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On unit sphere tangent bundles over complex
Grassmannians1

Jean Baptiste Gatsinzi2 and Oteng Maphane34

Abstract. Let Gk,n(C) for 2 ≤ k < n denote the Grassmann manifold
of k-dimensional vector subspaces of Cn. In this paper we show that the
total space of the unit sphere tangent bundle S2m−1 → E

p→ Gk,n(C) is
not formal, where m = k(n− k).
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1. Introduction

We begin by fixing notation and recalling some results on differential graded
algebras. All vector spaces and algebras are taken over the field Q of rational
numbers.

Definition 1.1. A graded algebra A is a sum A = ⊕
n≥0

An, where An is a vector

space, together with an associative multiplication Ai⊗Aj → Ai+j , x⊗ y 7→ xy
and has 1 ∈ A0. It is graded commutative if for any homogeneous elements x
and y,

xy = (−1)|x||y|yx

where |x| = i for x ∈ Ai. If A is a graded algebra equipped with a linear
differential map d : An → An+1 such that d ◦ d = 0 and

d(xy) = (dx)y + (−1)|x|x(dy),

then (A, d) is called a differential graded algebra and d is called a differen-
tial. Moreover, if A is also a graded commutative algebra, then (A, d) is a
commutative differential graded algebra (cdga). It is said to be connected if
H0(A) ∼= Q.
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Definition 1.2. Let V = ⊕i≥0V
i with V even := ⊕i≥0V

2i and
V odd := ⊕i≥1V

2i−1. A commutative graded algebra A is called free commuta-
tive if A = ∧V = S(V even)⊗E(V odd), where S(V even) is the symmetric algebra
on V even and E(V odd) is the exterior algebra on V odd.

Definition 1.3. A Sullivan algebra is a commutative differential graded alge-
bra (∧V, d) where V = ∪k≥0V (k) and V (0) ⊂ V (1) · · · such that dV (0) = 0
and dV (k) ⊂ ∧V (k − 1). It is called minimal if dV ⊂ ∧≥2V.

If (A, d) is a cdga of which the cohomology is connected and finite dimen-
sional in each degree, then there always exists a quasi-isomorphism from a
Sullivan algebra (∧V, d) to (A, d) [4]. To each simply connected space, Sullivan
associates a cdga APL(X) of rational polynomial differential forms on X that
uniquely determines the rational homotopy type of X [10]. A minimal Sullivan
model of X is a minimal Sullivan model of APL(X).

Definition 1.4. A morphism of commutative differential graded algebras f :
(∧V, d) → (∧V ⊗∧W,D) is a Koszul-Sullivan extension (KS-extension for short)
if Dv = dv for v ∈ V and DW ⊂ ∧V ⊗ ∧W.

Let X
ι→ E

p→ B be a fibration between simply connected spaces with
(∧V, d) and (∧W,d′) Sullivan models of B, X respectively, and at least one
of H∗(B;Q) and H∗(X;Q) has finite type. Then there is a KS-extension

(∧V, d) φ→ (∧V ⊗∧W,D)
ψ→ (∧W,d′), where φ and ψ are respective models for

p and ι, see [4, §15].

Definition 1.5. [5] A simply connected space X is called formal if there is a
quasi-isomorphism (∧V, d) → H∗(∧V, d), where (∧V, d) is the minimal Sullivan
model of X.

Examples of formal spaces include spheres, projective complex spaces, ho-
mogeneous spaces G/H, where G and H have same rank, and compact Kähler
manifolds.

Definition 1.6. [5] Let (A, d) be a cdga with cohomology H∗(A, d). Let
a, b, and c be cohomology classes in H∗(A, d) whose products a · b = b · c = 0.
Choose cocycles x, y and z representing a, b and c respectively. Then there are
elements v and w such that dv = xy and dw = yz. The element

vz − (−1)|x|xw

is a cocycle whose cohomology class depends on the choice of v and w. Each
cohomology class

vz − (−1)|x|xw

is called a triple Massey product of a, b and c. If a triple Massey product is 0
as a cohomology class, then it is said to be trivial.

