On unit sphere tangent bundles over complex $Grassmannians^1$

Jean Baptiste Gatsinzi² and Oteng Maphane³⁴

Abstract. Let $G_{k,n}(\mathbb{C})$ for $2 \leq k < n$ denote the Grassmann manifold of k-dimensional vector subspaces of \mathbb{C}^n . In this paper we show that the total space of the unit sphere tangent bundle $S^{2m-1} \to E \xrightarrow{p} G_{k,n}(\mathbb{C})$ is not formal, where m = k(n-k).

AMS Mathematics Subject Classification (2010): Primary 55P62; Secondary 55P15

Key words and phrases: Sullivan algebra, Sphere bundle, Complex Grassmann manifolds, Formality.

1. Introduction

We begin by fixing notation and recalling some results on differential graded algebras. All vector spaces and algebras are taken over the field \mathbb{Q} of rational numbers.

Definition 1.1. A graded algebra A is a sum $A = \bigoplus_{\substack{n \ge 0}} A^n$, where A^n is a vector space, together with an associative multiplication $A^i \otimes A^j \to A^{i+j}, x \otimes y \mapsto xy$ and has $1 \in A^0$. It is graded commutative if for any homogeneous elements x and y,

$$xy = (-1)^{|x||y|} yx$$

where |x| = i for $x \in A^i$. If A is a graded algebra equipped with a linear differential map $d: A^n \to A^{n+1}$ such that $d \circ d = 0$ and

$$d(xy) = (dx)y + (-1)^{|x|}x(dy),$$

then (A, d) is called a differential graded algebra and d is called a differential. Moreover, if A is also a graded commutative algebra, then (A, d) is a commutative differential graded algebra (cdga). It is said to be connected if $H^0(A) \cong \mathbb{Q}$.

¹This work was completed with the support of the Botswana International University of Science and Tecnnology (BIUST)

²Department of Mathematics and Statistical Sciences, Faculty of Science, Botswana International University of Science and Technology, e-mail: gatsinzij@biust.ac.bw

³Department of Mathematics and Statistical Sciences, Faculty of Science, Botswana International University of Science and Technology, e-mail: maphaneot@biust.ac.bw

⁴Corresponding author

Definition 1.2. Let $V = \bigoplus_{i \ge 0} V^i$ with $V^{\text{even}} := \bigoplus_{i \ge 0} V^{2i}$ and $V^{\text{odd}} := \bigoplus_{i \ge 1} V^{2i-1}$. A commutative graded algebra A is called free commutative if $A = \wedge V = S(V^{\text{even}}) \otimes E(V^{\text{odd}})$, where $S(V^{\text{even}})$ is the symmetric algebra on V^{even} and $E(V^{\text{odd}})$ is the exterior algebra on V^{odd} .

Definition 1.3. A Sullivan algebra is a commutative differential graded algebra $(\wedge V, d)$ where $V = \bigcup_{k \ge 0} V(k)$ and $V(0) \subset V(1) \cdots$ such that dV(0) = 0 and $dV(k) \subset \wedge V(k-1)$. It is called minimal if $dV \subset \wedge^{\ge 2} V$.

If (A, d) is a *cdga* of which the cohomology is connected and finite dimensional in each degree, then there always exists a quasi-isomorphism from a Sullivan algebra $(\wedge V, d)$ to (A, d) [4]. To each simply connected space, Sullivan associates a *cdga* $A_{PL}(X)$ of rational polynomial differential forms on X that uniquely determines the rational homotopy type of X [10]. A minimal Sullivan model of X is a minimal Sullivan model of $A_{PL}(X)$.

Definition 1.4. A morphism of commutative differential graded algebras f: $(\wedge V, d) \rightarrow (\wedge V \otimes \wedge W, D)$ is a Koszul-Sullivan extension (KS-extension for short) if Dv = dv for $v \in V$ and $DW \subset \wedge V \otimes \wedge W$.

