x̄, un,j)]−Df (x̄, xn+1),(3.13)

which implies that

lim
n→∞

Df (un,j , yn) = 0.(3.14)

Hence, we have from Lemma 2.8 that

lim
n→∞

||un,j − yn|| = 0 = lim
n→∞

||un − yn||.(3.15)

Since f is uniformly Fréchet differentiable on bounded subset of E, by Lemma
2.15, we have

lim
n→∞

|| ▽ f(un,j)−▽f(yn)|| = 0.(3.16)

From (3.11) and (3.15), we obtain

lim
n→∞

||un − xn|| = 0.(3.17)

On the other hand, by the boundedness▽f on bounded subsets of E, we obtain

lim
n→∞

Df (xn+1, xn) = lim
n→∞

[Df (xn, p)−Df (xn+1, p)

+⟨xn − p,▽f(p)−▽f(xn+1)⟩] = 0.

By using Lemma 2.8, we get

||xn+1 − xn|| → 0 as n→ ∞.(3.18)

Since {xn} is bounded there exists a subsequence {xnk
} of {xn} such that

xnk
⇀ v, by (3.15) we obtain that unk,j ⇀ v. Also, since PTi

for i = 1, 2, .. are
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Bregman quasi-nonexpansive, {zin}∞i=1 is bounded and converges weakly to v
by virtue of (3.9). Then, it follows that

d(v, Tiv) ≤ d(v, zink
) + d(zink

, xnk
) + d(xnk

, Tixnk
) +H(Tixnk

, Tiv)

≤ d(v, zink
) + 2d(zink

, xnk
) + d(xnk

, v),(3.19)

which implies

lim
k→∞

d(v, Tiv) = 0.(3.20)

This implies that v ∈ Tiv, for each i = 1, 2, ... Hence, v ∈ ∩∞
i=1F (Ti).

Next, we show that v ∈ ∩M
j=1EP (gj , Aj). From (3.1), (3.16), the fact that ▽f

is uniformly continuous and rnk
> a, we have

lim
k→∞

|| ▽ f(unk,j)−▽f(ynk
)||

rnk

= 0, ∀ j = 1, 2, , ..,m.(3.21)

From (3.1), we have

g(unk,j , y) + ⟨Ajunk,j , η(y, unk,j)⟩+ ψj(y)− ψj(unk,j)

+
1

rnk

⟨▽f(unk,j)−▽f(ynk
), y − unk,j⟩ ≥ 0, ∀ y ∈ C.(3.22)

Using (L2), Lemma 2.7 (ii), it follows that

1

rnk

|| ▽ f(unk,j)−▽f(ynk
)|| ||unk,j − y|| ≥ ⟨Ajunk,j , η(unk,j , y)⟩+ ψj(unk,j)

− ψj(y)− gj(unk,j , y) ∀ y ∈ C

≥ ⟨Ajunk,j , η(unk,j , y)⟩+ ψj(unk,j)

− ψj(y) + gj(y, unk,j) ∀ y ∈ C.(3.23)

Using (3.21), the fact that unk,j ⇀ v and taking lim inf as n→ ∞ in the above
inequality, we get

0 ≥ ⟨Ajv, η(v, y)⟩+ ψj(v)− ψj(y) + gj(v, y), ∀ y ∈ C and j = 1, 2, ..,M.
(3.24)

Now for any t ∈ (0, 1) and y ∈ C, let yt = ty + (1− t)v. Then yt ∈ C and so

0 ≥ ⟨Ajv, η(v, yt)⟩+ ψj(v)− ψj(yt) + gj(v, yt), ∀ y ∈ C and j = 1, 2, ..,M.
(3.25)

Therefore by L1, L2, Lemma 2.7 (ii), (iii) and (3.25), we have

0 = gj(yt, yt) + ⟨Ajv, η(yt, yt)⟩+ ψj(yt)− ψj(yt)

= gj(yt, ty + (1− t)v) + ⟨Ajv, η(ty + (1− t)v, yt)⟩
+ ψj(ty + (1− t)v)− ψj(yt)
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≤ t[gj(yt, y) + ⟨Ajv, η(y, yt)⟩+ ψj(y)− ψj(yt)]

+ (1− t)[gj(yt, v) + ⟨Ajv, η(v, yt)⟩+ ψj(v)− ψj(yt)]

≤ t[gj(yt, y) + ⟨Ajv, η(y, yt)⟩+ ψj(y)− ψj(yt)].

