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On a class of partial fractional integro-differential
inclusions

Aurelian Cernea1

Abstract. A Darboux problem associated to a fractional hyperbolic
integro-differential inclusion defined by a Caputo type fractional deriva-
tive is studied. We obtain an existence result for this problem in the
situation when the values of the set-valued map are not convex by em-
ploying a method originally introduced by Filippov. Also, we provide
the existence of solutions continuously depending on a parameter for the
problem studied. This second result allows to deduce a continuous selec-
tion of the solution set of the problem considered.
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1. Introduction

In the last years one may see a strong development of the theory of differen-
tial equations and inclusions of fractional order ([4, 11, 15, 17] etc.). The main
reason is that fractional differential equations are very useful tools in order to
model many physical phenomena ([5, 16, 18, 19, 20] etc.). In the fractional
calculus there are several fractional derivatives. From them, the fractional
derivative introduced by Caputo in [7] allows to use Cauchy conditions which
have physical meanings.

A Caputo type fractional derivative of a function with respect to another
function ([15]) that extends and unifies several fractional derivatives existing
in the literature like Caputo, Caputo-Hadamard, Caputo-Katugampola was
intensively studied in recent years [1, 2, 3] etc.. In particular, existence results
and qualitative properties of the solutions for fractional differential equations
defined by this fractional derivative are obtained in [2, 3].

In the present paper we study Darboux problem inclusions of the following
form

(1.1) Dα,ψ
C u(x, y) ∈ F (x, y, u(x, y), (Iα,ψu)(x, y)) a.e. (x, y) ∈ Π,

(1.2) u(x, 0) = φ1(x), u(0, y) = φ2(y) (x, y) ∈ Π,

where Π = I1 × I2, I1 = [0, T1], I2 = [0, T2], φ1(.) : I1 → R, φ2(.) : I2 → R
with φ1(0) = φ2(0), F (., .) : Π ×R ×R → P(R) is a set-valued map, Iα,ψ is
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the generalized left-sided mixed integral and Dα,ψ
C is the fractional derivative

mentioned above, α = (α1, α2) ∈ [0, 1) × [0, 1) and ψ(.) = (ψ1(.), ψ2(.)) ∈
C1(I1,R)× C1(I2,R).

The goal of the present paper is twofold. First, we show that Filippov’s
ideas ([12]) can be suitably adapted in order to obtain the existence of a so-
lution of problem (1.1)-(1.2). We recall that for an ”ordinary” differential
inclusion defined by a lipschitzian set-valued map with nonconvex values Filip-
pov’s theorem ([12]) provides the existence of a solution starting from a given
”quasi” solution. At the same time, the result gives an estimate between the
”quasi” solution and the solution of the differential inclusion. Secondly, we
obtain the existence of solutions continuously depending on a parameter for
problem (1.1)-(1.2). This result is, in fact, a continuous version of our first re-
sult. In the proof of this second theorem we essentially use a result of Bressan
and Colombo ([6]) concerning the existence of continuous selections of lower
semicontinuous multifunctions with decomposable values. Our second theorem
allows us to deduce a continuous selection of the solution set of the problem
considered.

The results in the present paper extend and unify similar results obtained
for partial fractional integro-differential inclusions defined by Caputo frac-
tional derivative ([8]), by Hadamard fractional derivative ([9]) and by Caputo-
Katugampola fractional derivative ([10]).

The paper is organized as follows: in Section 2 we recall some preliminary
results that we will use in the sequel and in Section 3 we prove the main results
of the paper.

2. Preliminaries

Consider β > 0, f(.) ∈ L1([0, T ],R) and ψ(.) ∈ Cn([0, T ],R) such that
ψ′(t) > 0 ∀ t ∈ [0, T ].

Definition 2.1 ([1, 15]). a) The ψ - Riemann-Liouville fractional integral of
f of order β is defined by

Iβ,ψf(t) =
1

Γ(β)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))β−1f(s)ds,

where Γ is the (Euler’s) Gamma function defined by Γ(β) =
∫∞
0
tβ−1e−tdt.

b) The ψ - Riemann-Liouville fractional derivative of f of order β is defined
by

Dβ,ψf(t) =
1

Γ(n− β)
(

1

ψ′(t)

d

dt
)n

∫ t

0

ψ′(s)(ψ(t)− ψ(s))n−β−1f(s)ds,

where n = [β] + 1.
c) The ψ - Caputo fractional derivative of f of order β is defined by

Dβ,ψ
C f(t) = Dβ,ψ[f(t)−

n−1∑
k=0

f
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k],
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where f
[k]
ψ (t) = ( 1

ψ′(t)
d
dt )

kx(t), n = β if α ∈ N and n = [β] + 1, otherwise.