Theorem 1.7. [5] If X has a non-trivial triple Massey product then X is not
formal.
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2. Model of the unit sphere tangent bundle over complex
Grassmannians

The complex Grassmannian Gk,n(C) is a homogeneous space as Gk,n(C) ∼=
U(n)/(U(k)× U(n− k)) for 1 ≤ k < n, where U(n) is the unitary group. It is
a symplectic manifold of dimension 2m, where m = k(n − k). The method to
compute a Sullivan model of the homogeneous space Gk,n(C) is given in detail
in [6, 9].

Let S2m−1 → E
p→ Gk,n(C) for 2 ≤ k < n be the unit sphere tangent

bundle. A relative minimal model of p is given by

(∧V, d)
ι
↣ (∧V ⊗ ∧x2m−1, d

′) → (∧x2m−1, 0),

with d′v = dv for v ∈ V and d′x2m−1 = z, as [z] is the Euler class of the
tangent bundle [5, Page 82]. Moreover, if [ω] ∈ H2m(∧V, d) is the fundamental
class of Gk,n(C), then [z] = χ(Gk,n(C)) · [ω], where χ(Gk,n(C)) is the Euler
characteristic of Gk,n(C) (see [2, Proposition 11.24]). As χ(Gk,n(C)) ̸= 0,
there is a quasi-isomorphism

(∧V ⊗ ∧x2m−1, d
′) → (∧V ⊗ ∧x2m−1, D),

where Dv = dv for v ∈ V and Dx2m−1 = ω.

The unit sphere tangent bundles over complex projective spaces were stud-
ied in [1], where it is shown that the total space of the unit sphere tangent
bundle over CP (n) is formal. We extend this study to Gk,n(C) for 2 ≤ k < n
and obtain the following result.
We provide here an easier proof for the case k = 2 as follows.

Theorem 2.1. The total space of the unit sphere tangent bundle

S2m−1 → E → G2,n(C)

for n ≥ 4 is not formal.

Proof. Recall that G2,n(C) is a manifold of dimension 2m where m = 2n − 4.
In [7, 3], the cohomology ring H∗(Gk,n(C),Q) has the presentation

H∗(Gk,n(C),Q) = Q[b2, . . . , b2k]/ < hn−k+1, . . . , hn >

where < hn−k+1, . . . , hn > is the ideal generated by the elements hj for n −
k + 1 ≤ j ≤ n. Here hj is the 2j-degree term in the Taylor series expansion
of (1 + b2 + · · · + b2k)

−1. As {hn−k+1, . . . , hn} form a regular sequence in the
polynomial algebra Q[b2, . . . , b2k], the minimal Sullivan model of Gk,n(C) is

(∧(b2, . . . , b2k, y2(n−k)+1, . . . , y2n−1), d),

where dbi = 0 and

dy2(n−k)+1 = hn−k+1

...

dy2n−1 = hn.
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In particular, the minimal Sullivan model of G2,n(C) is given by

(∧V, d) = (∧(b2, b4, y2n−3, y2n−1), d),

where dy2n−3 = hn−1 and dy2n−1 = hn are polynomials in b2 and b4. The
symplectic class [b2] ∈ H2(G2,n(C),Q) is such that [bm2 ] is the fundamental
class of G2,n(C). As χ(G2,n(C)) ̸= 0, a relative minimal model for the unit
sphere tangent bundle S2m−1 → E → G2,n(C) is given by

(∧V, d)
ι
↣ (∧V ⊗ ∧x2m−1, D) → (∧x2m−1, 0),

with Dv = dv for v ∈ V and Dx2m−1 = bm2 . We show that H∗(E,Q) con-
tains a non zero triple Massey product by hypothesis on n and m ≥ 4. As
Dx2m−1 = bm2 , we have H∗(ι)([b2]) · H∗(ι)([bm−1

2 ]) = 0 in H∗(E,Q). Either
2n ≡ 2 (mod 4) or 2n ≡ 0 (mod 4). dy2n−1 = b2s, where s ̸∈< b2 > and
[s] ∈ H2n−2(G2,n(C),Q) as 2n ≡ 2 (mod 4) implies hn does not contain a
power of b4. [s] ∈ H2n−2(G2,n(C),Q) is the non-zero class of smallest degree
such that H∗(ι)([b2]) · H∗(ι)([s]) = 0. Moreover, if 2n ≡ 0 (mod 4), then
dy2n−3 = b2r, where r ̸∈< b2 > and [r] ∈ H2n−4(G2,n(C),Q) is the non-zero
class of smallest degree such that H∗(ι)([b2]) ·H∗(ι)([r]) = 0. On the one hand,
assume that 2n ≡ 2 (mod 4), then dy2n−1 = b2s and the element

sx2m−1 − bm−1
2 y2n−1

is a cocycle of degree 2(m + n) − 3 which cannot be a coboundary for degree
reasons. Hence, the triple Massey product set ⟨H∗(ι)([bm−1

