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Bornology and duality in locally K-convex sequential
spaces1
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Abstract. The present paper is concerned with the concept of sequen-
tial topologies in non-archimedean analysis. We give characterizations of
such topologies in case of bornological spaces and inductive limits spaces.
We also study equicontinuity and duality in this class of spaces.
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1. Introduction

In [21], Venkataramen posed the problem of characterization of “ the class of
topological spaces which can be specified completely by the knowledge of their
convergent sequences ”. Severals authors then agreed to provide a solution,
based on the concept of sequential spaces. In [10] and [11] Franklin gave some
properties of sequential spaces, examples, and a relationship with the Fréchet
spaces. Later Snipes, in [19], studied a new class of spaces called T−sequential
spaces and relationships with sequential spaces. In [2], Boone and Siwiec gave
a characterization of sequential spaces by sequential quotient mappings. In [4],
Caldas Cueva and Maia Vinagre have studied the K−c−Sequential spaces and
the K − s−bornological spaces and adapted the results established by Snipes
using linear mappings. Thereafter Katsaras and Benekas, in [15], starting with
a topological vector space (t.v.s.) (E, τ) , have built up the finest of topologies
on E having the same convergent sequences as τ , and the thinnest of topologies
on E having the same precompact sets as τ , using the concept of String (this
study is a generalization of the study led by Weeb [23] in case of locally convex
spaces). In [9], Ferrer, Morales and Sánchez Ruiz, have reproduced previous
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work by introducing the concept of maximal sequential topology. Goreham,
in [12], has conducted a study linking sequentiality and countable subsets in a
topological space.

In [6] A. El Amrani has studied, for a locally K-convex space E in the
non-archimedean case, the finest sequential locally K-convex topology on E
having the same convergent sequences as the original topology. In this work,
we continue this study by characterizing bornological sequential spaces and
inductive limit of sequential spaces. Furthermore we study the equicontinuity
and duality in sequential spaces. Mention that spaces E characterized by being
the inductive limit of any sequence of subspaces covering E were introduced in
[8] and [17] under local and non-local convexity conditions, respectively. We
would like to point out that there is a great difference between a sequential
space and a space of sequences, such spaces have been studied in [3] and [13]
in the classical case or [5] , [7] and [1] in the non-archimedean case.

2. Preliminaries

Throughout this paper K is a non-archimedean(n.a) non trivially valued
complete field with the valuation |.| and the valuation ring is B(0, 1) = {λ ∈
K : |λ| ≤ 1}. The field K is spherically complete if any decreasing sequence
of closed balls in K has a non-empty intersection. For the basic notions and
properties concerning topologies and K-vector spaces we refer to [18] and [22]
and those concerning locally K-convex spaces we refer to [16] or [20] if K is
spherically complete and to [18] if K is not spherically complete. However we
recall the following:

Let E be a K-vector space, a nonempty subset A of E is called K-convex if
λx+µy+γz ∈ A whenever x, y, z ∈ A, λ, µ, γ ∈ K, |λ| ≤ 1, |µ| ≤ 1, |γ| ≤ 1 and
λ + µ + γ = 1. A is said to be absolutely K-convex if λx + µy ∈ A whenever
x, y ∈ A, λ, µ ∈ K, |λ| ≤ 1, |µ| ≤ 1. For a nonempty set A ⊂ E its absolutely
K-convex hull Γ (A) is the smallest absolutely K-convex set that contains A. If
A is a finite set {x1, ..., xn} we sometimes write Γ (x1, ..., xn) instead of Γ (A).
A topology on a vector space E over K is said to be locally K-convex (lKcs)
if there exists in E a fundamental system of zero-neighbourhoods consisting of
absolutely K-convex subsets of E.