We note that if β = m ∈ N then Dβ,ψ
C f(t) = f

[m]
ψ (t) and if n = [β]+ 1 then

Dβ,ψ
C f(t) = 1

Γ(n−β)
∫ t
0
ψ′(s)(ψ(t) − ψ(s))n−α−1f

[n]
ψ (s)ds. Also, if ψ(t) ≡ t one

obtains Caputo’s fractional derivative ([7]), if ψ(t) ≡ ln(t) one obtains Caputo-
Hadamard’s fractional derivative ([13]) and, finally, if ψ(t) ≡ tσ one obtains
Caputo-Katugampola’s fractional derivative ([14]).

Consider I1 = [0, T1], I2 = [0, T2] and Π = [0, T1]× [0, T2]. Denote by L(Π)
the σ- algebra of the Lebesgue measurable subsets of Π and by B(R) the family
of all Borel subsets of R.

Let C(Π,R) be the Banach space of all continuous functions from Π to R
with the norm ||u||C = sup{|u(x, y)|; (x, y) ∈ Π} and L1(Π,R) be the Banach
space of functions u(·, ·) : Π → R which are integrable, normed by ∥u∥L1 =∫ T1

0

∫ T2

0
|u(x, y)|dxdy.

Next, α = (α1, α2) ∈ [0, 1) × [0, 1) and ψ(.) = (ψ1(.), ψ2(.)) ∈ C1(I1,R) ×
C1(I2,R) such that ψ′

1(t) > 0, ψ′
2(t) > 0 ∀ t ∈ I.

Definition 2.2. a) The ψ mixed integral of order α of f(., .) ∈ L1(Π,R) is
defined by

(Iα,ψf)(x, y) = 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)−
ψ2(t))

α2−1f(s, t)dsdt.

b) The ψ mixed fractional-order derivative of order α of f(., .) ∈ L1(Π,R)
is defined by

(Dα,ψ
C f)(x, y) = (I1−α,ψ ∂2f

∂x∂y )(x, y) =
1

Γ(1−α1)Γ(1−α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)·

(ψ1(x)− ψ1(s))
−α1(ψ2(y)− ψ2(t))

−α2 ∂
2f

∂s∂t (s, t)dsdt.

In the definition above by 1− α we mean (1− α1, 1− α2) ∈ (0, 1]× (0, 1].

Definition 2.3. A function u(., .) ∈ C(Π,R) is said to be a solution of problem
(1.1)-(1.2) if there exists f(., .) ∈ L1(Π,R) such that

(2.1) f(x, y) ∈ F (x, y, u(x, y), (Iα,ψu)(x, y)) a.e. (Π),

(2.2) u(x, y) = ν(x, y) + (Iα,ψf)(x, y), (x, y) ∈ Π,

where ν(x, y) = φ1(x) + φ2(y)− φ1(0).

The pair (u(., .), f(., .)) is called a trajectory-selection pair of problem (1.1)-
(1.2).

The previous definition is justified by the fact that a simple computation
shows that u(., .) satisfies Dα,ψ

C u(x, y) ≡ f(x, y), u(x, 0) ≡ φ1(x), u(0, y) ≡
φ2(y), (x, y) ∈ Π if and only if (2.2) is verified.

Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of the
closed subsets A,B ⊂ X is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)},
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d∗(A,B) = sup{d(a,B); a ∈ A}, where d(x,B) = inf{d(x, y); y ∈ B}. With
cl(A) we denote the closure of the set A ⊂ X.

Recall that a subset D ⊂ L1(Π,R) is said to be decomposable if for any
u(·), v(·) ∈ D and any subset A ∈ L(Π) one has uχA + vχB ∈ D, where
B = I\A. We denote by D the family of all decomposable closed subsets of
L1(Π,R).

Let G(., .) : Π × Rm → P(Rn) be a set-valued map. Recall that G(., .)
is called L(Π) ⊗ B(Rm) measurable if for any closed subset C ⊂ Rn we have
{(x, y, z) ∈ Π×Rm;F (x, y, z) ∩ C} ≠ ∅} ∈ L(Π)⊗ B(Rm).

Consider the Banach space S := {(φ,ψ) ∈ C(I1,R) × C(I2,R);φ(0) =
ψ(0)} endowed with the norm ||(φ,ψ)|| = ||φ||C + ||ψ||C and for (φ,ψ) ∈ S
denote S(φ,ψ) the set of all solutions of problem (1.1)-(1.2).

We recall now some results that we are going to use in the next section.

Lemma 2.4 ([21]). Let G(·, ·) : Π → P(Rn) be a compact valued measurable
multifunction and h(·, ·) : Π → Rn a measurable function.

Then there exists a measurable selection g(·, ·) of G(·, ·) such that

|g(x, y)− h(x, y)| = d(h(x, y), G(x, y)), a.e. (Π).