2 ]), H∗(ι)([b2]),
H∗(ι)([s])⟩ is non-trivial. Similarly, on the other hand, if 2n ≡ 0 (mod 4), then
dy2n−3 = b2r and the element

rx2m−1 − bm−1
2 y2n−3

is a cocycle of degree 2(m + n) − 5 which cannot be a coboundary for degree
reasons. Thus, the triple Massey product set ⟨H∗(ι)([bm−1

2 ]), H∗(ι)([b2]),
H∗(ι)([r])⟩ is non-trivial. Thus E is not formal.

Example 2.2. The minimal Sullivan model of G2,4(C) is given by

(∧(b2, b4, y5, y7), d),

where
db2 = db4 = 0, dy5 = −b32 + 2b2b4, dy7 = b42 − 3b22b4 + b24

as hj is the 2j-th degree term in the Taylor expansion of (1 + b2 + b4)
−1 [6, 8].

With χ(G2,4(C)) = 5, the total space of the unit sphere bundle S7 → E →
G2,4(C) will have a relative minimal model of the form

(∧(b2, b4, y5, y7, a7), D)

with Dbi = 0, Dy5 = b2(b
2
2 − 2b4), Dy7 = b4b

2
2 − b24 and Da7 = b42. Take

a = H∗(ι)([b32]), b = H∗(ι)([b2]) and c = H∗(ι)([b22 − 2b4]) cohomology classes
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in H∗(E,Q) whose products a · b = b · c = 0. The triple Massey product set
⟨a, b, c⟩ is represented by the cocycle

(b22 − 2b4)a7 − b32y5

of degree 11 which cannot be a coboundary for degree reasons. Thus, the triple
Massey product set ⟨a, b, c⟩ is non-trivial.

For the general case, a Sullivan model of Gk,n(C) for 1 ≤ k < n is given by
(see [9])

(∧(b2, b4, . . . , b2k, x2, x4, . . . , x2(n−k), y1, y3, . . . , y2n−1), d)

with
dbi = 0 = dxj , dy2p−1 =

∑
p1+p2=p

b2p1 · x2p2 , 1 ≤ p ≤ n.

Lemma 2.3. For 2 ≤ k < n and n ≥ 2k, the minimal Sullivan model of
Gk,n(C) is given by

(∧(b2, . . . , b2k, y2(n−k)+1, . . . , y2n−1), d), dy2n−1 = b2kr

where r ̸∈< b2k > . It is enough to choose n ≥ 2k as Gk,n(C) is homeomorphic
to Gn−k,n(C).

Proof. Consider the Sullivan model

(∧(b2, b4, . . . , b2k, x2, x4, . . . , x2(n−k), y1, y3, . . . , y2n−1), d)

of Gk,n(C) for 2 ≤ k < n,

dy1 = b2 + x2

dy3 = b4 + x4 + b2x2

...

dy2n−1 = b2kx2(n−k).

The model is not minimal as the linear part is not zero. To find its minimal
Sullivan model, we make a change of variable t2 = b2 + x2 and replace x2 by
t2−b2 wherever it appears in the differential. This gives an isomorphic Sullivan
algebra

(∧(b2, t2, b4, . . . , b2k, x4, . . . , x2(n−k), y1, y3, . . . , y2n−1), d)

where

dy1 = t2

dy3 = b4 + x4 + b2(t2 − b2)

...

dy2n−1 = b2kx2(n−k).
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As the ideal generated by y1 and t2 is acyclic, the above Sullivan algebra is
quasi-isomorphic to

(∧(b2, b4, . . . , b2k, x4, . . . , x2(n−k), y3, . . . , y2n−1), d)

where

dy3 = b4 + x4 − b22
...

dy2n−1 = b2kx2(n−k).