Let E be a locally K-convex space with topology τ . We denote by E
′
,

E∗, σ(E,E
′
) and σ(E

′
, E) the topological dual, the algebraic dual, and the

weak topology of E and E
′
respectively. We denote also by PE (or by P

if no confusion can arise) a family of semi-norms determining the topology
τ . We always assume that (E, τ) is a Hausdorff space. If A is a subset of
E we denote by [A] the vector space spanned by A. We remark that if A is
absolutely K-convex, then [A] = KA. For an absolutely K-convex subset A
of E we denote by pA the Minkowski functional on [A], that is for x ∈ [A],
pA(x) = inf {| λ |: x ∈ λA} . If A is bounded then pA is a norm on [A]. We
then denote by EA the space [A] normed by pA. A subset A of a locally K-
convex space E is said to be compactoid if for each neighbourhood U of 0 there
exist x1, x2, ..., xn in E such that A ⊂ U + Γ (x1, x2, ..., xn) .



Bornology and duality in locally K-convex sequential spaces 185

Let ⟨, ⟩ be a duality between E and F where E and F are two vector spaces
over K (see [14] for general results), if A is a subset of E, the polar of A is a
subset of F defined by A◦ = {y ∈ F / (∀x ∈ A) |⟨x, y⟩| ≤ 1}. We define also
the polar of a subset B of F in the same way. A subset A of E is said to be
a polar set if A◦◦ = A (A◦◦ is the bipolar of A ). A continuous semi-norm
p on E is called a polar seminorm if the corresponding zero-neighbourhood
Bp (0, 1) = {x ∈ E : p(x) ⩽ 1} is a polar set. The space E is called polar if
there exists PE such that every p ∈ PE is polar. If E is a polar space then the
weak topology σ(E,E′) is Hausdorff [18, Proposition 5.6]. In that case we have
a dual pair (E,E′), the value of the bilinear form on E ×E′ (and similarly on
E′ × E) is denoted by ⟨x, a⟩, x ∈ E, a ∈ E′. For more about polar and spaces
see [18].

Let (E, τ) be a locally K-convex space. A subset U of E is called a sequential
neighborhood of zero if every null sequence in E lies eventually in U . E is called
a sequential space if every sequential neighborhood of zero is a neighborhood of
zero. Consider U the set of all sequential K-convex neighbourhood of zero and
V the familly of all K-convex subsets A of E which are polar and sequential
neighbourhood of zero in (E, τ). Then, U is a base of neighbourhoods of zero
for a locally K-convex topology on E which is denoted by τs and V is a base of
neighbourhoods of zero for a locally K-convex topology on E which we denoted
by τps. We will recall that τs is always finer than τ (τ ⩽ τs), since every
neighborhood of zero is a sequential neighborhood of zero [6].

3. Polarly Bornological Space and Sequential Inductive
Topology

(E, τ) is said to be bornological if every absolutely K-convex set U , which
absorbs all τ -bounded sets of E, is τ -neighbourhood of zero. In the following,
we define the polarly bornological space.

Definition 3.1. Let E be a locally K-convex space. E is called polarly
bornological ( or simply P -bornological ) if every polar set that absorbs ev-
ery bounded set is a neighbourhood of 0.

Proposition 3.2. E is P -bornological if, and only if, every n.a. polar semi-
norm that is bounded over every bounded set of E is continuous.

Proof. Assume that E is P -bornological. Let p be a n.a. polar semi-norm which
is bounded over all bounded subset of E. We have to show that p : E → R+

is continuous. It is sufficient to show that A = Bp (0, 1) is a neighbourhood
of zero in E. Since p is polar, then A is polar [18, Proposition 3.4]. Let B a
bounded set of E, then there exists λ ∈ K such that p (B) ⩽| λ |, so B ⊂ λA.
Therefore A absorbs B and it is a neighborhood of zero.
Conversely, assume that every n.a. polar semi-norm which is bounded over the
bounded sets of E is continuous. Let B a polar which absorbs all bounded
sets of E, then pB is a n.a. polar semi-norm on E. Let D be a bounded set
of E, then there exists λ ∈ K such that D ⊂ λB. Then, pB (D) ⩽| λ | or
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pB is bounded on D. Therefore, pB is bounded on every bounded set of E.
Hence, pB is continuous and then B is a neighbourhood of zero. Thus, E is
P -bornological.

