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Young measure theory for steady problems in
Orlicz-Sobolev spaces

Elhoussine Azroul1 and Farah Balaadich23

Abstract. In this paper, we study the existence of weak solutions
for Dirichlet boundary-value problems given in the following quasilinear
elliptic system{

−divσ(x, u,Du) + b(x, u,Du) = f(x, u,Du) in Ω,
u = 0 on ∂Ω.

We prove the needed result, relying on the theory of Young measures,
Galerkin’s approximation and weak monotonicity assumptions on σ, in
reflexive Orlicz-Sobolev spaces.
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1. Introduction

Let Ω be a bounded open set of Rn with n ≥ 2. In this paper we are
interested in establishing an existence result for the following elliptic problem:

(1.1)

{
−divσ(x, u,Du) + b(x, u,Du) = f(x, u,Du) in Ω,

u = 0 on ∂Ω,

where u : Ω → Rm (m ∈ N∗) is a vector-valued function and Du its gradient
and belongs to Mm×n which stands for the real vector space of m×n matrices
equipped with the inner product A : B =

∑m
i=1

∑n
j=1 AijBij . The functions

σ : Ω× Rm ×Mm×n → Mm×n, b : Ω× Rm ×Mm×n → Rm and f : Ω× Rm ×
Mm×n → Rm will be assumed to satisfy some conditions.

Consider first b independent of its third variable and b(x, s) = 0 (s ∈ Rm)
and the framework of Sobolev spaces. In [36], Zhang Ke-Wei proved the
existence of solutions by introducing the notions of ”quasimonotone” mappings
and ”semiconvex” functions. Pucci and Servadei [33] established several
regularity results for weak solutions by using the Moser iteration scheme and
the translation method due to Nirenberg. See also [32] for related topic. The
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existence of positive solutions was studied in [25] relying on the method of
sub-supersolution, nonlinear regularity theory and strong maximum principle.

In the setting of a Sobolev space with weight, Azroul et al. [2] studied the
corresponding quasilinear elliptic problem and proved the existence of weak
solutions. When the exponent p which defines the growth and coercivity
conditions is dependent on x, i.e. p = p(x), the existence of solutions has
been proved in [16] in Sobolev spaces with variable exponents (always b ≡ 0).

In the same case and in Orlicz spaces, Youngqiang et al. [34] proved
the existence of weak solutions for the concerned elliptic partial differential
systems. An existence theorem for weak solutions in general Orlicz-Sobolev
spaces has been proved by Dong in [20]. When the function f is independent
of u and Du, we have proved in [3] the existence of weak solutions to the
system −divσ(x, u,Du) = f , by using the theory of Young measures and weak
monotonicity assumptions on σ. By the same theory and where f depends
on u and Du, the result of existence was established in [5]. For more results
where the theory of Young measures has been applied, we refer the reader to
[11, 4, 12, 14, 27] for an elliptic case and [7, 8, 13, 9] for evolutionary problems.

Now, consider the case where b(x, s) ̸= 0. Dong and Fang [21] studied
the existence of weak solutions for (1.1) in the case of differential equations,
σ(x, s, ξ) = a1(x, ξ) and in Musielak-Orlicz-Sobolev spaces, with b independent
of its third variable. When f is independent of s and ξ, Benkirane and Elmahi
[17] established the existence result under the condition that the N-function
M , which defines the functional space, satisfies the ∆2-condition near infinity.
Without this condition, Aharouch et al. [1] proved existence result for the
associated unilateral problem. See also [22, 23, 26, 6] for related topics.

Our purpose, in this study, is to prove the existence result for (1.1) in the
setting of the Orlicz-Sobolev spaces W 1

0LM (Ω;Rm), where M is an N-function
that satisfies the ∆2-condition near infinity (see the next section). Asuming
the lower order term b(x, s, ξ) to satisfy the sign condition b(x, s, ξ) · s ≥ 0,
we extended our previous results [5, 3, 10] by using again the theory of Young
measures to achieve the needed result.

Finally, this work is organized as follows: In Section 2, we recall some
well-known preliminaries, properties of Orlicz-Sobolev spaces and Young
measures. Section 3 is devoted to specify the assumptions on σ(.), b(.) and
f(.). In Section 4, we state the existence theorem and its proof.

2. Preliminaries

In this section, we start by recalling some definitions and properties about
Orlicz-Sobolev spaces (see e.g. [19, 29] and references therein).