One continues in this fashion and make another change of variable, t4 = b4 +
x4 − b22 and replace x4 by t4 − b4 + b22 wherever it appears in the differential
and do so until they reach a change of variable of the form

t2(n−k) = b2(n−k) + x2(n−k) + α for n = 2k, or

t2(n−k) = x2(n−k) + β for n > 2k,

where α ∈ ∧(b2, . . . , b2(k−1)), β ∈ ∧(b2, . . . , b2k) and replace

x2(n−k) =

{
t2(n−k) − b2k + α for n = 2k,

t2(n−k) + β for n > 2k,

wherever it appears in the differential. This gives an isomorphic Sullivan alge-
bra

(∧(b2, . . . , b2k, y2(n−k)−1, y2(n−k)+1, . . . , y2n−1), d)

where

dy2(n−k)−1 = t2(n−k)

...

dy2n−1 = b2kx2(n−k).

As the ideal generated by t2(n−k) and y2(n−k)−1 is acyclic, we get the minimal
Sullivan model

(∧(b2, . . . , b2k, y2(n−k)+1, . . . , y2n−1), d)

with
dy2n−1 = b2kr

where r ∈ ∧(b2, . . . , b2k) and [r] ̸= 0 in H∗(Gk,n(C),Q) as |r| = 2(n − k) and
there is no coboundary of degree less than 2(n−k). In particular, [r] ̸= [b2k].

Theorem 2.4. More generally, if 2 ≤ k < n, then the total space of the unit
sphere tangent bundle

S2m−1 → E → Gk,n(C)

is not formal, where m = k(n− k).
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Proof. The minimal Sullivan model of Gk,n(C) is given by
(∧V, d) = (∧(b2, . . . , b2k, y2(n−k)+1, . . . , y2n−1), d) and (∧x2m−1, 0) is the model
of S2m−1. Let [b∗2k] be the Poincaré dual of [b2k] in H∗(Gk,n(C),Q) and ω =
b2kb

∗
2k. Since χ(Gk,n(C)) ̸= 0, a relative minimal model for the unit sphere

tangent bundle S2m−1 → E → Gk,n(C) is given by

(∧V, d)
ι
↣ (∧V ⊗ ∧x2m−1, D) → (∧x2m−1, 0),

with Dv = dv for v ∈ V and Dx2m−1 = ω. By Lemma 2.3, there is [r] ∈
H2n−2k(Gk,n(C),Q) the class of smallest degree such that
H∗(ι)([b2k]) · H∗(ι)([r]) = 0 in H∗(E;Q), where r ̸∈ < b2k > . We show that
the triple Massey product ⟨H∗(ι)([b∗2k]), H

∗(ι)([b2k]), H
∗(ι)([r])⟩ in H∗(E;Q)

is not trivial. It is represented by the cocycle

rx2m−1 − b∗2ky2n−1.

To show that it is not a coboundary, we use an argument in the Leray-Serre
spectral sequence for the unit sphere tangent bundle S2m−1 → E → Gk,n(C).
In [4, Chapter 18], the Leray-Serre spectral sequence is obtained by filtering
(∧V ⊗ ∧x2m−1, D) by the degree of ∧V ; that is,

F p(∧V ⊗ ∧x2m−1) = (∧V )≥p ⊗ ∧x2m−1, p = 0, 1, 2, . . .

and the associated bigraded module is given by

Ep,q0 = (∧V )≥p ⊗ ∧x2m−1/(∧V )≥(p+1) ⊗ ∧x2m−1

∼= (∧V )p ⊗ ∧x2m−1.

Moreover, d0 = 0, d1 = d and Ep,∗2 = Hp(∧V, d) ⊗ ∧x2m−1. Thus, [rx2m−1 −
b∗2ky2n−1] ∼= [rx2m−1] at E

2(n−k),q
2 and we have E2 = E3 = · · · = E2m. In

particular, E
2(n−k),2m−1
2m

∼= H2(n−k)(∧V, d) ⊗ Q < x2m−1 > . Moreover, d2m :

E
2(n−k),2m−1
2m → E

2(n−k)+2m,0
2m is zero, for degree reasons. Hence, the element

rx2m−1 ∈ E
2(n−k),2m−1
2m

is a d2m-cocycle. Moreover, it cannot be a d2m-coboundary because

E
2(n−k)−2m,4m−2
2m = 0. Hence the class

[rx2m−1]

is not zero at E2m+1 = E∞. This is a non zero triple Massey product. There-
fore, E is not formal.
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