Let $X \xrightarrow{\iota} E \xrightarrow{p} B$ be a fibration between simply connected spaces with $(\wedge V, d)$ and $(\wedge W, d')$ Sullivan models of B, X respectively, and at least one of $H^*(B; \mathbb{Q})$ and $H^*(X; \mathbb{Q})$ has finite type. Then there is a KS-extension $(\wedge V, d) \xrightarrow{\varphi} (\wedge V \otimes \wedge W, D) \xrightarrow{\psi} (\wedge W, d')$, where φ and ψ are respective models for p and ι , see [4, §15].

Definition 1.5. [5] A simply connected space X is called formal if there is a quasi-isomorphism $(\wedge V, d) \to H^*(\wedge V, d)$, where $(\wedge V, d)$ is the minimal Sullivan model of X.

Examples of formal spaces include spheres, projective complex spaces, homogeneous spaces G/H, where G and H have same rank, and compact Kähler manifolds.

Definition 1.6. [5] Let (A, d) be a *cdga* with cohomology $H^*(A, d)$. Let a, b, and c be cohomology classes in $H^*(A, d)$ whose products $a \cdot b = b \cdot c = 0$. Choose cocycles x, y and z representing a, b and c respectively. Then there are elements v and w such that dv = xy and dw = yz. The element

$$vz - (-1)^{|x|}xw$$

is a cocycle whose cohomology class depends on the choice of v and w. Each cohomology class

$$vz - (-1)^{|x|}xw$$

is called a *triple Massey product* of a, b and c. If a triple Massey product is 0 as a cohomology class, then it is said to be trivial.

Theorem 1.7. [5] If X has a non-trivial triple Massey product then X is not formal.

2. Model of the unit sphere tangent bundle over complex Grassmannians

The complex Grassmannian $G_{k,n}(\mathbb{C})$ is a homogeneous space as $G_{k,n}(\mathbb{C}) \cong U(n)/(U(k) \times U(n-k))$ for $1 \leq k < n$, where U(n) is the unitary group. It is a symplectic manifold of dimension 2m, where m = k(n-k). The method to compute a Sullivan model of the homogeneous space $G_{k,n}(\mathbb{C})$ is given in detail in [6, 9].

Let $S^{2m-1} \to E \xrightarrow{p} G_{k,n}(\mathbb{C})$ for $2 \leq k < n$ be the unit sphere tangent bundle. A relative minimal model of p is given by

$$(\wedge V, d) \xrightarrow{\iota} (\wedge V \otimes \wedge x_{2m-1}, d') \to (\wedge x_{2m-1}, 0),$$

with d'v = dv for $v \in V$ and $d'x_{2m-1} = z$, as [z] is the Euler class of the tangent bundle [5, Page 82]. Moreover, if $[\omega] \in H^{2m}(\wedge V, d)$ is the fundamental class of $G_{k,n}(\mathbb{C})$, then $[z] = \chi(G_{k,n}(\mathbb{C})) \cdot [\omega]$, where $\chi(G_{k,n}(\mathbb{C}))$ is the Euler characteristic of $G_{k,n}(\mathbb{C})$ (see [2, Proposition 11.24]). As $\chi(G_{k,n}(\mathbb{C})) \neq 0$, there is a quasi-isomorphism

$$(\wedge V \otimes \wedge x_{2m-1}, d') \to (\wedge V \otimes \wedge x_{2m-1}, D),$$

where Dv = dv for $v \in V$ and $Dx_{2m-1} = \omega$.

The unit sphere tangent bundles over complex projective spaces were studied in [1], where it is shown that the total space of the unit sphere tangent bundle over $\mathbb{C}P(n)$ is formal. We extend this study to $G_{k,n}(\mathbb{C})$ for $2 \leq k < n$ and obtain the following result.

We provide here an easier proof for the case k = 2 as follows.

Theorem 2.1. The total space of the unit sphere tangent bundle

$$S^{2m-1} \to E \to G_{2,n}(\mathbb{C})$$

for $n \ge 4$ is not formal.