Let M : R+ → R+ be an N-function, i.e. M is continuous, convex, with
M(t) > 0 for t > 0, M(t)/t → 0 as t → 0 and M(t)/t → ∞ as t → ∞.
Equivalently, M admits the representation

M(t) =

∫ t

0

a(s)ds,
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where a : R+ → R+ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0
for t > 0 and a(t) → ∞ as t → ∞. The conjugate to M is defined by

M(t) =

∫ t

0

a(s)ds

and is an N-function, where a(t) = supa(s)≤t s. The N-function M is said to
satisfy the ∆2-condition near infinity if for some ϵ > 0 and t0 > 0,

(2.1) M(2t) ≤ ϵM(t), ∀t ≥ t0.

For two N-functions P and M , we say that P grows essentially less rapidly than
M if limt→∞ P (t)/M(kt) = 0 for all k > 0, and we write P ≪ M . Moreover, if
P ≪ M then there exists t0 > 0 such that

(2.2) P (t) ≤ M(γ∗t) ∀t ≥ t0,

where γ∗ is the constant of Poincaré’s inequality (see Eq. (2.3)).
Let Ω be a domain of Rn. The module of a vector-valued function u :

Ω → Rm is given by ρM (u) =
∫
Ω
M(|u|)dx. The classes W 1LM (Ω;Rm) and

W 1EM (Ω;Rm) consist of all functions in the Orlicz spaces

LM (Ω;Rm) = {u : Ω → Rm measurable/

∫
Ω

M
(u(x)

β

)
dx < ∞ for some β > 0}

or EM (Ω;Rm), such that Du ∈ LM (Ω;Mm×n) or Du ∈ EM (Ω;Mm×n) (resp.).
The Orlicz spaces LM (Ω;Rm) are endowed with the Luxemburg norm

∥u∥M = inf{β > 0/

∫
Ω

M
( |u(x)|

β

)
dx ≤ 1}.

Moreover, the classes W 1LM (Ω;Rm) and W 1EM (Ω;Rm) are endowed with the
norm

∥u∥1,M = ∥u∥M + ∥Du∥M .

They are Banach spaces under this norm. The space EM (Ω;Rm) is the
closure of all measurable, simple functions in LM (Ω;Rm). Let W 1

0EM (Ω;Rm)
be the (norm) closure of C∞

0 (Ω;Rm) in W 1EM (Ω;Rm). The equality
W 1

0LM (Ω;Rm) = W 1
0EM (Ω;Rm) holds if M satisfies Eq. (2.1). Moreover,

if M ∈ ∆2-condition near infinity, then there exists γ∗ > 0 such that for all
u ∈ W 1

0LM (Ω;Rm)

(2.3)

∫
Ω

M(γ∗|u|)dx ≤
∫
Ω

M(|Du|)dx,

where γ∗ = 1/diam(Ω) and diam(Ω) is the diameter of Ω (see [32]).
For convenience of the readers not familiar with the concept of Young

measures, we give here an overview which will be needed in the sequel (see
e.g. [15, 24, 28]). By C0(Rm) we denote the closure of the space of continuous
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functions on Rm with compact support with respect to the ∥.∥∞-norm. Its
dual can be identified with M(Rm), the space of signed Radon measures with
finite mass. The related duality pairing is given for ν : Ω → M(Rm), by

⟨ν, g⟩ =
∫
Rm

g(λ)dν(λ).

Lemma 2.1. [24] Let {zj}j≥1 be a bounded sequence in L∞(Ω;Rm). Then
there exists a subsequence {zk}k ⊂ {zj}j and a Borel probability measure νx on
Rm for almost every x ∈ Ω, such that for almost each g ∈ C(Rm) we have

g(zk) ⇀
∗ g weakly in L∞(Ω;Rm),

where g(x) = ⟨νx, g⟩ =
∫
Rm g(λ)dνx(λ) for a.e. x ∈ Ω, and ν = {νx}x∈Ω is any

family of Young measures associated with the subsequence {zk}k.

Remark 2.2. (1) In [15], it is shown that for any Carathéodory function g :
Ω× Rm → R and {zk}k generates a Young measure νx, we have

g(x, zk) ⇀ ⟨νx, g(x, .)⟩ =
∫
Rm

g(x, λ)dνx(λ)

weakly in L1(Ω′) for all measurable Ω′ ⊂ Ω, provided that the negative part
g−(x, zk) is equiintegrable.
(2) The above properties remain true if we replace zk by Dvk for vk : Ω → Rm.

Lemma 2.3 ([28]). (i) If |Ω| < ∞ then

zk → z in measure ⇔ νx = δz(x) for a.e. x ∈ Ω.

(ii) Moreover, if vk generates the Young measure δv(x), then (zk, vk) generates
the Young measure νx ⊗ δv(x).