Next (S, d) is a separable metric space and X is a Banach space. We recall
that a multifunction G(·) : S → P(X) is said to be lower semicontinuous (l.s.c.)
if for any closed subset C ⊂ X, the subset {s ∈ S;G(s) ⊂ C} is closed in S.

Lemma 2.5 ([6]). Let G∗(., .) : Π×S → P(Rn) be a closed valued L(Π)⊗B(S)
measurable multifunction such that G∗((x, y), .) is l.s.c. for any (x, y) ∈ Π.

Then the set-valued map H(.) defined by

H(s) = {g ∈ L1(Π,Rn); g(x, y) ∈ G∗(x, y, s) a.e. (Π)}

is l.s.c. with nonempty decomposable closed values if and only if there exists a
continuous mapping q(.) : S → L1(Π,R) such that

d(0, G∗(x, y, s)) ≤ q(s)(x, y) a.e. (Π), ∀s ∈ S.

Lemma 2.6 ([6]). Let H(.) : S → D be a l.s.c. set-valued map with closed
decomposable values and let f(.) : S → L1(Π,Rn), p(.) : S → L1(Π,R) be
continuous such that the multifunction G(.) : S → D defined by

G(s) = cl{h ∈ H(s); ||h(x, y)− f(s)(x, y)|| < p(s)(x, y) a.e. (Π)}

has nonempty values.
Then G(.) has a continuous selection.

3. The main results

In what follows we work under the following hypotheses.
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Hypothesis H1. F (., .) : Π × R × R → P(R) is a set-valued map with
non-empty, compact values that verifies:
i) For all u, v ∈ R, F (., ., u, v) is measurable.
ii) There exists L1, L2 ≥ 0 such that for almost all (x, y) ∈ Π,

dH(F (x, y, u1, v1), F (x, y, u2, v2)) ≤ L1|u1 − u2|+ L2|v1 − v2|,

∀u1, v1, u2, v2 ∈ R.

In what follows g(., .) ∈ L1(Π,R) is given and there exists ξ(., .) ∈ L1(Π,R+)
with M := sup(x,y)∈Π(I

α,ψξ)(x, y) < +∞ which satisfies

d(g(x, y), F (x, y, w(x, y), (Iα,ψw)(x, y))) ≤ ξ(x, y) a.e. (Π),

where w(., .) is a solution of the fractional hyperbolic differential equation

(3.1) Dα,ψ
C w(x, y) = g(x, y) (x, y) ∈ Π,

(3.2) w(x, 0) = θ1(x), w(0, y) = θ2(y) (x, y) ∈ Π,

with (θ1, θ2) ∈ S.

Set ν1(x, y) = θ1(x) + θ2(y) − θ1(0), (x, y) ∈ Π, K1 = (ψ1(T1))
α1 (ψ2(T2))

α2

Γ(1+α1)Γ(1+α2)

and K = K1(L1 +K1L2).

Theorem 3.1. Let Hypothesis H1 be satisfied, K < 1 and consider g(., .),
ξ(., .), w(., .) as above, (φ1, φ2) ∈ S and ν(x, y) = φ1(x) + φ2(y) − φ1(0),
(x, y) ∈ Π.

Then there exists (v(., .), f(., .)) a trajectory-selection pair of problem (1.1)-
(1.2) such that

(3.3) |v(x, y)− w(x, y)| ≤ ||ν − ν1||C +M

1−K
, ∀(x, y) ∈ Π,

(3.4) |f(x, y)− g(x, y)| ≤ (L1 +K1L2)(||ν − ν1||C +M)

1−K
+ ξ(x, y), a.e. (Π).

Proof. We define f0(., .) = g(., .), v0(., .) = w(., .). By Lemma 2.4 there exists
a measurable function f1(., .) such that f1(x, y) ∈ F (x, y, v0(x, y),
(Iα,ψv0)(x, y)) a.e. (Π) and for almost all (x, y) ∈ Π

|f0(x, y)− f1(x, y)| = d(g(x, y), F (x, y, v0(x, y), (I
α,ψv0)(x, y))) ≤ ξ(x, y).

Define, for (x, y) ∈ Π

v1(x, y) = ν(x, y) + 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)−
ψ2(t))

α2−1f1(s, t)dsdt.

Since

w(x, y) = ν1(x, y) +
1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)−
ψ2(t))

α2−1f0(s, t)dsdt.
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one has

|v1(x, y)− v0(x, y)| ≤ |ν(x, y)− ν1(x, y)|+ 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)·

(ψ1(x)− ψ1(s))
α1−1(ψ2(y)− ψ2(t))

α2−1||f1(s, t)− f0(s, t)||dsdt ≤
||ν − ν1||C + 1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)−
ψ2(t))

α2−1ξ(s, t)dsdt. ≤ ||ν − ν1||C +M.