Proposition 3.3. If (E, τ) is bornological, then τ = τs.

Proof. The inequality τ ⩽ τs is always true. Let U be a sequential absolutely
K-convex set U , which absorbs all τs-bounded sets of E. By [6, Proposition 6]
every τs-bounded set B of (E, τ) is τ -bounded. Since E is bornologocal, then
U is a neighbourhood of zero in (E, τ). Thus, τ ⩾ τs.

Proposition 3.4. If (E, τ) is P -bornological, then τps ⩽ τ.

Proof. Assume that (E, τ) is P -bornological. Let U a K-convex polar sequen-
tial neighbourhood of zero and B be a τ -bounded subset of E. To obtain a
contradiction, we suppose that B is not absorbed by U . Let (λn)n be a se-
quence in K such that lim

n→+∞
| λn |= +∞, then for all n ∈ N, B ̸⊂ λnU

from which there exists a sequence (xn) in B such that xn /∈ λnU . Since
( 1
λn

)n converges to 0 and (xn)n is bounded, then ( 1
λn

xn)n converges to zero

in (E, τ) and for all n ∈ N, 1
λn

xn /∈ U , which is not the case by the fact that
U is a sequential neighborhood of zero. Then B is absorbed by U which is
therefore a neighborhood of zero. Thus, τps ⩽ τ.

Let E, (Eα)α∈A be K-vector spaces, fα : Eα −→ E (α ∈ A) be linear
mappings and τα be the locally K-convex topology on Eα. The inductive
topology on E relative to the family (Eα, τα, fα)α∈A is the finest locally K-
convex topology making fα continuous for all α ∈ A. We note this topology by
τind. A neighborhood basis of zero for τind is given by all absorbing, absolutely
K-convex subsets U on E such that for all α ∈ A, f−1

α (U) is a neighborhood
of zero in (Eα, τα) .

Theorem 3.5. Let (Eα, τα)α∈A be a family of locally K-convex spaces, E be a
K-vector space and (fα)α∈A be a family of linear mappings. If for every α ∈ A,
Eα is sequential, then E equipped with the inductive topology τind is sequential.

Proof. Let V be a sequential K-convex neighbourhood of zero in (E, τind), then
for all α ∈ A, f−1

α (V ) is K-convex. Let (xn)n be a sequence which converges to
zero in (Eα, τα) where α ∈ A. Then, the continuity of fα : (Eα, τα) → (E, τind)
implies that the sequence (fα (xn))n converges to zero in (E, τind) i.e. there
exists n0 ∈ N such that for all n ⩾ n0, fα (xn) ∈ V , so for all n ⩾ n0,
xn ∈ f−1

α (V ). Therefore, f−1
α (V ) is a sequential neighborhood of zero in

(Eα, τα) and then f−1
α (V ) is neighborhood of zero in (Eα, τα) . Hence V is a

neighborhood of zero in (E, τind) . Thus, (E, τind) is sequential.

Corollary 3.6. The quotient and the direct sum spaces of sequential locally
K−convex spaces are sequential.

Proof. The quotient topology and direct sum topology are inductive topologies.
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4. Equicontinuity and duality in sequential spaces

Definition 4.1. Let (E, τ) be a locally K-convex space

(i) Let B a subset of E∗, B is said to be sequentially τ -equicontinuous if
and only if, for any sequence (xn)n which converges to zero in (E, τ) and
for all f in B, the sequence (f (xn))n converges uniformly to zero on B;
that is to say that the sequence sup

f∈B
(f (xn))n converges to zero.

(ii) Es is the space of all linear forms sequentially τ -continuous on E.

(iii) τb (E
s, E) is the strong topology on Es for the separated duality ⟨Es, E⟩.

Remark 4.2. 1. If B is sequentially τ -equicontinuous, then B ⊂ Es.