Lemma 2.4 ([18]). Let g : Ω × Rm × Mm×n → R be a Carathéodory
function and zk : Ω → Rm a sequence of measurable functions such that
zk → z in measure and such that Dzk generates the Young measure νx, with
∥νx∥M(Mm×n) = 1 for almost every x ∈ Ω. Then

lim inf
k→∞

∫
Ω

g(x, zk, Dzk)dx ≥
∫
Ω

∫
Mm×n

g(x, z, λ)dνx(λ)dx

provided that the negative part g−(x, zk, Dzk) is equiintegrable.

We conclude this section by recalling the following lemma:

Lemma 2.5 ([5]). If the sequence (Dzk) is bounded in LM (Ω;Mm×n), then
the Young measure νx generated by Dzk satisfies:

(i) νx is a probability measure, i.e. ∥νx∥M(Mm×n) = 1 for almost every x ∈ Ω.

(ii) The weak L1-limit of Dzk is given by ⟨νx, id⟩ =
∫
Mm×n λdνx(λ).

(iii) νx satisfies ⟨νx, id⟩ = Dz(x) for almost every x ∈ Ω.
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3. Main assumptions

Let Ω be a bounded open set of Rn (n ≥ 2) and let M and P be two
N-functions such that P ≪ M , and M , M ∈ ∆2. Our assumptions are the
following:
(H0)(Continuity) σ : Ω × Rm ×Mm×n → Mm×n, b : Ω × Rm ×Mm×n → Rm

and f : Ω × Rm ×Mm×n → Rm are Carathéodory functions, i.e. measurable
w.r.t first variable and continuous w.r.t other variables.
(H1)(Growth, coercivity and sign condition) There exist d1, d2, d3 ∈ EM (Ω),
d4(x) ∈ L1(Ω), γi ≥ 0 (i = 1, .., 6) and γ0 > 0 (γ5 and γ6 are small) such that
for all (s,A) ∈ Rm ×Mm×n and a.e. x ∈ Ω

|σ(x, s,A)| ≤ d1(x) + γ1M
−1

P (|s|) + γ2M
−1

M(|A|),

|b(x, s,A)| ≤ d2(x) + γ3M
−1

P (|s|) + γ4M
−1

M(|A|),

|f(x, s,A)| ≤ d3(x) + γ5M
−1

P (|s|) + γ6M
−1

M(|A|),
σ(x, s,A) : A ≥ γ0M(|A|)− d4(x),

b(x, s,A) · s ≥ 0.

(H2)(Monotonicity) σ satisfies one of the following conditions:

(a) For a.e. x ∈ Ω and all u ∈ Rm, A 7→ σ(x, u,A) is a C1-function and is
monotone, i.e. (

σ(x, u,A)− σ(x, u,B)
)
: (A−B) ≥ 0

for a.e. x ∈ Ω, all u ∈ Rm and A,B ∈ Mm×n.

(b) There exists a function (potential) W : Ω × Rm × Mm×n → R such
that σ(x, u,A) = ∂W

∂A (x, u,A) =: DAW (x, u,A), and A 7→ W (x, u,A) is
convex and C1.

(c) σ is strictly monotone, i.e. σ(x, u, .) is monotone and(
σ(x, u,A)− σ(x, u,B)

)
: (A−B) = 0 =⇒ A = B.

(d) σ is strictly M -quasimonotone, i.e.∫
Mm×n

(
σ(x, u, λ)− σ(x, u, λ)

)
: (λ− λ)dνx(λ) > 0

for λ = ⟨νx, id⟩ and ν = {νx}x∈Ω is any family of Young measures
generated by a sequence in LM (Ω) and not a Dirac measure for almost
every x ∈ Ω.

Remark 3.1. 1) As in [30], P is introduced instead of M in (H1) only to

guarantee the boundedness in LM (Ω) of M
−1

P (|uk|) and whenever uk is
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bounded in LM (Ω), one usually takes P = M in the term M
−1

P (|uk|).
2) γ5 and γ6 (in (H1)) are small means that their values ensures that

γ0 −
2γ5
γ∗ − 2γ6

γ∗ − 1

θγ∗ > 0,

where θ = sup{θ1 > 0; ρM (θ1d3) < ∞} and γ∗ is the smallest constant defined
in the equation (2.3).

4. Existence result

Let Ω be a bounded open set of Rn and let M and P be two N-functions
such that P ≪ M and satisfies the ∆2-condition (2.1). Let us define first the
weak solution for problem (1.1). A function u ∈ W 1

0LM (Ω;Rm) is said to be a
weak solution for (1.1) if∫

Ω

(
σ(x, u,Du) : Dφ+ b(x, u,Du) · φ

)
dx =

∫
Ω

f(x, u,Du) · φdx

holds for all φ ∈ W 1
0LM (Ω;Rm).