That is,

gj(yt, y) + ⟨Ajv, η(y, yt)⟩+ ψj(y)− ψj(yt) ≥ 0.(3.26)

Since yt = ty + (1− t)v, we have

gj(ty + (1− t)v, y) + ⟨Ajv, η(y, ty + (1− tv)⟩+ ψj(y)− ψj(ty + (1− t)v) ≥ 0.
(3.27)

By using (L3) and the lower semicontinuity of ψ, we obtain by allowing t→ 0
that

gj(v, y) + ⟨Ajv, η(y, v)⟩+ ψj(y)− ψj(v) ≥ 0, ∀ y ∈ C.

Hence, we obtain that v ∈ EP (gj , Aj), for each j = 1, 2, ...M.

We now show that {xn} converges strongly to z = ProjfΓu. In view of Lemma
2.6 and (3.4), we have that

Df (z, xn+1) = Df (z,▽f∗[αn ▽ f(u) + (1− αn)▽ f(un)])

= V (z, αn ▽ f(u) + (1− αn)▽ f(un))

≤ V (z, αn ▽ f(u) + (1− αn)▽ f(yn)− αn(▽f(u)−▽f(u))
− ⟨▽f∗[αn ▽ f(u) + (1− αn)▽ f(un)]− z,−αn(▽f(u)−▽f(z)⟩)
= V (z, αn ▽ f(z) + (1− αn)▽ f(un)

+ αn⟨xn+1 − z,▽f(u)−▽f(z)⟩
= Df (z,▽f∗[αn ▽ f(u) + (1− αn)▽ f(un)])

+ αn⟨xn+1 − z,▽f(u)−▽f(z)⟩
≤ αnDf (z, z) + (1− αn)Df (z, un) + αn⟨xn+1 − z,▽f(u)−▽f(z)⟩
= (1− αn)Df (z, xn) + αn⟨xn+1 − z,▽f(u)−▽f(z)⟩.(3.28)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that

xnk
⇀ q and

lim sup
n→∞

⟨xn+1 − z,▽f(u)−▽f(z)⟩ = lim
k→∞

⟨xnk+1 − z,▽f(u)−▽f(z)⟩.

By (3.18) and xnk
⇀ q, we get that xnk+1 ⇀ q. Using this and Lemma 2.14

(i), we have

lim sup
n→∞

⟨xn+1 − z,▽f(u)−▽f(z)⟩ = lim
k→∞

⟨xnk+1 − z,▽f(u)−▽f(z)⟩

= ⟨q − z,▽f(u)−▽f(z)⟩
≤ 0.(3.29)
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Applying Lemma 2.17 and (3.29) in (3.28), we have that {xn} converges strongly
to z.
CASE 2: Assume that {Df (z, xn)} is not monotone decreasing. Then there
exists a subsequence {nk}k∈N of {n}n∈N such that

Df (z, xnk
) < Df (z, xnk+1),

for k ∈ N, then by Lemma 2.16, there exists a nondecreasing sequence
{mk}k∈N ⊂ N such that mk → ∞,

Df (z, xmk
) < Df (z, xmk+1) and Df (z, xk) ≤ Df (z, xk+1),

for all k ∈ N. This together with (3.7), conditions (i) and (ii) implies that

lim
k→∞

ρ∗r(|| ▽ f(xnk
)−▽f(zink

)||) = 0.

Following the same argument as in Case 1, we arrive at

lim sup
k→∞

⟨xmk+1
− z,▽f(u)−▽f(z)⟩ = lim

k→∞
⟨xmk

− z,▽f(u)−▽f(z)⟩.

It follows from (3.28) that

Df (z, xmk+1
) ≤ (1− αmk

)Df (z, xnk
) + αmk

⟨xm+1 − z,▽f(u)−▽f(z)⟩.
(3.30)

Since Df (z, xmk
) ≤ Df (z, xmk+1

), we have that

αmk
Df (z, xmk

) ≤ Df (z, xmk
)−Df (z, xmk+1

)(3.31)

+ αmk
⟨xmk+1

− z,▽f(u)−▽f(z)⟩
≤ αmk

⟨xmk+1
− z,▽f(u)−▽f(z)⟩.(3.32)

In particular, since αmk
> 0, we obtain

Df (z, xmk
) ≤ ⟨xmk+1

− z,▽f(u)−▽f(z)⟩.