2. Es = (E, τ s)
′
[6, Proposition 7].

3. τb (E
s, E) admits as a basis of neighborhoods of zero the sets A◦ where

A is a subset of E which is σ
(
E,E

′
)
−bounded.

Lemma 4.3. Let B be a subset of E∗. If B is sequentially τ -equicontinuous,
then B◦◦ is sequentially τ -equicontinuous.

Proof. We can assume that K is dense. Let us show that for all a ∈ E

sup
f∈B◦◦

| f (a) |= sup
f∈B

| f (a) |

Let a be an element of E, so sup
f∈B◦◦

| f (a) |⩾ sup
f∈B

| f (a) |. Suppose, towards

a contradiction, that sup
f∈B◦◦

| (f (a) |> sup
f∈B

| f (a) | . Then there exists λ ∈ K

such that sup
f∈B◦◦

| f (a) |>| λ |> sup
f∈B

| f (a) | (K is dense ). Let g be an element

of B◦◦, so ∀f ∈ B | f
(
a
λ

)
|= |f(a)|

|λ| from which | f
(
a
λ

)
|< 1 and consequently

a
λ ∈ B◦ from which | g

(
a
λ

)
|⩽ 1 or | g (a) |⩽| λ |, so sup

f∈B◦◦
| f (a) |⩽| λ | which

is not the case. Therefore sup
f∈B◦◦

| f (a) |= sup
f∈B

| f (a) | .

Proposition 4.4. If τ is polar, then any sequentially τ -equicontinuous subset
H of Es is τb (E

s, E)-bounded.

Proof. Let H be a sequentially τ -equicontinuous subset of Es. Let us show that
H is absorbed by any neighborhood of zero in (Es, τb (E

s, E)) .

Let A be σ (E,Es)-bounded in E. Since E
′ ⊂ Es then A is σ

(
E,E

′
)
-bounded,

so A is τ -bounded because τ is polar [18, Corollary 7.7].
Suppose, to derive a contradiction, that H is not absorbed by A◦. Then, for all
λ ∈ K, H ̸⊂ λA◦. Let (λn)n ⊂ K such that lim

n→+∞
| λn |= +∞. For all n ∈ N,

H ̸⊂ λnA
◦, from which for all n ∈ N, there exists fn ∈ H such that fn /∈ λnA

◦,
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so there exists xn ∈ A such that | fn
(

xn

λn

)
|> 1. Since A is τ -bounded and the

sequence
(

1
λn

)
n
converges to zero, then the sequence

(
xn

λn

)
n
converges to zero

in (E, τ), from which the sequence

(
sup
f∈H

| f
(
xn

λn

)
|

)
n

converges to zero,which

is not the case because sup
f∈H

| f
(
xn

λn

)
|⩾ sup

m∈N
| fm

(
xn

λn

)
|⩾ 1.

Therefore H is τb (E
s, E)−bounded.

Proposition 4.5. Es = (E, τps)
′
.

Proof. We know that Es = (E,Es)
′
and τps ⩽ τs from which (E, τps)

′
⊂ Es.

Let f ∈ Es, so f : (E, τ s) −→ K is continuous. Let U ∈ U such that | f (U) |⩽
1, set V = U◦◦, then V is polar K-convex and sequential neighbourhood of
zero, so V ∈ V. Suppose, towards a contradiction, that there exists y ∈ V such
that | f (y) |> 1; let λ ∈ K such that 1 ⩽| λ |<| f (y) |, so for all x ∈ U we
have:

|
(
1

λ
f

)
(x) | = 1

| λ |
| f (x) |

⩽
1

| λ |
⩽ 1

then 1
λf ∈ U◦. But y ∈ V and V = U◦◦ so |

(
1
λf
)
(y) |⩽ 1 or | f (y) |⩽| λ |

which is not the case. Therefore | f (V ) |⩽ 1. Hence, f ∈ (E, τps)
′
since V is

a neighborhood of zero for τps. Therefore (E, τps)
′
= Es.