The main theorem of existence result reads as follows:

Theorem 4.1. If σ, b and f satisfy the conditions (H0)-(H2), then problem
(1.1) has a weak solution u ∈ W 1

0LM (Ω;Rm).

Proof. The proof is devided into 3 steps. In Step 1, we introduce the
approximating solution by the Galerkin method and some a priori estimates .
Step 2 is devoted to prove an inequality of div-curl type which permits to pass
to the limit in the approximating equations in Step 3.

Step 1:

Let us define the operator

T : W 1
0LM (Ω;Rm) −→ W−1LM (Ω;Rm)

u 7→
(
φ 7→

∫
Ω

(
σ(x, u,Du) : Dφ+ b(x, u,Du) · φ

)
dx−

∫
Ω

f(x, u,Du) · φdx
)
.

For arbitrary u ∈ W 1
0LM (Ω;Rm), T (u) is trivially linear. Let us take α =

max{γ1, γ2, 1
α1

}, where α1 > 0 such that ρM (α1d1) < ∞. By the virtue of
(2.2), we deduce the existence of t0 > 0 such that P (|u|) ≤ M(γ∗|u|) when
|u| > t0. The condition (H1) and the equation (2.3) implies

(4.1)

ρM
( 1

3α
σ(x, u,Du)

)
≤

∫
Ω

M
( α1

3αα1
d1(x) +

γ1
3α

M
−1

P (|u|) + γ2
3α

M
−1

M(|Du|)
)
dx

≤ 1

3

∫
Ω

(
M

(
α1d1(x)

)
+ P (|u|) +M(|Du|)

)
dx

≤ 1

3

∫
Ω

(
M

(
α1d1(x)

)
+ 2M(|Du|)

)
dx < ∞.
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Similarly, we take β = max{γ3, γ4, 1
β1
} and θ = max{γ5, γ6, 1

θ1
} (resp.) such

that ρM (β1d2) < ∞ and ρM (θ1d3) < ∞ (resp.), then

(4.2) ρM
( 1

3β
b(x, u,Du)

)
≤ 1

3

∫
Ω

(
M

(
β1d2(x)

)
+ 2M(|Du|)

)
dx < ∞

and

(4.3) ρM
( 1

3θ
f(x, u,Du)

)
≤ 1

3

∫
Ω

(
M

(
θ1d3(x)

)
+ 2M(|Du|)

)
dx < ∞.

Consequently, σ(., u,Du), b(., u,Du), f(., u,Du) ∈ LM (Ω). By using the
Hölder inequality and the above inequalities, it follows that∣∣⟨T (u), φ⟩∣∣ ≤ c∥Dφ∥M ,

for a positive constant c. Hence T is well defined and bounded.

Now, let V = span{w1, .., wr} be a finite subspace of W 1
0LM (Ω;Rm), where

(wi)i=1,..,r is a basis of V . For simplicity, we denote the restriction T|V as T .

We claim that T is continuous. Let (uk = aikwi) be a sequence in V such that
uk → u in V (with conventional summation). Then uk → u and Duk → Du
almost everywhere. The continuity property in (H0) implies for φ ∈ V that
σ(x, uk, Duk) : Dφ → σ(x, u,Du) : Dφ, b(x, uk, Duk) · φ → b(x, u,Du) · φ and
f(x, uk, Duk) ·φ → f(x, u,Du) ·φ almost everywhere for k → ∞. Since uk → u
strongly in V , then∫

Ω

M(2|uk − u|)dx → 0 and

∫
Ω

M(2|Duk −Du|)dx → 0.

Therefore, there is a subsequence (still denoted (uk)k) and l1, l2 ∈ L1(Ω) such
that M(2|uk − u|) ≤ l1 and M(2|Duk − Du|) ≤ l2. By the virtue of the
convexity of M , we then get

M(|uk|) = M(|uk − u+ u|) ≤ 1

2
M(2|uk − u|) + 1

2
M(2|u|)

≤ l1
2
+

1

2
M(2|u|).

In the same way, we have M(|Duk|) ≤ l2
2 + 1

2M(2|Du|). Hence ∥uk∥M and
∥Duk∥M are bounded. By the equations (4.1)-(4.3) and the boundedness of
∥uk∥M and ∥Duk∥M , we get that

(
σ(x, uk, Duk) : Dφ

)
,
(
b(x, uk, Duk) ·φ

)
and(

f(x, uk, Duk) · φ
)
are equiintegrable over a measurable subset Ω′ of Ω. The

Vitali theorem yields that T is continuous.