Proof. Recall that $G_{2,n}(\mathbb{C})$ is a manifold of dimension 2m where m = 2n - 4. In [7, 3], the cohomology ring $H^*(G_{k,n}(\mathbb{C}), \mathbb{Q})$ has the presentation

$$H^*(G_{k,n}(\mathbb{C}),\mathbb{Q}) = \mathbb{Q}[b_2,\ldots,b_{2k}]/\langle h_{n-k+1},\ldots,h_n \rangle$$

where $\langle h_{n-k+1}, \ldots, h_n \rangle$ is the ideal generated by the elements h_j for $n-k+1 \leq j \leq n$. Here h_j is the 2*j*-degree term in the Taylor series expansion of $(1+b_2+\cdots+b_{2k})^{-1}$. As $\{h_{n-k+1},\ldots,h_n\}$ form a regular sequence in the polynomial algebra $\mathbb{Q}[b_2,\ldots,b_{2k}]$, the minimal Sullivan model of $G_{k,n}(\mathbb{C})$ is

$$(\wedge (b_2,\ldots,b_{2k},y_{2(n-k)+1},\ldots,y_{2n-1}),d),$$

where $db_i = 0$ and

$$dy_{2(n-k)+1} = h_{n-k+1}$$
$$\vdots$$
$$dy_{2n-1} = h_n.$$

In particular, the minimal Sullivan model of $G_{2,n}(\mathbb{C})$ is given by

$$(\wedge V, d) = (\wedge (b_2, b_4, y_{2n-3}, y_{2n-1}), d),$$

where $dy_{2n-3} = h_{n-1}$ and $dy_{2n-1} = h_n$ are polynomials in b_2 and b_4 . The symplectic class $[b_2] \in H^2(G_{2,n}(\mathbb{C}), \mathbb{Q})$ is such that $[b_2^m]$ is the fundamental class of $G_{2,n}(\mathbb{C})$. As $\chi(G_{2,n}(\mathbb{C})) \neq 0$, a relative minimal model for the unit sphere tangent bundle $S^{2m-1} \to E \to G_{2,n}(\mathbb{C})$ is given by

$$(\wedge V, d) \xrightarrow{\iota} (\wedge V \otimes \wedge x_{2m-1}, D) \to (\wedge x_{2m-1}, 0)$$

with Dv = dv for $v \in V$ and $Dx_{2m-1} = b_2^m$. We show that $H^*(E, \mathbb{Q})$ contains a non zero triple Massey product by hypothesis on n and $m \geq 4$. As $Dx_{2m-1} = b_2^m$, we have $H^*(\iota)([b_2]) \cdot H^*(\iota)([b_2^{m-1}]) = 0$ in $H^*(E, \mathbb{Q})$. Either $2n \equiv 2 \pmod{4}$ or $2n \equiv 0 \pmod{4}$. $dy_{2n-1} = b_2s$, where $s \notin < b_2 >$ and $[s] \in H^{2n-2}(G_{2,n}(\mathbb{C}), \mathbb{Q})$ as $2n \equiv 2 \pmod{4}$ implies h_n does not contain a power of b_4 . $[s] \in H^{2n-2}(G_{2,n}(\mathbb{C}), \mathbb{Q})$ is the non-zero class of smallest degree such that $H^*(\iota)([b_2]) \cdot H^*(\iota)([s]) = 0$. Moreover, if $2n \equiv 0 \pmod{4}$, then $dy_{2n-3} = b_2r$, where $r \notin < b_2 >$ and $[r] \in H^{2n-4}(G_{2,n}(\mathbb{C}), \mathbb{Q})$ is the non-zero class of smallest degree such that $H^*(\iota)([b_2]) \cdot H^*(\iota)([b_2]) \cdot H^*(\iota)([b_2]) \cdot H^*(\iota)([b_2]) = 0$. On the one hand, assume that $2n \equiv 2 \pmod{4}$, then $dy_{2n-1} = b_2s$ and the element

$$sx_{2m-1} - b_2^{m-1}y_{2n-1}$$

is a cocycle of degree 2(m + n) - 3 which cannot be a coboundary for degree reasons. Hence, the triple Massey product set $\langle H^*(\iota)([b_2^{m-1}]), H^*(\iota)([b_2]), H^*(\iota)([s]) \rangle$ is non-trivial. Similarly, on the other hand, if $2n \equiv 0 \pmod{4}$, then $dy_{2n-3} = b_2 r$ and the element

$$rx_{2m-1} - b_2^{m-1}y_{2n-3}$$

is a cocycle of degree 2(m+n) - 5 which cannot be a coboundary for degree reasons. Thus, the triple Massey product set $\langle H^*(\iota)([b_2^{m-1}]), H^*(\iota)([b_2]), H^*(\iota)([r]) \rangle$ is non-trivial. Thus E is not formal.