Proposition 4.6. τps coincides with the topology of uniform convergence on
the sequentially τ -equicontinuous subsets of Es.

Proof. Let ϱ be the topology of uniform convergence on the sequentially τ -
equicontinuous subsets of Es. A fundamental system of neighborhoods of zero
for ϱ is formed by all the A◦ where A is sequentially τ -equicontinuous in Es. Let
A be a sequentially τ -equicontinuous set in Es, then A◦ is K-convex and polar.
If (xn)n is a sequence which converges to zero in (E, τ), then the sequence
sup
f∈A

(| f (xn) |)n converges to zero, from which there is n0 ∈ N such that:

(∀n ⩾ n0) sup
f∈A

| f (xn) |⩽ 1 ⇒ (∀f ∈ A) (∀n ⩾ n0) | f (xn) |⩽ 1

⇒ (∀n ⩾ n0) xn ∈ A◦.

Therefore A◦ is a sequential neighborhood of zero. Hence, A◦ is a neighbor-
hood of zero for τps. Thus, τps ⩾ ϱ.
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Let V be a K-convex, polar and sequential neighborhood of zero in (E, τ) .
Set A = V ◦, so A◦ = V . We show that A is sequentially τ -equicontinuous. Let
(xn)n be a sequence that converges to zero in (E, τ), then for all ε > 0 there
is λ ∈ K such that 0 <| λ |⩽ ε. Therefore, the sequence

(
1
λxn

)
n
converges to

zero in (E, τ) , from which there is n0 ∈ N such that

(∀n ⩾ n0)
1

λ
xn ∈ V ⇒ (∀f ∈ A) (∀n ⩾ n0) | f

(
1

λ
xn

)
|⩽ 1

⇒ (∀n ⩾ n0) sup
f∈A

| f (xn) |⩽| λ |⩽ ε.

Hence sup
f∈A

(| f (xn) |)n converges to zero, so A is sequentially τ -equicontinuous.

Consequently, V = A◦ is a neighborhood of zero in E for the topology ϱ.
Therefore ϱ ⩾ τps. Thus, ϱ = τps.

Given a locally K-convex space (E, τ), we denote by Eb the space of all
linear forms on E which are bounded on the τ−bounded sets of E. Let τ0 be
the topology on Eb of uniform convergence over the τ−null sequences of E. τ0

admits as the basis of neighborhood of zero the sets A◦ where

A =

{
(xn)n ⊂ E : lim

n→+∞
xn = 0 in (E, τ)

}
.

Lemma 4.7. Let H be a K-convex subset of Es. Then:

(∀x ∈ E) pH◦ (x) = sup
f∈H

| f (x) | .

Proof. We know that for all x ∈ E, pH◦ (x) = inf {| λ |: x ∈ λH◦} and

{x ∈ E : pH◦ (x) < 1} ⊂ H◦ ⊂ {x ∈ E : pH◦ (x) ⩽ 1} .

The result is trivially verified if x = 0. Let x ∈ E \ {0} , then for all f ∈ H and
all λ ∈ K such that x ∈ λH◦ we have:

λ ∈ K \ {0}, 1

λ
x ∈ H◦ ⇒| f

(
1

λ
x

)
|⩽ 1

⇒| f (x) |⩽| λ | .

Therefore,

sup
f∈H

| f (x) |⩽ inf {| λ |: x ∈ λH◦}

To obtain a contradiction, we suppose that sup
f∈H

| f (x) |< pH◦ (x). Then, there

is µ ∈ K such that:

sup
f∈H

| f (x) |⩽| µ |< pH◦ (x) .
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Therefore,

(∀f ∈ H) | f (x) |⩽| µ | ⇒| f
(
1

µ
x

)
|⩽ 1

⇒ 1

µ
x ∈ H◦

⇒ x ∈ µH◦

⇒ pH◦ (x) ⩽| µ | .

which is not the case. Hence, pH◦ (x) = sup
f∈H

| f (x) | .