Now, let us take φ = u in the definition of T , this implies by the coercivity
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and sign condition that

⟨T (u), u⟩ =
∫
Ω

(
σ(x, u,Du) : Du+ b(x, u,Du) · u

)
dx−

∫
Ω

f(x, u,Du) · udx

≥ γ0

∫
Ω

M(|Du|)dx−
∫
Ω

d4(x)dx

−
∫
Ω

(
d3(x)|u|+ γ5M

−1
P (|u|)|u|+ γ6M

−1
M(|Du|)|u|

)
dx

≥ γ0

∫
Ω

M(|Du|)dx−
∫
Ω

d4(x)dx− 1

θγ∗

∫
Ω

M
(
θd3(x)

)
dx

− 1

θγ∗

∫
Ω

M
(
γ∗|u|)dx− γ5

γ∗

∫
Ω

P (|u|)dx− γ5
γ∗M(γ∗|u|)dx

− γ6
γ∗

∫
Ω

M(|Du|)dx− γ6
γ∗

∫
Ω

M(γ∗|u|)dx

≥
(
γ0 −

2γ5
γ∗ − 2γ6

γ∗ − 1

θγ∗

)
︸ ︷︷ ︸

>0

∫
Ω

M(|Du|)dx

−
∫
Ω

d4(x)dx− 1

θ1γ∗

∫
Ω

M(θd3(x))dx.

Hence T is coercive in the following sense: ⟨T (u), u⟩ −→ +∞ as ∥u∥1,M → +∞.
Therefore T is surjective. Thanks to [31], there exists a Galerkin solution uk

of (1.1) in V = span{w1, .., wr}, that is

(4.4) ⟨T (uk), φ⟩ = 0 for all φ ∈ V.

Step 2:

As ⟨T (u), u⟩ → +∞ when ∥u∥1,M → +∞, we can deduce the existence of
R > 0 for which ⟨T (u), u⟩ > 1 whenever ∥u∥1,M > R. Hence, for the sequence
of Galerkin approximations uk ∈ V which satisfy Eq. (4.4), we get

(4.5) ∥uk∥1,M ≤ R for all k ∈ N.

Since Duk is bounded in LM (Ω;Mm×n), it follows by Lemma 2.1 the existence
of a Young measure νx associated toDuk in LM (Ω;Mm×n) such that νx satisfies
the properties of Lemma 2.5.

Let us fix k and consider uk, the sequence defined above such that
Vk = span{w1, .., wr}. We shall prove the following lemma, namely div-curl
inequality, which will be the key ingredient to pass to the limit in the
approximating equations.

Lemma 4.2. The Young measure νx satisfies the following inequality:∫
Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u,Du)

)
: (λ−Du)dνx(λ)dx ≤ 0.
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Proof. Consider the sequence

σk :=
(
σ(x, uk, Duk)− σ(x, u,Du)

)
: (Duk −Du)

= σ(x, uk, Duk) : (Duk −Du)− σ(x, u,Du) : (Duk −Du)

= σk,1 + σk,2.

Since by equation (4.1), σ(., u,Du) ∈ LM (Ω), it follows then by the weak
convergence defined in Lemma 2.5 that

(4.6)

lim inf
k→∞

∫
Ω

σk,2dx = lim inf
k→∞

∫
Ω

σ(x, u,Du) : (Duk −Du)dx

=

∫
Ω

∫
Mm×n

σ(x, u,Du) : (λ−Du)dνx(λ)dx

=

∫
Ω

σ(x, u,Du) :
(∫

Mm×n

λdνx(λ)︸ ︷︷ ︸
=:Du(x)

−Du
)
dx = 0.

On the one hand, since (uk)k is bounded in W 1
0LM (Ω;Rm) then uk → u in

LM (Ω;Rm) (for a proper subsequence). Consequently,∫
Ω

M(|uk − u|)dx ≥
∫
{x∈Ω: |uk−u|≥ϵ}

M(|uk − u|)dx

≥ c

∫
{x∈Ω: |uk−u|≥ϵ}

|uk − u|dx

≥ cϵ
∣∣{x ∈ Ω : |uk − u| ≥ ϵ

}∣∣,
where c is the constant of the embedding LM ⊂ L1 and ϵ is some positive
constant. Therefore uk → u in measure in Ω for k → ∞. Now, from Step
1, since

(
σ(x, uk, Duk) : Dφ

)
is equiintegrable, then

(
σ(x, uk, Duk) : Du

)
is equiintegrable. To get the equiintegrability of

(
σ(x, uk, Duk) : Duk

)
, we

choose Ω′ ⊂ Ω to be measurable and by the coercivity condition in (H1) and
the boundedness of (uk)k, we get∫
Ω′

∣∣min
(
σ(x, uk, Duk) : Duk, 0

)∣∣dx ≤ γ0

∫
Ω′

M(|Du|)dx+

∫
Ω′

∣∣d4(x)∣∣dx < ∞.