Example 2.2. The minimal Sullivan model of $G_{2,4}(\mathbb{C})$ is given by

$$(\wedge (b_2, b_4, y_5, y_7), d),$$

where

$$db_2 = db_4 = 0, \ dy_5 = -b_2^3 + 2b_2b_4, \ dy_7 = b_2^4 - 3b_2^2b_4 + b_4^2$$

as h_j is the 2*j*-th degree term in the Taylor expansion of $(1 + b_2 + b_4)^{-1}$ [6, 8]. With $\chi(G_{2,4}(\mathbb{C})) = 5$, the total space of the unit sphere bundle $S^7 \to E \to G_{2,4}(\mathbb{C})$ will have a relative minimal model of the form

$$(\wedge (b_2, b_4, y_5, y_7, a_7), D)$$

with $Db_i = 0$, $Dy_5 = b_2(b_2^2 - 2b_4)$, $Dy_7 = b_4b_2^2 - b_4^2$ and $Da_7 = b_2^4$. Take $a = H^*(\iota)([b_2^3])$, $b = H^*(\iota)([b_2])$ and $c = H^*(\iota)([b_2^2 - 2b_4])$ cohomology classes

in $H^*(E, \mathbb{Q})$ whose products $a \cdot b = b \cdot c = 0$. The triple Massey product set $\langle a, b, c \rangle$ is represented by the cocycle

$$(b_2^2 - 2b_4)a_7 - b_2^3 y_5$$

of degree 11 which cannot be a coboundary for degree reasons. Thus, the triple Massey product set $\langle a, b, c \rangle$ is non-trivial.

For the general case, a Sullivan model of $G_{k,n}(\mathbb{C})$ for $1 \leq k < n$ is given by (see [9])

$$(\wedge (b_2, b_4, \dots, b_{2k}, x_2, x_4, \dots, x_{2(n-k)}, y_1, y_3, \dots, y_{2n-1}), d)$$

with

$$db_i = 0 = dx_j, \ dy_{2p-1} = \sum_{p_1+p_2=p} b_{2p_1} \cdot x_{2p_2}, \ 1 \le p \le n.$$

Lemma 2.3. For $2 \leq k < n$ and $n \geq 2k$, the minimal Sullivan model of $G_{k,n}(\mathbb{C})$ is given by

$$(\wedge (b_2, \dots, b_{2k}, y_{2(n-k)+1}, \dots, y_{2n-1}), d), dy_{2n-1} = b_{2k}r$$

where $r \notin \langle b_{2k} \rangle$. It is enough to choose $n \geq 2k$ as $G_{k,n}(\mathbb{C})$ is homeomorphic to $G_{n-k,n}(\mathbb{C})$.

Proof. Consider the Sullivan model

$$(\wedge (b_2, b_4, \dots, b_{2k}, x_2, x_4, \dots, x_{2(n-k)}, y_1, y_3, \dots, y_{2n-1}), d)$$

of $G_{k,n}(\mathbb{C})$ for $2 \leq k < n$,

$$dy_1 = b_2 + x_2$$

$$dy_3 = b_4 + x_4 + b_2 x_2$$

:

$$dy_{2n-1} = b_{2k} x_{2(n-k)}.$$

The model is not minimal as the linear part is not zero. To find its minimal Sullivan model, we make a change of variable $t_2 = b_2 + x_2$ and replace x_2 by $t_2 - b_2$ wherever it appears in the differential. This gives an isomorphic Sullivan algebra

$$(\wedge (b_2, t_2, b_4, \dots, b_{2k}, x_4, \dots, x_{2(n-k)}, y_1, y_3, \dots, y_{2n-1}), d)$$

where

$$dy_1 = t_2$$

$$dy_3 = b_4 + x_4 + b_2(t_2 - b_2)$$

:

$$dy_{2n-1} = b_{2k}x_{2(n-k)}.$$

As the ideal generated by y_1 and t_2 is acyclic, the above Sullivan algebra is quasi-isomorphic to

$$(\wedge (b_2, b_4, \dots, b_{2k}, x_4, \dots, x_{2(n-k)}, y_3, \dots, y_{2n-1}), d)$$

where

$$dy_3 = b_4 + x_4 - b_2^2$$

:
$$dy_{2n-1} = b_{2k} x_{2(n-k)}.$$

One continues in this fashion and make another change of variable, $t_4 = b_4 + x_4 - b_2^2$ and replace x_4 by $t_4 - b_4 + b_2^2$ wherever it appears in the differential and do so until they reach a change of variable of the form

$$t_{2(n-k)} = b_{2(n-k)} + x_{2(n-k)} + \alpha \text{ for } n = 2k, \text{ or}$$

$$t_{2(n-k)} = x_{2(n-k)} + \beta \text{ for } n > 2k,$$

where $\alpha \in \wedge (b_2, \ldots, b_{2(k-1)}), \beta \in \wedge (b_2, \ldots, b_{2k})$ and replace

$$x_{2(n-k)} = \begin{cases} t_{2(n-k)} - b_{2k} + \alpha & \text{for } n = 2k, \\ t_{2(n-k)} + \beta & \text{for } n > 2k, \end{cases}$$

wherever it appears in the differential. This gives an isomorphic Sullivan algebra

$$(\wedge (b_2, \ldots, b_{2k}, y_{2(n-k)-1}, y_{2(n-k)+1}, \ldots, y_{2n-1}), d)$$

where

$$dy_{2(n-k)-1} = t_{2(n-k)}$$

:
$$dy_{2n-1} = b_{2k}x_{2(n-k)}.$$

As the ideal generated by $t_{2(n-k)}$ and $y_{2(n-k)-1}$ is acyclic, we get the minimal Sullivan model

$$(\land (b_2, \ldots, b_{2k}, y_{2(n-k)+1}, \ldots, y_{2n-1}), d)$$

with

$$dy_{2n-1} = b_{2k}r$$

where $r \in \wedge(b_2, \ldots, b_{2k})$ and $[r] \neq 0$ in $H^*(G_{k,n}(\mathbb{C}), \mathbb{Q})$ as |r| = 2(n-k) and there is no coboundary of degree less than 2(n-k). In particular, $[r] \neq [b_{2k}]$. \Box

Theorem 2.4. More generally, if $2 \le k < n$, then the total space of the unit sphere tangent bundle

$$S^{2m-1} \to E \to G_{k,n}(\mathbb{C})$$

is not formal, where m = k(n-k).

Proof. The minimal Sullivan model of $G_{k,n}(\mathbb{C})$ is given by $(\wedge V, d) = (\wedge (b_2, \ldots, b_{2k}, y_{2(n-k)+1}, \ldots, y_{2n-1}), d)$ and $(\wedge x_{2m-1}, 0)$ is the model of S^{2m-1} . Let $[b_{2k}^*]$ be the Poincaré dual of $[b_{2k}]$ in $H^*(G_{k,n}(\mathbb{C}), \mathbb{Q})$ and $\omega = b_{2k}b_{2k}^*$. Since $\chi(G_{k,n}(\mathbb{C})) \neq 0$, a relative minimal model for the unit sphere tangent bundle $S^{2m-1} \to E \to G_{k,n}(\mathbb{C})$ is given by

$$(\wedge V, d) \stackrel{\iota}{\rightarrowtail} (\wedge V \otimes \wedge x_{2m-1}, D) \to (\wedge x_{2m-1}, 0),$$

with Dv = dv for $v \in V$ and $Dx_{2m-1} = \omega$. By Lemma 2.3, there is $[r] \in H^{2n-2k}(G_{k,n}(\mathbb{C}),\mathbb{Q})$ the class of smallest degree such that $H^*(\iota)([b_{2k}]) \cdot H^*(\iota)([r]) = 0$ in $H^*(E;\mathbb{Q})$, where $r \notin \langle b_{2k} \rangle$. We show that the triple Massey product $\langle H^*(\iota)([b_{2k}^*]), H^*(\iota)([b_{2k}]), H^*(\iota)([r]) \rangle$ in $H^*(E;\mathbb{Q})$ is not trivial. It is represented by the cocycle

$$rx_{2m-1} - b_{2k}^* y_{2n-1}$$
.