From Lemma 2.4 we deduce the existence of a measurable function f2(., .)
such that f2(x, y) ∈ F (x, y, v1(x, y), (I

α,ψv1)(x, y)) a.e. (Π) and for almost all
(x, y) ∈ Π

|f2(x, y)− f1(x, y)| ≤ d(f1(x, y), F (x, y, v1(x, y), (I
α,ψv1)(x, y))) ≤

dH(F (x, y, v0(x, y), (I
α,ψ
0 v0)(x, y)), F (x, y, v1(x, y), (I

α,ψv1)(x, y))) ≤
L1|v1(x, y)− v0(x, y)|+ L2|(Iα,ψv0)(x, y)− (Iα,ψv1)(x, y)| ≤
L1(||ν − ν1||C +M) + L2

1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1·
(ψ2(y)− ψ2(t))

α2−1(||ν − ν1||C +M)dsdt = (L1 +K1L2)(||ν − ν1||C +M).

Define, for (x, y) ∈ Π

v2(x, y) = ν(x, y) + 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)−
ψ2(t))

α2−1f2(s, t)dsdt

and one has

|v2(x, y)− v1(x, y)| ≤ 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)

−ψ2(t))
α2−1|f2(s, t)− f1(s, t)|dsdt ≤ 1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)−

ψ1(s))
α1−1(ψ2(y)− ψ2(t))

α2−1(L1 +K1L2)(||ν − ν1||C +M)dsdt =
K(||ν − ν1||C +M).

Assuming that for some p ≥ 2 we have already constructed the sequences
(vi(., .))

p
i=1, (fi(., .))

p
i=1 satisfying

(3.5) |vp(x, y)− vp−1(x, y)| ≤ Kp−1(||ν − ν1||C +M) (x, y) ∈ Π,

(3.6) |fp(x, y)− fp−1(x, y)| ≤ (L1 +K1L2)K
p−2(||ν − ν1||C +M) a.e. (Π).

We apply Lemma 2.4 and we find a measurable function fp+1(., .) such that
fp+1(x, y) ∈ F (x, y, vp(x, y), (I

α,ψvp)(x, y)) a.e. (Π) and for almost all (x, y) ∈
Π

|fp+1(x, y)− fp(x, y)| ≤ d(fp+1(x, y), F (x, y, vp−1(x, y), (I
α,ψvp−1)(x, y)))

≤ dH(F (x, y, vp(x, y), (I
α,ψvp)(x, y)), F (x, y, vp−1(x, y), (I

α,ψvp−1)(x, y)))
≤ L1|vp(x, y)− vp−1(x, y)|+ L2|(Iα,ψvp)(x, y)− (Iα,ψvp−1)(x, y)| ≤
L1[K

p−2(||ν − ν1||C +M)] + L2K1K
p−2(||ν − ν1||C +M) =

(L1 +K1L2)K
p−1(||ν − ν1||C +M).

Define, for (x, y) ∈ Π
(3.7)
vp+1(x, y) = ν(x, y) + 1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)

−ψ2(t))
α2−1fp+1(s, t)dsdt
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We have

|vp+1(x, y)− vp(x, y)| ≤ 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1

(ψ2(y)− ψ2(t))
α2−1|fp+1(s, t)− fp(s, t)|dsdt ≤ 1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)

(ψ1(x)− ψ1(s))
α1−1(ψ2(y)− ψ2(t))

α2−1Kp−1(||ν − ν1||C +M)(L1 +K1L2)
dsdt = Kp−1(||ν − ν1||C +M)K1(L1 +K1L2) = Kp(||ν − ν1||C +M).

From (3.5) we deduce that the sequence (vp(., .))p≥0 is Cauchy in C(Π,R),
so it converges to v(., .) ∈ C(Π,R). Taking into account (3.6) we infer that
the sequence (fp(., .))p≥0 is Cauchy in L1(Π,R), thus it converges to f(., .) ∈
L1(Π,R).

Using the fact that the values of F (., .) are closed we get that f(x, y) ∈
F (x, y, v(x, y), (Iα,ψv)(x, y)) a.e. (Π).

One may write successively,

| 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)− ψ2(t))
α2−1

fp(s, t)dsdt− 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1(ψ2(y)−
ψ2(t))

α2−1f(s, t)dsdt| ≤ 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)(ψ1(x)− ψ1(s))

α1−1

(ψ2(y)− ψ2(t))
α2−1|fp(s, t)− f(s, t)|dsdt ≤ 1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(s)ψ

′
2(t)

(ψ1(x)− ψ1(s))
α1−1(ψ2(y)− ψ2(t))

α2−1(L1 +K1L2)|up−1(s, t)−
u(s, t)|dsdt ≤ K||up−1(., .)− u(., .)||C .