Therefore
(
σ(x, uk, Duk) : Duk

)
is equiintegrable. Thanks to Lemma 2.4,

I := lim inf
k→∞

∫
Ω

σkdx = lim inf
k→∞

∫
Ω

σk,1dx

≥
∫
Ω

∫
Mm×n

σ(x, u, λ) : (λ−Du)dνx(λ)dx.

To get the needed inequality, it is sufficient to show that I ≤ 0. To do this,
we use Mazur’s theorem (see e.g. [35, Theorem 2, page 120]) to deduce the
existence of vk ∈ W 1

0LM (Ω;Rm) such that vk → u in W 1
0LM (Ω;Rm), where vk
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is a convex linear combination of {u1, .., uk}, thus vk ∈ Vk. Take φ = uk − vk
in Eq. (4.4). By the boundedness of (uk)k in W 1

0LM (Ω;Rm) and Eq. (4.3), it
follows that

(4.7)
∣∣∣ ∫

Ω

f(x, uk, Duk) · (uk − vk)dx
∣∣∣ ≤ c

∫
Ω

M(|uk − vk|)dx,

where c is a constant depend on θ. Since

∥uk − vk∥M ≤ ∥uk − u∥M + ∥vk − u∥M → 0 as k → ∞,

then the right hand side of (4.7) tends to zero for k → ∞. By a similar
argument, we deduce∣∣∣ ∫

Ω

b(x, uk, Duk) · (uk − vk)dx
∣∣∣ ≤ c

∫
Ω

M(|uk − vk|)dx −→ 0 as k → ∞.

Consequently, the term∫
Ω

σ(x,uk, Duk) : (Duk −Dvk)dx

=

∫
Ω

f(x, uk, Duk) · (uk − vk)dx−
∫
Ω

b(x, uk, Duk) · (uk − vk)dx

tends to zero as k → ∞. This implies that

I = lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Duk −Du)dx

= lim inf
k→∞

(∫
Ω

σ(x, uk, Duk) : (Duk −Dvk)dx

+

∫
Ω

σ(x, uk, Duk) : (Dvk −Du)dx
)

= lim inf
k→∞

∫
Ω

σ(x, uk, Duk) : (Dvk −Du)dx

≤ lim inf
k→∞

c
∥∥|σ(x, uk, Duk)|

∥∥
M
∥vk − u∥1,M = 0

and the desired inequality follows.

Step 3:

As a consequence of Lemma 4.2 and monotonicity of σ (see [5, Lemma 9]),
we have

(4.8)
(
σ(x, u, λ)− σ(x, u,Du)

)
: (λ−Du) = 0 on supp νx.

Now, we have all ingredients to pass to the limit in the Galerkin equations
and prove Theorem 4.1 by considering the cases (a)-(d) listed in (H2).
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Case (a): In this case, we claim that

σ(x, u, λ) : A = σ(x, u,Du) : A+
(
∇σ(x, u,Du)A

)
: (Du− λ)

holds on supp νx, for A ∈ Mm×n and where ∇ is the derivative of σ with respect
to its third variable. By the monotonicity of σ, it follows for all τ ∈ Rm and
A ∈ Mm×n that(

σ(x, u, λ)− σ(x, u,Du+ τA)
)
: (λ−Du− τA) ≥ 0,

which implies by Eq. (4.8)

−σ(x, u, λ) : τA

≥ −σ(x, u, λ) : (λ−Du) + σ(x, u,Du+ τA) : (λ−Du− τA)

= −σ(x, u,Du) : (λ−Du) + σ(x, u,Du+ τA) : (λ−Du− τA).

Using the fact that σ(x, u,Du + τA) = σ(x, u,Du) + ∇σ(x, u,Du)τA + o(τ)
and deduce that

−σ(x, u, λ) : τA ≥ τ
((

∇σ(x, u,Du)A
)
: (λ−Du)− σ(x, u,Du) : A

)
+ o(τ).

Since τ is arbitrary in R, then our claim follows. By the equiintegrability of
σ(x, uk, Duk), it follows by Remark 2.2 that its weak L1-limit is given by

σ :=

∫
Mm×n

σ(x, u, λ)dνx(λ)

=

∫
supp νx

σ(x, u, λ)dνx(λ)

=

∫
supp νx

(
σ(x, u,Du) +

(
∇σ(x, u,Du)

)
: (Du− λ)

)
dνx(λ)

= σ(x, u,Du)

∫
supp νx

dνx(λ)︸ ︷︷ ︸
=:1

+
(
∇σ(x, u,Du)

)t(∫
supp νx

(Du− λ)dνx(λ)︸ ︷︷ ︸
=0

)

= σ(x, u,Du).