To show that it is not a coboundary, we use an argument in the Leray-Serre spectral sequence for the unit sphere tangent bundle $S^{2m-1} \to E \to G_{k,n}(\mathbb{C})$. In [4, Chapter 18], the Leray-Serre spectral sequence is obtained by filtering $(\wedge V \otimes \wedge x_{2m-1}, D)$ by the degree of $\wedge V$; that is,

$$F^p(\wedge V \otimes \wedge x_{2m-1}) = (\wedge V)^{\geq p} \otimes \wedge x_{2m-1}, \ p = 0, 1, 2, \dots$$

and the associated bigraded module is given by

$$E_0^{p,q} = (\wedge V)^{\geq p} \otimes \wedge x_{2m-1} / (\wedge V)^{\geq (p+1)} \otimes \wedge x_{2m-1}$$
$$\cong (\wedge V)^p \otimes \wedge x_{2m-1}.$$

Moreover, $d_0 = 0$, $d_1 = d$ and $E_2^{p,*} = H^p(\wedge V, d) \otimes \wedge x_{2m-1}$. Thus, $[rx_{2m-1} - b_{2k}^*y_{2n-1}] \cong [rx_{2m-1}]$ at $E_2^{2(n-k),q}$ and we have $E_2 = E_3 = \cdots = E_{2m}$. In particular, $E_{2m}^{2(n-k),2m-1} \cong H^{2(n-k)}(\wedge V, d) \otimes \mathbb{Q} < x_{2m-1} > .$ Moreover, $d_{2m} : E_{2m}^{2(n-k),2m-1} \to E_{2m}^{2(n-k)+2m,0}$ is zero, for degree reasons. Hence, the element

$$rx_{2m-1} \in E_{2m}^{2(n-k),2m-1}$$

is a d_{2m} -cocycle. Moreover, it cannot be a d_{2m} -coboundary because $E_{2m}^{2(n-k)-2m,4m-2} = 0$. Hence the class

$$[rx_{2m-1}]$$

is not zero at $E_{2m+1} = E_{\infty}$. This is a non zero triple Massey product. Therefore, E is not formal.

Acknowledgement

The authors are grateful to the referees for helpful comments and suggestions. This paper is based on a part of Maphane's PhD thesis carried out under Gatsinzi's supervision.

References

- BANYAGA, A., GATSINZI, J. B., AND MASSAMBA, F. A note on the formality of some contact manifolds. J. Geom. 109, 1 (2018), Paper No. 3, 10.
- [2] BOTT, R., AND TU, L. W. Differential forms in algebraic topology, vol. 82 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.
- [3] CHAKRABORTY, P., AND SANKARAN, P. Maps between certain complex Grassmann manifolds. *Topology Appl.* 170 (2014), 119–123.
- [4] FÉLIX, Y., HALPERIN, S., AND THOMAS, J.-C. Rational homotopy theory, vol. 205 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
- [5] FÉLIX, Y., OPREA, J., AND TANRÉ, D. Algebraic models in geometry, vol. 17 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2008.
- [6] GREUB, W., HALPERIN, S., AND VANSTONE, R. Connections, curvature, and cohomology. Pure and Applied Mathematics, Vol. 47-III. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Volume III: Cohomology of principal bundles and homogeneous spaces.
- [7] HOFFMAN, M. Endomorphisms of the cohomology of complex Grassmannians. Trans. Amer. Math. Soc. 281, 2 (1984), 745–760.
- [8] MURILLO, A. The top cohomology class of certain spaces. J. Pure Appl. Algebra 84, 2 (1993), 209–214.
- [9] MURILLO, A. The top cohomology class of classical compact homogeneous spaces. Algebras Groups Geom. 16, 4 (1999), 531–550.
- [10] SULLIVAN, D. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., 47 (1977), 269–331 (1978).

Received by the editors June 16, 2020 First published online February 3, 2022