Thus, we pass to the limit in (3.2) and we get that v(., .) is a solution of problem
(1.1)- (1.2). At the same time, by adding inequalities (3.5) for any (x, y) ∈ Π
we have
(3.8)

|vp(x, y)− w(x, y)| ≤ |vp(x, y)− vp−1(x, y)|+ |vp−1(x, y)− vp−2(x, y)|
+ . . .+ |v2(x, y)− v1(x, y)|+ |v1(x, y)− v0(x, y)| ≤
(Kp−1 +Kp−2 + ...+K + 1)(||ν − ν1||C +M) ≤ ||ν−ν1||C+M

1−K .

Similarly, by adding inequalities (3.6) for almost all (x, y) ∈ Π we have

(3.9)

|fp(x, y)− g(x, y)| ≤ |fp(x, y)− fp−1(x, y)|+ |fp−1(x, y)−
fp−2(x, y)|+ . . .+ |f2(x, y)− f1(x, y)|+ |f1(x, y)− f0(x, y)| ≤
(L1 +K1L2)(K

p−2 + ...+K + 1)(||ν − ν1||C +M) + ξ(x, y) ≤
(L1 +K1L2)

||ν−ν1||C+M
1−K + ξ(x, y).

Finally we pass to the limit with p → ∞ in (3.8) and (3.9) and we get (3.3)
and (3.4), respectively, which completes the proof.

Remark 3.2. If in Theorem 3.1 ψ(t) ≡ t we obtain Theorem 3.2 in [8]; if
in Theorem 3.1 ψ(t) ≡ ln(t) we get Theorem 4 in [9] and if in Theorem 3.1
ψ(t) ≡ tσ we cover Theorem 3.1 in [10].

If in Theorem 3.1 we take g = 0, w = 0, θ1 = 0, θ2 = 0, then we obtain the
following existence result for solutions of problem (1.1)-(1.2).
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Corollary 3.3. Let Hypothesis H1 be satisfied, K < 1 and assume that there
exists ξ(., .) ∈ L1(Π,R+) with M := sup(x,y)∈Π(I

α,ψξ)(x, y) < +∞ such that
d(0, F (x, y, 0, 0)) ≤ ξ(x, y) ∀(x, y) ∈ Π.

Then there exists v(., .) ∈ C(Π,R) a solution of problem (1.1)-(1.2) such
that

|v(x, y)| ≤ ||ν||C +M

1−K
, ∀(x, y) ∈ Π.

In the last part of this paper we obtain a continuous version of Theorem
3.1.

Hypothesis H2. i) S is a separable metric space, φ1(.) → C(I1,R), φ2(.) :
S → C(I2,R) and ε(.) : S → (0,∞) are continuous mappings and φ1(s)(0) ≡
φ2(s)(0).

ii) There exists the continuous mappings θ1(.) → C(I1,R), θ2(.) : S →
C(I2,R) g(.) : S → L1(Π,R), ξ(.) : S → L1(Π,R) and w(.) : S → C(Π,R)
such that θ1(s)(0) ≡ θ2(s)(0),

(Dw(s))α,ψC (x, y) = g(s)(x, y) a.e. (Π), ∀s ∈ S,

w(s)(x, 0) = θ1(s)(x), w(s)(0, y) = θ2(s)(y) (x, y) ∈ Π, ∀s ∈ S,

d(g(s)(x, y), F (x, y, w(s)(x, y), (Iα,ψw(s))(x, y))) ≤ ξ(s)(x, y) a.e. (Π),∀s ∈ S

and the mapping s→M(s) := sup(x,y)∈Π(I
α,ψξ(s))(x, y) is continuous.

We use next the following notations ν(s)(x, y) = φ1(s)(x) + φ2(s)(y) −
φ1(s)(0), ν1(s)(x, y) = θ1(s)(x) + θ2(s)(y) − θ1(s)(0), (x, y) ∈ Π, a(s) =
sup(x,y)∈Π |ν(s)(x, y) −ν1(s)(x, y)|, s ∈ S.

Theorem 3.4. Assume that Hypotheses H1 and H2 are satisfied and K < 1.
Then there exist a continuous mapping v(.) : S → C(Π,R) such that for

any s ∈ S, v(s)(., .) is a solution of problem (1.1) which satisfies v(s)(x, 0) =
φ1(s)(x), v(s)(0, y) = φ2(s)(y) (x, y) ∈ Π, s ∈ S and

|v(s)(x, y)− w(s)(x, y)| ≤ a(s) + ε(s) +M(s)

1−K
∀(x, y) ∈ Π,∀s ∈ S.