Lemma 4.8. If H is sequentially τ -equicontinuous in Es, then H◦ is a se-
quential neighborhood of zero and pH◦ is sequentially τ -equicontinuous.

Proof. Let (xn)n be a sequence which converges to zero in (E, τ) , then the

sequence

(
sup
f∈H

| f (xn) |

)
n

converges to zero in R+, from which there exists

n0 ∈ N such that for all n ⩾ n0, sup
f∈H

| f (xn) |⩽ 1. Consequently, for all

n ⩾ n0, xn ∈ H◦.
Furthermore, for all ε > 0, there exists λ ∈ K such that 0 <| λ |⩽ ε. The
sequence

(
1
λxn

)
n
converges to zero in (E, τ) from which there is n0 ∈ N such

that for all n ⩾ n0,
1
λxn ∈ H◦. Therefore, for all n ⩾ n0 pH◦

(
1
λxn

)
⩽ 1,

or ∀n ⩾ n0 pH◦ (xn) ⩽| λ |⩽ ε. Thus, the sequence (pH◦ (xn))n converges to
zero.

Next theorem will characterize the sequentially τ -equicontinuous subsets.
Let us recall that a sequence {x1, x2, . . . , xk} in a locally K-convex space E is
t-orthogonal with respect to semi-norm p, such that t ∈]0, 1], if for each n ∈ N
and λ1, λ2, . . . , λk ∈ K we have

p

(
k∑

i=1

λixi

)
⩾ t max

1⩽i⩽k
(p (λixi))

Theorem 4.9. Let H be an absolutely K-convex subset of Es, then the follow-
ing assertions are equivalent:

(i) H is sequentially τ -equicontinuous;

(ii) H is τ0-compactoid.

Proof. (i) ⇒ (ii) Assume that H be sequentially τ -equicontinuous. Let A =
{xn ∈ E : n ∈ N}, lim

n→+∞
xn = 0 in (E, τ). Then, the sequence (pH◦ | f (xn) |)n

converges to zero. Set p = pH◦ , then p is a n.a. polar semi-norm (Lemma 4.7)
which is sequentially τ -continuous (Lemma 4.8). Therefore, for all x ∈ E,
p (x) = sup

f∈H
| f (xn) | (Lemma 4.7). Let µ ∈ K such that 0 <| µ |< 1,
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hence there exists N ∈ N such that for all n > N , p (xn) ⩽| µ |2. Set
F = [x0, x1, ..., xN ]. Let B = {z1, z2, ..., zk} be a | µ |-orthogonal basis of
(F, p) . We can assume that | µ |⩽ p (zk) ⩽ p (zk−1) ⩽ ... ⩽ p (z1) ⩽ 1.
Let B

′
= {g1, g2, ..., gk} be the dual basis of B, that is to say for all (i, j) ∈

({1, 2, ..., k})2, gi ∈ F
′
and gi (zj) = δij .

Let x =

k∑
i=1

λizi, where (λi)1⩽i⩽k ⊂ K, an element of F, then

p (x) ⩾| µ | max
1⩽i⩽k

(| λi | p (zi)) ⩾ max
1⩽i⩽k

(
| λiµ

2 |
)
.

Therefore, for all i ∈ {1, 2, ..., k}, | gi (x) |=| λi |, from which | gi (x) |⩽
1

|µ2|p (x). Since p is polar, there is fi ∈ E
′
such that fi|F = gi and for all

x ∈ E | fi (x) |⩽ 1
|µ2|p (x) [18, Proposition 5.6], and since p is sequentially

τ−continuous and polar, we have for all i ∈ {1, 2, ..., k}, fi ∈ Eps ⊂ Es [18].

Let f ∈ H. Set h =

k∑
i=1

f (zi) fi and g = f − h. Then, for all x ∈ F

h (x) =

k∑
i=1

f (zi) fi (x)

=

k∑
i=1

f (zi)λi

= f

(
k∑

i=1

λizi

)
= f (x) .