In view of (3.30), we deduce that

lim
k→∞

Df (z, xmk
) = 0.

This together with (3.31) implies that

Df (z, xmk+1
) = 0.

On the other hand, we have Df (z, xk) ≤ Df (z, xk+1) for all k ∈ N which
implies that {xk} → z as k → ∞. Thus, we obtain that xn → z as n→ ∞.

We obtain the following consequences of our main result.
Suppose in Theorem 3.1, we choose i = j = 1, then we obtain the following
result:
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Corollary 3.2. Let E be a real reflexive Banach space with E∗ its dual and C
be a nonempty closed convex subset of intdomf . Let f : E → (−∞,+∞] be a
strongly coercive, Legendre, uniformly Fréchet differentiable and totally convex
function which is bounded on bounded subsets of E. Let T : C → P (C) be
a multivalued nonexpansive mapping such that PT : C → P (C) are Bregman
quasi-nonexpansive. Let A : C → E∗ be η-hemicontinuous and relaxed η-α
monotone mapping satisfying the assumptions of Lemma 2.7, g : C × C → R
be bifunction satisfying (L1) − (L4), ψ : C → R be proper, convex and lower
semi-continuous functions. Suppose Γ := F (T ) ∩ EP (g,A) ̸= ∅. For arbitrary
u, x1 ∈ C, let {xn} be the sequence generated by



yn = ▽f∗[βn ▽ f(xn) + (1− βn)▽ f(zn)], zn ∈ PTxn;

un ∈ C, such that,

g(un, y) + ⟨Aun, η(y, un)⟩+ ψ(y)− ψ(un)

+ 1
rn
⟨▽f(un)−▽f(yn), y − un⟩ ≥ 0, ∀ y ∈ C;

xn+1 = ▽f∗
[
αn ▽ f(u) + (1− αn)▽ f(un)

]
, n ∈ N;

(3.33)

where {αn} and {βn} are sequences in (0, 1), and {rn} ⊂ [a,∞) for some a > 0
satisfying the following conditions:

(i)
∞∑

n=0
αn = ∞, and lim inf

n→∞
αn = 0;

(ii) lim inf
n→∞

βn > 0.

Then {xn} converges strongly to ProjfΓu, where Proj
f
Γ is the Bregman projec-

tion of C onto Γ.

For approximating the common solution of a finite family of Variational-Like
Inequality Problem and common fixed point of a countable family of multival-
ued Bregman nonexpansive mappings we have the following as an application
of our main result:

Corollary 3.3. Let E be a real reflexive Banach space with E∗ its dual and
C be a nonempty closed convex subset of intdomf . Let f : E → (−∞,+∞]
be a strongly coercive, Legendre, uniformly Fréchet differentiable and totally
convex function which is bounded on bounded subsets of E. Let Ti : C →
P (C), i = 1, 2, ... be multivalued nonexpansive mappings such that PTi

: C →
P (C) are Bregman quasi-nonexpansive. For each j = 1, 2, 3, ..M, let Aj : C →
E∗ be η-hemicontinuous and relaxed η-α monotone mappings satisfying the
assumptions of Lemma 2.7, ψj : C → R be proper, convex and lower semi-
continuous functions. Suppose Γ :=

[
∩∞
i=1 F (Ti)

⋂
∩M
j=1V LIP (C,Aj)

]
̸= ∅.
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For arbitrary u, x1 ∈ C, let {xn} be the sequence generated by

yn = ▽f∗[βn,0 ▽ f(xn) +
∞∑
i=1

βn,i ▽ f(zin)], z
i
n ∈ PTixn;

unj
∈ C, such that,

⟨Ajun,j , η(y, unj
)⟩+ ψj(y)− ψj(un,j)

+ 1
rn
⟨▽f(un,j)−▽f(yn), y − unj

⟩ ≥ 0, ∀ y ∈ C;

jn ∈ Argmax{Df (unj
, yn), j = 1, 2, ...,M}, un = unj

;

xn+1 = ▽f∗
[
αn ▽ f(u) + (1− αn)▽ f(un)

]
, n ∈ N;

(3.34)

where {αn} and {βn} are sequences in (0, 1), and {rn} ⊂ [a,∞) for some a > 0
satisfying the following conditions:

(i)
∞∑

n=0
αn = ∞, and lim inf

n→∞
αn = 0;

(ii) lim inf
n→∞

βn,i > 0 and
∞∑
i=0

βn,i = 1.