Proof. We make the following notations

v0(., .) = w(., .), ξp(s) := Kp−1(a(s) + ε(s) +M(s)), p ≥ 1.

We consider the set-valued maps G0(.), H0(.) defined, respectively, by

G0(s) = {h ∈ L1(Π,R);h(x, y) ∈ F (x, y, w(s)(x, y), (Iα,ψw(s))(x, y))a.e.(Π)}

H0(s) = cl{h ∈ G0(s); |h(x, y)− g(s)(x, y)| < ξ(s)(x, y) +
1

K1
ε(s)}.

Taking into account that d(g(s)(x, y), F (x, y, w(s)(x, y), (Iα,ψw(s))(x, y)) ≤
ξ(s)(x, y) < ξ(s)(x, y) + 1

K1
ε(s) the set H0(s) is not empty.
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Set F ∗
0 (x, y, s) = F (x, y, w(s)(x, y), (Iα,ψw(s))(x, y)) and note that

d(0, F ∗
0 (x, y, s)) ≤ |g(s)(x, y)|+ ξ(s)(x, y) =: ξ∗(s)(x, y)

and ξ∗(.) : S → L1(I,R) is continuous.
Applying now Lemma 2.5 and Lemma 2.6 we obtain the existence of a

continuous selection f0 of H0 such that ∀s ∈ S, (x, y) ∈ Π,

f0(s)(x, y) ∈ F (x, y, w(s)(x, y), (Iα,ψw(s))(x, y)) a.e. (Π), ∀s ∈ S,

|f0(s)(x, y)− g(s)(x, y)| ≤ ξ0(s)(x, y) = ξ(s)(x, y) +
1

K1
ε(s).

We define

v1(s)(x, y) = ν(s)(x, y) + 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1·
(ψ2(y)− ψ2(t))

α2−1f0(s)(z, t)dzdt

and one has

|v1(s)(x, y)− v0(s)(x, y)| ≤ a(s) + 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)−

ψ1(z))
α1−1(ψ2(y)− ψ2(t))

α2−1|f0(s)(z, t)− g(s)(z, t)|dzdt ≤ a(s)+
1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1(ψ2(y)− ψ2(t))
α2−1

(ξ(s)(z, t) + 1
K1
ε(s))dzdt ≤ a(s) +M(s) + ε(s) =: ξ1(s), (x, y) ∈ Π, s ∈ S.

We construct the sequences of approximations fp(., .) : S → L1(Π,R),
vp(., .) : S → C(Π,R) with the following properties:

a) fp(., .) : S → L1(Π,R), vp(., .) : S → C(Π,R) are continuous,
b) fp(s)(x, y) ∈ F (x, y, vp(s)(x, y), (I

α,ψvp(s))(x, y)), a.e. (Π), s ∈ S,
c) |fp(s)(x, y)− fp−1(s)(x, y)| ≤ (L1 +K1L2)ξp(s), a.e. (Π), s ∈ S.
d) vp+1(s)(x, y) = ν(s)(x, y) + 1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)−

ψ1(z))
α1−1(ψ2(y)− ψ2(t))

α2−1fp(s)(z, t)dzdt, (x, y) ∈ Π, s ∈ S.
Assume that we have already constructed fi(.), vi(.) satisfying a)-c) and

define vp+1(.) as in d). From c) and d) one has

(3.10)

|vp+1(s)(x, y)− vp(s)(x, y)| ≤ 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)−

ψ1(z))
α1−1(ψ2(y)− ψ2(t))

α2−1|fp(s)(z, t)− fp−1(s)(z, t)|dzdt ≤
1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1(ψ2(y)− ψ2(t))
α2−1·

(L1 +K1L2)ξp(s)dzdt = K1(L1 +K1L2)ξp(s) = ξp+1(s).

On the other hand,
(3.11)

d(fp(s)(x, y), F (x, y, vp+1(s)(x, y), (I
α,ψvp+1(s))(x, y))) ≤

L1|vp+1(s)(x, y)− vp(s)(x, y)|+ L2
1

Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)

−ψ1(z))
α1−1(ψ2(y)− ψ2(t))

α2−1|vp+1(s)(z, t)− vp(s)(z, t)|dzdt ≤
(L1 +K1L2)ξp+1(s).

