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Fuzzy contractor and nonlinear operator equation in
fuzzy normed spaces

M.H.M. Rashid1

Abstract. The purpose of this article is to study the nonlinear operator
theory and the existence problems of solution for some kind of nonlinear
operator equations in fuzzy normed space. Also, the concepts of fuzzy
contractor and fuzzy contractor couple are investigated. By using these
concepts, the existence problems of solutions for nonlinear operator equa-
tions with fuzzy contractor or fuzzy contractor couple are discussed.
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1. Introduction

In light of the fact that in many situations the distance between two points
is inexact rather than a single real number, Kaleva and Seikkala [15] introduced
the idea of fuzzy metric space by describing the distance of points as a fuzzy real
number. Since each usual metric space and each Menger probabilistic metric
space can be considered as a special case of fuzzy metric space, the study
of the fuzzy metric space has attracted many authors and several results for
nonlinear mappings have been given in the literature [6], [10], [20]. Schweizer
and Sklar [26] provide a variety of examples of probabilistic metric spaces, all
of which are from probabilistic origin. Of course, all of which might be thought
to be examples of the fuzzy metric spaces. Inspired by the work of Kaleva and
Seikkala [15], Felbin [7] introduced and studied the fuzzy normed linear space.
It is as important as the concept of Menger probabilistic normed linear space
introduced by Serstnev [27] and moreover, each usual normed linear space and
each Menger probabilistic normed linear space can still be considered as its
special case. Xiao and Zhu [28] studied the linear topological structure of the
fuzzy normed linear space and obtained some basic properties. Many authors
proved results in fuzzy normed linear spaces including Bag and Samanta [3],
Xiao and Zhu [29] and Fang [6].

The contractor theory in Banach spaces established by M. Altman[1] plays
a prominent role in the study of existence and uniqueness of solutions for non-
linear operator equations. Inspired by the work of Altman, A.C. Lee and W.J.
Padgett [17, 18, 19] investigated random contractor theory as an improved ver-
sion of Altman’s work and studied the existence and uniqueness of solution for
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random operator equations with a random contractor. S.S. Chang [4] and W. J.
Zeng [8] introduced the concept of probabilistic contractor. S.S. Chang [4], S.S.
Chang, Y.C. Peng [30] and S.S. Chang et al. [5] studied the existence problem
of solutions of non linear operator equations with probabilistic contractor in
probabilistic metric spaces by using the concept of probabilistic contractor.

More recently, the theory of contractors in fuzzy normed spaces has been
advanced in [12, 2, 23, 25]. A lot of research has been developed in regard to
single-valued and set valued nonlinear operator equations in Menger probabilis-
tic normed spaces, see e.g. [13, 14, 23, 20, 21, 22]. Most of the considered ran-
dom normed spaces within the case of set-valued nonlinear operator equations
have been non-Archimedean Menger probabilistic normed spaces underneath
both the Lukasiewicz t-norm or a t-norm of H-type.

In this paper, we introduce the concept of more general fuzzy contractors
in fuzzy normed spaces and show the existence and uniqueness of solutions
for set-valued and single-valued nonlinear operator equations in fuzzy normed
spaces. Our results enlarge and improve the corresponding consequences of
Altman [1], Chang [4], Lee and Pedgett [17, 18, 19] and others.

The plan of this paper is as follows. After introducing (most of) our notation
and terminology in Section 2, we consider the existence problem of solutions for
the equations with fuzzy contractor in fuzzy normed linear spaces, in Section
3. Section 4 is devoted to introducing the concept of fuzzy contractor couple
in fuzzy normed spaces to study the existence and uniqueness of solutions of
system of nonlinear operator equations with a fuzzy contractor couple and to
discuss the existence problem of common fixed points for a pair of mappings in
a fuzzy normed space. In Section 5, we introduce the concept of a more general
fuzzy contractor in fuzzy normed spaces and show the existence and uniqueness
of solutions for set-valued and single-valued nonlinear operator equations in
fuzzy normed spaces.

2. Preliminaries

First we recall some of the basic concepts, which will be used in the sequel.

Definition 2.1. [16, 26] Let T : [0, 1]× [0, 1] → [0, 1]. Then T is said to be a
t-norm if and only if for all x, y, z ∈ [0, 1], we have

(T1) T (x, y) = T (y, x) (commutativity),

(T2) T (x, y) ≤ T (x, z), if y ≤ z (monotonicity),

(T3) T (x, T (y, z)) = T (T (x, y), z) (associativity),

(T4) T (x, 1) = x.

Definition 2.2. [26] A binary operation T : [0, 1]× [0, 1] → [0, 1] is said to be
a continuous t-norm if ([0, 1], T ) is a topological monoid with unit 1 such that
T (a, b) ≤ T (c, d) whenever a ≤ c, b ≤ d for all a, b, c, d ∈ [0, 1].
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Here we present some examples of t-norm:

T (a, b) = ab, (product)

T (a, b) = min{a, b}, (minimum)

T (a, b) = max{a+ b− 1, 0}, (Lukasiewicz)

T (a, b) =
ab

a+ b− ab
, (Hamacher)

Definition 2.3. [24] Let X be a linear space over a field K (where K is R or
C) and T be a continuous t-norm. A fuzzy set N in X× [0,∞) is called a fuzzy
norm on X if and only if for all x, y ∈ X, t ∈ R and c ∈ K.

(FN1) N(x, t) = 0 for all t ≤ 0;

(FN2) [N(x, t) = 1, for all t > 0] if and only if x = 0;

(FN3) N(cx, t) = N
(
x, t

|c|

)
;

(FN4) N(x+ y, t+ s) ≥ T (N(x, t), N(y, s)), for all t, s > 0;

(FN5) N(x, .) is left continuous and lim
t→∞

N(x, t) = 1.