Then {xn} converges strongly to ProjfΓu, where Proj
f
Γ is the Bregman projec-

tion of C onto Γ.

Suppose in Theorem 3.1, we set E = H a real Hilbert space, then we obtain
the following as a consequence of our main result:

Corollary 3.4. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let Ti : C → P (C), i = 1, 2, ... be multivalued nonexpansive mappings
such that PTi : C → P (C) are Bregman quasi-nonexpansive. For each j =
1, 2, 3, ..M, let Aj : C → E∗ be η-hemicontinuous and relaxed η − α monotone
mappings satisfying the assumptions of Lemma 2.7 and gj : C × C → R be
bifunctions satisfying (L1)− (L4) and ψj : C → R be proper, convex and lower
semi-continuous functions. Suppose Γ :=

[
∩∞
i=1 F (Ti)

⋂
∩M
j=1EP (gj , Aj)

]
̸= ∅.

For arbitrary u, x1 ∈ C, let {xn} be the sequence generated by

yn = βn,0xn +
∞∑
i=1

βn,iz
i
n, z

i
n ∈ PTixn;

unj
∈ C, such that,

g(un,j , y) + ⟨Ajun,j , η(y, unj
)⟩+ ψj(y)− ψj(un,j)

+ 1
rn
⟨un,j − yn, y − unj

⟩ ≥ 0, ∀ y ∈ C;

jn ∈ Argmax{||yn − unj
||2, j = 1, 2, ...,M}, un = unj

;

xn+1 = αnu+ (1− αn)un, n ∈ N;

(3.35)

where {αn} and {βn} are sequences in (0, 1), and {rn} ⊂ [a,∞) for some a > 0
satisfying the following conditions:

(i)
∞∑

n=0
αn = ∞, and lim inf

n→∞
αn = 0;
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(ii) lim inf
n→∞

βn,i > 0 and
∞∑
i=0

βn,i = 1.

Then {xn} converges strongly to P f
Γu, where P

f
Γ is the metric projection of C

onto Γ.

4 Numerical Example

In this section we give a numerical example to show the efficiency of our main
result.
Let E = R×R and C = [−1, 1]× [−1, 1]. Define a mapping A(x1, x2) = (x1, x2)

for all x = (x1, x2) ∈ C, α : R × R → R by α(x1, x2) =
1

2
x21 +

1

2
x22 for all x =

(x1, x2) ∈ E and η : C ×C → R×R by η((x1, x2), (y1, y2)) = (x1 − y1, x2 − y2)
for all (x, y) ∈ C×C with x = (x1, x2) and y = (y1, y2). Then, the mapping A is
a relaxed η-α monotone mapping. Indeed, for all x = (x1, x2), y = (y1, y2) ∈ C,
we have

⟨Ax−Ay, η(x, y)⟩ = ((x1 − y1), (x2 − y2))((x1 − y1), (x2 − y2))

= [(x1 − y1)
2 + (x2 − y2)

2]

≥ 1

2
[(x1 − y1)

2 + (x2 − y2)
2] = α(x− y).

Hence, A is a relaxed η-α monotone mapping.
Let un = (u1n, u

2
n), yn = (y1n, y

2
n), zn = (z1n, z

2
n) and y = (y1, y2). Define the

bifunction g : C × C → R by g : (x, y) = −5x2 + 3xy + 2y2, A(x) = x,
η(x, y) = 2(x− y) and ψ(x) = x2. By using Lemma 2.7, we have that

g(un, y) + ⟨Aun, η(y, un)⟩+ ϕ(y)− ϕ(un) +
1

rn
⟨un − yn, y − un⟩ ≥ 0, ∀y ∈ R2

⇐⇒ −5u2n + 3uny + 2y2 + un(2(y − un)) + y2 − u2n +
1

rn
(y − un)(un − yn) ≥ 0.