For any s ∈ S we define the set-valued maps Gp+1(s) = {u ∈ L1(Π,R);
u(x, y) ∈ F (x, y, vp+1(s)(x, y), (I

α,ψvp+1(s))(x, y)) a.e. (Π)} and

Hp+1(s) = cl{u ∈ Gp+1(s); |u(x, y)− fp(s)(x, y)| < (L1 +K1L2)ξp+1(s)}.
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We note that from (3.11) the set Hp+1(s) is not empty.
Set F ∗

p+1(x, y, s) = F (x, y, vp+1(s)(x, y), (I
α,ψvp+1(s))(x, y)) and note that

d(0, F ∗
p+1(x, y, s)) ≤ |fp(s)(x, y)|+ (L1 +K1L3)ξp+1(s) =: ξ∗p+1(s)(x, y)

and ξ∗p+1(.) : S → L1(I,R) is continuous.
By Lemma 2.5 and Lemma 2.6 we obtain the existence of a continuous

function fp+1(.) : S → L1(Π,R) such that

fp+1(s)(x, y) ∈ F (x, y, vp+1(s)(x, y), (I
α,ψvp+1(s))(x, y)) a.e. (Π), ∀s ∈ S,

|fp+1(s)(x, y)− fp(s)(x, y)| ≤ (L1 +K1L2)ξp+1(s) ∀s ∈ S, (x, y) ∈ Π.

From (3.10), c) and d) we obtain

(3.12) |vp+1(s)(., .)− vp(s)(., .)|C ≤ ξp+1(s) = Kp(a(s) + ε(s) +M(s)),

(3.13) |fp+1(s)(., .)−fp(s)(., .)|1 ≤ Kp−1(L1+K1L2)T1T2(a(s)+ε(s)+M(s)).

Thus, fp(s)(., .), vp(s)(., .) are Cauchy sequences in the Banach spaces
L1(Π,R) and C(Π,R), respectively. Consider f(.) : S → L1(Π,R), v(.) :
S → C(Π,R) their limits. The function s→ a(s) + ε(s) +M(s) is continuous,
hence locally bounded. Therefore, (3.13) implies that for every s′ ∈ S the
sequence fp(s

′)(., .) satisfies the Cauchy condition uniformly with respect to s′

on some neighborhood of s. Therefore, s→ f(s)(., .) is continuous from S into
L1(Π,R).

As before, from (3.12), vp(s)(., .) is Cauchy in C(Π,R) locally uniformly
with respect to s. Hence s → v(s)(., .) is continuous from S into C(Π,R). At
the same time, since vp(s)(., .) converges uniformly to v(s)(., .) and

d(fp(s)(x, y), F (x, y, v(s)(x, y), (I
α,ψv(s))(x, y)) ≤

(L1 +K1L2)|vp(s)(x, y)− v(s)(x, y)| a.e. (Π), ∀s ∈ S

passing to the limit along a subsequence of fp(s)(., .) converging pointwise to
f(s)(., .) we obtain

f(s)(x, y) ∈ F (x, y, v(s)(x, y), (Iα,ψv(s))(x, y)) a.e. (Π), ∀s ∈ S.

One may write successively,

| 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1(ψ2(y)− ψ2(t))
α2−1fp(s)(z,

t)dzdt− 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1(ψ2(y)− ψ2(t))
α2−1

f(s)(z, t)dzdt| ≤ 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1(ψ2(y)−
ψ2(t))

α2−1f0(s)(z, t)dzdt|fp(s)(z, t)− f(s)(z, t)|dzdt ≤ 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0

ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1(ψ2(y)− ψ2(t))
α2−1(L1 +K1L2)|vp−1(s)(z,

t)− v(s)(z, t)|dzdt ≤ K||vp−1(s)(., .)− v(s)(., .)||C .

So, we pass to the limit in d) and we get ∀(x, y) ∈ Π, s ∈ S

v(s)(x, y) = ν(s)(x, y) + 1
Γ(α1)Γ(α2)

∫ x
0

∫ y
0
ψ′
1(z)ψ

′
2(t)(ψ1(x)− ψ1(z))

α1−1·
(ψ2(y)− ψ2(t))

α2−1f(s)(z, t)dzdt,
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i.e., v(s)(., .) is the required solution.
Finally, by adding inequalities (3.10) for all p ≥ 1 we get

(3.14) |vp+1(s)(x, y)− w(s)(x, y)| ≤
p+1∑
l=1

ξl(s) ≤
a(s) + ε(s) +M(s)

1−K
.

Passing to the limit in (3.14) we obtain the conclusion of the theorem.

Remark 3.5. If in Theorem 3.4 ψ(t) ≡ t we obtain Theorem 3.7 in [8]; if in
Theorem 3.4 ψ(t) ≡ ln(t) we find Theorem 6 in [9] and if in Theorem 3.4
ψ(t) ≡ tσ we get Theorem 3.2 in [10].

Theorem 3.4 allows to provide a continuous selection of the solution set of
problem (1.1)-(1.2).

Hypothesis H3. Hypothesis H1 is satisfied, K < 1 and there exists q(., .) ∈
L1(Π,R+) with sup(x,y)∈Π(I

α,ψq)(x, y) < ∞ such that d(0, F (x, y, 0, 0)) ≤
q(x, y) a.e. (Π).