Since σ(x, uk, Duk) is bounded in LM (Ω;Mm×n) reflexive, then σ(x, uk, Duk) is
weakly convergent in LM (Ω;Mm×n) and its weak LM -limit is also σ(x, u,Du).
Therefore, for arbitrary φ ∈ W 1

0LM (Ω;Rm), we have∫
Ω

(
σ(x, uk, Duk)− σ(x, u,Du)

)
: Dφdx −→ 0 as k → ∞.

Case (b): We show that supp νx ⊂ Kx, where

Kx =
{
λ ∈ Mm×n : W (x, u, λ) = W (x, u,Du) + σ(x, u,Du) : (λ−Du)

}
.

Let λ ∈ supp νx, then by Eq. (4.8)

(1− τ)
(
σ(x, u, λ)− σ(x, u,Du)

)
: (λ−Du) = 0 ∀τ ∈ [0, 1].
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This equation together with the monotonicity of σ implies

(4.9)
0 ≤ (1− τ)

(
σ(x, u,Du+ τ(λ−Du))− σ(x, u, λ)

)
: (Du− λ)

= (1− τ)
(
σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)

)
: (Du− λ).

Using again the monotonicity of σ yields(
σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)

)
: τ(λ−Du) ≥ 0,

which implies since τ ∈ [0, 1] that

(4.10)
(
σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)

)
: (1− τ)(λ−Du) ≥ 0.

From (4.9) and (4.10) it follows that

(1− τ)
(
σ(x, u,Du+ τ(λ−Du))− σ(x, u,Du)

)
: (λ−Du) = 0 ∀τ ∈ [0, 1],

i.e.
σ(x, u,Du+ τ(λ−Du)) : (λ−Du) = σ(x, u,Du) : (λ−Du),

whenever λ ∈ supp νx. Integrate the above equality over [0, 1] and use the fact
that σ := DAW , it results that

W (x, u, λ) = W (x, u,Du) +

∫ 1

0

σ(x, u,Du+ τ(λ−Du)) : (λ−Du)dτ

= W (x, u,Du) + σ(x, u,Du) : (λ−Du).

Therefore λ ∈ Kx. The convexity of W implies for all λ ∈ Mm×n that

W (x, u, λ)︸ ︷︷ ︸
=:F (λ)

≥ W (x, u,Du) + σ(x, u,Du) : (λ−Du)︸ ︷︷ ︸
=:G(λ)

.

Since λ 7→ F (λ) is a C1-function, then for A ∈ Mm×n and τ ∈ R we have

F (λ+ τA)− F (λ)

τ
≥ G(λ+ τA)−G(λ)

τ
for τ > 0,

F (λ+ τA)− F (λ)

τ
≤ G(λ+ τA)−G(λ)

τ
for τ < 0.

Therefore DλF (λ) = DλG(λ), i.e.

(4.11) σ(x, u, λ) = σ(x, u,Du) ∀λ ∈ Kx ⊃ supp νx.

Hence

(4.12)

σ =

∫
Mm×n

σ(x, u, λ)dνx(λ) =

∫
supp νx

σ(x, u, λ)dνx(λ)

(4.11)
=

∫
supp νx

σ(x, u,Du)dνx(λ)

= σ(x, u,Du).
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Consider the Carathéodory function g(x, s, λ) = |σ(x, s, λ) − σ(x)|. The
equiintegrability of σ(x, uk, Duk) implies that gk(x) := g(x, uk, Duk) is
equiintegrable, and its weak L1-limit is given as

g(x) =

∫
Rm×Mm×n

g(x, s, λ)dδu(x)(s)⊗ dνx(λ)

=

∫
supp νx

|σ(x, u, λ)− σ(x)|dνx(λ) = 0 (by (4.11) and (4.12)).

The weak L1-limit of gk is in fact strong since gk ≥ 0. Hence

gk −→ 0 in L1(Ω).

Case (c): The strict monotonicity of σ together with Eq. (4.8) implies that
νx = δDu(x) for almost every x ∈ Ω. By the virtue of Lemma 2.3, it follows
that Duk → Du in measure for k → ∞. In Step 2 we have uk → u in measure.
Hence, after extraction of a suitable subsequence, if necessary,

uk → u and Duk → Du almost everywhere for k → ∞.

The continuity of σ yields

σ(x, uk, Duk) → σ(x, u,Du) almost everywhere for k → ∞.