Therefore h = f over F and | f |⩽ p because f ∈ H, from which for all
i ∈ {1, 2, ..., k}, | f (zi) |⩽ p (zi) ⩽ 1. Hence, h ∈ Γ (f1, f2, ..., fk). Furthermore,
for all n > N , we have | f (xn) |⩽ p (xn) ⩽ 1, and for all i ∈ {1, 2, ..., k},
| fi (xn) |⩽ 1

|µ2|p (xn) ⩽ 1, from which

for all n > N, | h (xn) | =|
k∑

i=1

f (zi) fi (xn) |

⩽ max
1⩽i⩽k

(| f (zi) || fi (x) |)

⩽ 1.

Then,

for all n > N | g (xn) | =| f (xn)− h (xn) |
⩽ max (| f (xn) |, | h (xn) |)
⩽ 1.
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Therefore, for all n ∈ N, | g (xn) |⩽ 1 which implies that g ∈ A◦. Hence,
f ∈ Γ (f1, f2, ..., fk) + µA◦ (f = g + h). Thus, H ⊂ Γ (f1, f2, ..., fk) + µA◦.
Which shows that H is τ0-compactoid.

(ii) ⇒ (i) Let (xn)n be a convergent sequence to zero in (E, τ) and set
A = {xn ∈ E : n ∈ N}. Let ε > 0 and µ ∈ K such that 0 <| µ |⩽ ε, A◦ is a
neighbourhood of zero in (E, τ◦). Let (fi)1⩽i⩽k ⊂ Es such that

H ⊂ Γ (f1, f2, ..., fk) + µA◦

We have for all i ∈ {1, 2, ..., k} the sequence (fi (xn))n converges to zero. There-
fore, there exists N ∈ N such that for all n > N and all i ∈ {1, 2, ..., k},
| fi (xn) |⩽| µ |. Let f ∈ H, then there exists (λi)1⩽i⩽k ⊂ K such that for all

i ∈ {1, 2, ..., k}, | λi |⩽ 1 and there is g ∈ A◦ such that f =

k∑
i=1

λifi + µg.

for all n > N, | f (xn) | ⩽ max

{
max
1⩽i⩽k

(| λi || fi (xn) |, | µg (xn) |)
}

⩽| µ |

from which for all n > N, sup
f∈H

| f (xn) |⩽| µ |⩽ ε.

Therefore the sequence

(
sup
f∈H

| f (xn) |

)
n

converges to zero, and consequently

H is sequentially τ -equicontinuous.
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dualité séparante sur un corps valué non-archimédien. Proyecciones 20, 2 (2001),
217–241.

[15] Katsaras, A. K., and Benekas, V. Sequential convergence in topological
vector spaces. Georgian Math. J. 2, 2 (1995), 151–164.

[16] Monna, A. F. Analyse non-archimédienne. Springer-Verlag, Berlin-New York,
1970. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 56.

[17] Sánchez Ruiz, L. M. On sequential barrelledness without local convexity con-
ditions. Bol. soc.mat. Mexicana 36, 2 (1991), 29–33.

[18] Schikhof, W. H. Locally convex spaces over nonspherically complete valued
fields. I, II. Bull. Soc. Math. Belg. Sér. B 38, 2 (1986), 187–207, 208–224.

[19] Snipes, R. F. T -sequential topological spaces. Fund. Math. 77, 2 (1972), 95–98.

[20] van Tiel, J. Espaces localement K-convexes. I. Nederl. Akad. Wetensch. Proc.
Ser. A 68 = Indag. Math. 27 (1965), 249–258.

[21] Venkataraman, M. Directed sets in topology. Math. Student 30 (1962), 99–
100.

[22] Warner, S. Topological fields, vol. 157 of North-Holland Mathematics Stud-
ies. North-Holland Publishing Co., Amsterdam, 1989. Notas de Matemática
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