By simple calculations, we obtain

un = Trn(yn) =
yn

11rn + 1
.

That is,

u1n = Trn(y
1
n) =

y1n
11rn + 1

and u2n = Trn(y
2
n) =

y2n
11rn + 1

.

Let f : E → (−∞,+∞) be defined by f(x) = x4

4 , then ∇f(x) = x3, f(x∗) =

3
4x

∗ 4
3 and ∇f∗(x∗) = x∗

1
3 . Choose the sequences rn = 2n

n+1 , αn =
1

8(n+ 1)

and βn =
n+ 1

5n
. Then, we use iteration (3.33) of Corollary 3.2.

We also consider the following cases for our numerical results.
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Case 1: x1 = (0.5,−0.25)T and u = (0.5,−0.25)T ,
Case 2: x1 = (2, 25)T and u = (0.5,−0.25)T ,
Case 3: x1 = (2, 25)T and u = (−100, 30)T ,
Case 4: x1 = (−1, 3)T and u = (2,−40)T .
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gramming. Ž. Vyčisl. Mat i Mat. Fiz. 7 (1967), 620–631.

[11] Butnariu, D., and Iusem, A. N. Totally convex functions for fixed
points computation and infinite dimensional optimization, vol. 40 of Ap-
plied Optimization. Kluwer Academic Publishers, Dordrecht, 2000.

[12] Butnariu, D., Reich, S., and Zaslavski, A. J. There are many totally
convex functions. J. Convex Anal. 13, 3-4 (2006), 623–632.

[13] Butnariu, D., and Resmerita, E. Bregman distances, totally convex
functions, and a method for solving operator equations in Banach spaces.
Abstr. Appl. Anal. (2006), Art. ID 84919, 39.

[14] Chang, S. S., and Wang, X. R. Strong convergence theorems for a
countable family of multi-valued Bregman quasi-nonexpansive mappings
in reflexive Banach spaces. Numer. Funct. Anal. Optim. 38, 5 (2017),
575–589.

[15] Cioranescu, I. Geometry of Banach spaces, duality mappings and non-
linear problems, vol. 62 of Mathematics and its Applications. Kluwer Aca-
demic Publishers Group, Dordrecht, 1990.

[16] Eskandani, G. Z., Raeisi, M., and Rassias, T. M. A hybrid extra-
gradient method for solving pseudomonotone equilibrium problems using
Bregman distance. J. Fixed Point Theory Appl. 20, 3 (2018), Paper No.
132, 27.

[17] Fang, Y. P., and Huang, N. J. Variational-like inequalities with gen-
eralized monotone mappings in Banach spaces. J. Optim. Theory Appl.
118, 2 (2003), 327–338.

[18] Izuchukwu, C., Mebawondu, A. A., and Mewomo, O. T. A
new method for solving split variational inequality problems without co-
coerciveness. J. Fixed Point Theory Appl. 22, 4 (2020), Paper No. 98,
23.



Mixed equilibrium problem and fixed point problem 57

[19] Izuchukwu, C., Ogwo, G., and Mewomo, O. T. An inertial method
for solving generalized split feasibility problems over the solution set of
monotone variational inclusions. Optimization (2020).

[20] Jolaoso, L. O., Alakoya, T. O., Taiwo, A., and Mewomo, O. T.
A parallel combination extragradient method with Armijo line searching
for finding common solutions of finite families of equilibrium and fixed
point problems. Rend. Circ. Mat. Palermo (2) 69, 3 (2020), 711–735.

[21] Jolaoso, L. O., Alakoya, T. O., Taiwo, A., and Mewomo, O. T.
Inertial extragradient method via viscosity approximation approach for
solving equilibrium problem in Hilbert space. Optimization 70, 2 (2021),
387–412.

[22] Jolaoso, L. O., Taiwo, A., Alakoya, T. O., and Mewomo, O. T.
A strong convergence theorem for solving pseudo-monotone variational
inequalities using projection methods. J. Optim. Theory Appl. 185, 3
(2020), 744–766.

[23] Jolaoso, L. O., Taiwo, A., Alakoya, T. O., and Mewomo, O. T.
A unified algorithm for solving variational inequality and fixed point prob-
lems with application to the split equality problem. Comput. Appl. Math.
39, 1 (2020), Paper No. 38, 28.
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