The Vitali convergence theorem implies∫
Ω

(
σ(x, uk, Duk)− σ(x, u,Du)

)
: Dφdx −→ 0 as k → ∞,

since σ(x, uk, Duk) is equiintegrable.
Case (d): We suppose by contradiction that νx is not a Dirac measure on a

set x ∈ Ω′ ⊂ Ω of positive Lebesgue measure. We have by the strict monotone
of σ and λ = ⟨νx, id⟩ = Du(x) that

0 <

∫
Ω

∫
Mm×n

(
σ(x, u, λ)− σ(x, u, λ)

)
: (λ− λ)dνx(λ)dx

=

∫
Ω

∫
Mm×n

σ(x, u, λ) : (λ− λ)dνx(λ)dx,

where we have used∫
Ω

∫
Mm×n

σ(x, u, λ) : (λ− λ)dνx(λ)dx

=

∫
Ω

σ(x, u, λ) :
(∫

Mm×n

λdνx(λ)− λ
)
dx = 0.

Hence∫
Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx >

∫
Ω

∫
Mm×n

σ(x, t, λ) : λdνx(λ)dx.



130 Elhoussine Azroul, Farah Balaadich

By the virtue of Lemma 4.2, we get together with the above inequality that∫
Ω

∫
Mm×n

σ(x, t, λ) : λdνx(λ)dx ≥
∫
Ω

∫
Mm×n

σ(x, u, λ) : λdνx(λ)dx

>

∫
Ω

∫
Mm×n

σ(x, t, λ) : λdνx(λ)dx

which is a contradiction. Hence νx is a Dirac measure and we can write νx =
δh(x). Therefore

h(x) =

∫
Mm×n

λdδh(x)(λ) =

∫
Mm×n

λdνx(λ) = Du(x).

Consequently, νx = δDu(x). The remainder of the proof is similar then to that
in case (c).

To conclude and complete the proof of Theorem 4.1, it remains to pass to
the limit on b(x, uk, Duk) and f(x, uk, Duk). We have uk → u and Duk → du
in measure (see Step 2) for k → ∞. Then uk → u and Duk → Du almost
everywhere (for a proper subsequence). The continuity of the functions b and
f implies for arbitrary φ ∈ W 1

0LM (Ω;Rm) that

b(x, uk, Duk) · φ → b(x, u,Du) · φ and f(x, uk, Duk) · φ → f(x, u,Du) · φ

almost everywhere. Since, by (4.2) and (4.3), b(x, uk, Duk) and f(x, uk, Duk)
are equiintegrable, it follows that b(x, uk, Duk) · φ → b(x, u,Du) · φ and
f(x, uk, Duk) ·φ → f(x, u,Du) ·φ in L1(Ω) by the Vitali convergence theorem.

Now, we take a test function φ ∈ ∪
i∈N

Vi in (4.4) and pass to the limit k → ∞.

The resulting equation is∫
Ω

(
σ(x, u,Du) : Dφ+ b(x, u,Du) · φ

)
dx =

∫
Ω

f(x, u,Du) · φdx

for arbitrary φ ∈ ∪
i∈N

Vi. By density of the linear span of these functions in

W 1
0LM (Ω;Rm), this proves that u is in fact a weak solution. The proof of

Theorem 4.1 is complete.
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[29] Kufner, A., John, O., and Fuč́ık, S. Function spaces. Monographs and
Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis. Noordhoff
International Publishing, Leyden; Academia, Prague, 1977.

[30] Landes, R. Quasilinear elliptic operators and weak solutions of the Euler
equation. Manuscripta Math. 27, 1 (1979), 47–72.

[31] Landes, R. On Galerkin’s method in the existence theory of quasilinear elliptic
equations. J. Functional Analysis 39, 2 (1980), 123–148.

[32] Lieberman, G. M. The natural generalization of the natural conditions of
ladyzhenskaya and ural’tseva for elliptic equations. Comm. Partial Differential
Equations 16, 2-3 (1991), 311–361.

[33] Pucci, P., and Servadei, R. Regularity of weak solutions of homogeneous
or inhomogeneous quasilinear elliptic equations. Indiana Univ. Math. J. 57, 7
(2008), 3329–3363.

[34] Yongqiang, F., Dong, Z., and Yan, Y. On the existence of weak solutions
for a class of elliptic partial differential systems. Nonlinear Anal. 48, 7, Ser. A:
Theory Methods (2002), 961–977.

[35] Yosida, K. Functional analysis, sixth ed., vol. 123 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin-New York, 1980.

[36] Zhang, K.-W. On the Dirichlet problem for a class of quasilinear elliptic
systems of partial differential equations in divergence form. In Partial differential
equations (Tianjin, 1986), vol. 1306 of Lecture Notes in Math. Springer, Berlin,
1988, pp. 262–277.

Received by the editors February 22, 2021
First published online July 15, 2021


	Introduction
	Preliminaries
	Main assumptions
	Existence result