Corollary 3.6. Assume that Hypothesis H3 is satisfied.
Then there exists a function v(., .) : Π× S → R such that
a) v(., (ξ, η)) ∈ S(ξ, η), ∀(ξ, η) ∈ S.
b) (ξ, η) → v(., (ξ, η)) is continuous from S into C(Π,R).

Proof. We take S = S, φ1(µ, η) = µ, φ2(µ, η) = η ∀(µ, η) ∈ S, ε(.) : S →
(0,∞) an arbitrary continuous function, g(.) = 0, w(.) = 0, ξ(s)(x, y) ≡ q(x, y)
∀s = (µ, η) ∈ S, (x, y) ∈ Π and we apply Theorem 3.4 in order to obtain the
conclusion of the corollary.

Example 3.7. Consider the following problem

D
( 1
2 ,

1
2 ),(1,1)

C u(x, y) =
a

3ex+y+2(1 + |u(x, y)|)
a.e. (x, y) ∈ [0, 1]× [0, 1],

u(x, 0) = x, u(0, y) = y2 (x, y) ∈ [0, 1]× [0, 1],

where a ∈ (0, 3e2Γ( 32 )
2). In this case α1 = α2 = 1

2 , ψ1(t) = ψ2(t) ≡ t,
φ1(x) = x, φ2(y) = y2, F (x, y, u, v) = { a

3ex+y+2(1+|u|)}, T1 = T2 = 1. A

straightforward computation shows that the Lipschitz constant of F is L1 =
a

3e2 , d(0, F (x, y, 0, 0)) =
a

3ex+y+2 ≤ a
3e2 , K1 = 1

Γ( 3
2 )

2 , K = K1L1 ≤ a
3e2Γ( 3

2 )
2 < 1.

Therefore, we can apply Corollary 3.3 and we obtain the existence of a
solution v(., .) which satisfies

||u(x, y)|| ≤ 6e2 + a

3e2Γ( 32 )
2 − a

, ∀(x, y) ∈ [0, 1]× [0, 1].

Example 3.8. Consider α1 = α2 = 1
2 , ψ1(t) = ψ2(t) ≡ t, φ1(x) = x2, φ2(y) =

y, T1 = T2 = 1 and b ∈ (0,
Γ( 3

2 )
4

1+Γ( 3
2 )

2 ) Define F (., .) : [0, 1]×[0, 1]×R×R → P(R)

by

F (x, y, u, v) = [−b |u|
1 + |u|

, 0] ∪ [0, b
|v|

1 + |v|
].
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Since

d(0, F (x, y, 0, 0)) ≤ b ∀ x, y ∈ [0, 1],

dH(F (x, y, u1, v1), F (x, y, u2, v2)) ≤ b|u1−u2|+b|v1−v2| ∀ u1, u2, v1, v2 ∈ R,

in this case K1 = 1
Γ( 3

2 )
2 , K = K1(1 + K1)b = 1

Γ( 3
2 )

2 (1 + 1
Γ( 3

2 )
2 )b and, taking

into account the choice of b, K < 1. Therefore, applying Corrollary 3.3 to the
problem

D
( 1
2 ,

1
2 ),(1,1)

C u(x, y) ∈ F (x, y, u(x, y),
1

Γ( 12 )
2

∫ x

0

∫ y

0

1√
(x− s)(y − t)

u(s, t)dsdt)

u(x, 0) = x2, u(0, y) = y (x, y) ∈ [0, 1]× [0, 1]

we obtain a solution, which satifies the following a priori bound

||u(x, y)|| ≤
(b+ 2)Γ( 32 )

4

Γ( 32 )
4 − (1 + Γ( 32 )

2)b
, ∀(x, y) ∈ [0, 1]× [0, 1].

4. Conclusions

In this paper we studied a Darboux problem associated to a fractional
hyperbolic integro-differential inclusion defined by a Caputo type fractional
derivative and by a set-valued map with non-convex values. We obtained the
existence of solutions using a method originally introduced by Filippov. Also,
we provide the existence of solutions continuously depending on a parameter
for the problem studied. The last result allowed us to deduce a continuous
selection of the solution set of the problem considered.

The results in the present paper extend and unify similar results obtained
for partial fractional integro-differential inclusions defined by Caputo fractional
derivative, by Hadamard fractional derivative and by Caputo-Katugampola
fractional derivative.

Afterwards, such results are essential in order to obtain qualitative results
concerning the solutions of fractional differential inclusions defined by the Ca-
puto type fractional derivative considered such as: controllability along a ref-
erence trajectory, differentiability of solutions with respect to the initial condi-
tions of the problem considered.
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