The triple (X,N, T ) will be called fuzzy normed linear space (briefly, FNLS).

Lemma 2.4. [9] Let (X,N, T ) be a FNLS. Then N(x, .) is non-decreasing for
all x ∈ X.

Example 2.5. Let X be a linear space and ∥.∥ be a norm on X. Let

N(x, t) :=

{
1, if |x| < t;
0, if |x| ≥ t.

Then (X,N,min) is a FNLS. In particular, (C, N, T ) is a FNLS.

Definition 2.6. LetX be a linear space over a field K with a non-Archimedean
valuation |.|. A mapping ∥.∥ : X → [0,∞) is said to be a non-Archimedean
norm if it satisfies the following conditions:

(N1) ∥x∥ = 0 if and only if x = 0;

(N2) ∥cx∥ = |c| ∥x∥, c ∈ K and x ∈ X;

(N3) the strong triangle inequality: ∥x+ y∥ ≤ max{∥x∥ , ∥y∥} for all x, y ∈ X.

Then (X, ∥.∥) is called a non-Archimedean normed space. By a complete non-
Archimedean normed space, we mean one in which every Cauchy sequence is
convergent.

Definition 2.7. Let X be a linear space over a field K (where K is R or C)
and T be a continuous t-norm. A fuzzy set N in X × [0,∞) is called a fuzzy
norm on X if and only if for all x, y ∈ X, t ∈ R and c ∈ K.
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(FN1) N(x, t) = 0 for all t ≤ 0;

(FN2) [N(x, t) = 1, for all t > 0] if and only if x = 0;

(FN3) N(cx, t) = N
(
x, t

|c|

)
;

(FN4) N(x+ y,max{t, s}) ≥ T (N(x, t), N(y, s)), for all t, s > 0;

(FN5) N(x, .) is left continuous and lim
t→∞

N(x, t) = 1.

If N is a non-Archimedean fuzzy norm on X, then (X,N, T ) is called a non-
Archimedean fuzzy normed space (briefly, N.A FNLS).

Example 2.8. Let (X, ∥.∥) be a non-Archimedean normed space, T (a, b) = ab
for all a, b ∈ [0, 1]. For each k ∈ N and for all x ∈ X, consider

N(x, t) =


t

t+ k ∥x∥
, if t > 0;

0, if t ≤ 0.

Then (X,N, T ) is a N.A FNLS.

Definition 2.9. [24] Assume that (X,N, T ) is a fuzzy normed linear space
and {xn} is a sequence in X.

1. The sequence {xn} is said to be convergent if there exists x ∈ X such
that

lim
t→∞

N(xn − x, t) = 1, for all t > 0.

In this case x is called the limit of the sequence {xn} and we denote
lim
n→∞

xn = x or xn → x.

2. The sequence {xn} is called a Cauchy sequence if

lim
n→∞

N(xn+p − xn, t) = 1

for all t > 0 and all p ∈ N.

3. (X,N, T ) is said to be complete if every Cauchy sequence in X is con-
vergent to a point in X. A complete fuzzy normed linear space will be
called a fuzzy Banach space.

Definition 2.10. [26] Suppose that (X,N, T ) is a fuzzy normed linear space.

(a) A sequence {xn} inX is τ -convergent to x ∈ X if for any ϵ > 0, 0 < λ < 1,
there exists a positive integer k = k(ϵ, λ) such that

N(xn − x, ϵ) > 1− λ

whenever n ≥ k. In this case, we write xn
τ−→ x.



Fuzzy Contractor and Nonlinear 35

(b) A sequence {xn} in X is a τ -Cauchy sequence if for any ϵ > 0, 0 < λ < 1,
there exist a positive integer k = k(ϵ, λ) such that

N(xn − xm, ϵ) > 1− λ

whenever n,m ≥ k.

(c) (X,N, T ) is said to be τ -complete if every τ -Cauchy sequence in X is
τ -convergent to some point in X.

3. Fuzzy contractor and Nonlinear operator Equations in
fuzzy normed space

In this section, we consider the existence problem of solutions for the equa-
tions with fuzzy contractor in fuzzy normed linear spaces.

Definition 3.1. Let (X,N1, T ) and (Y,N2, T ) be two fuzzy normed spaces,
such that T satisfies the following condition:

(3.1) sup
t∈(0,1)

T (t, t) = 1.

Let τ1, τ2 be the topologies generated by the family of (ϵ, λ)-neighborhoods on
(X,N1, T ) and (Y,N2, T ), respectively. A mapping S : Dom(S) ⊂ X → Y

is said to be closed if for any sequence {xn} ⊂ Dom(S), whenever xn
τ1−→ x,

Sxn
τ2−→ y, we have x ∈ Dom(S) and Sx = y.

Definition 3.2. [11] Let T be a t-norm satisfying the condition (3.1). T is
said to be of H-type if the family of functions {Tm(t)}∞m=1 is equi-continuous
at t = 1, where

T 1(t) = T (t, t), Tm(t) = T (Tm−1(t), t), t ∈ [0, 1], m = 2, 3, · · · .

Example 3.3. (i) If there exists a strictly increasing sequence {bn}n∈N in [0, 1]
such that lim

n→∞
bn = 1 and T (bn, bn) = bn for all n ∈ N, then T is a t-norm of

H-type.
(ii) If T is continuous, then there exists a sequence {bn}n∈N as in (i).
The t-norm T = min is a trivial example of a t-norm of H-type, but there are
t-norms T of H-type with T ̸= min (see, e.g., [11]).

Definition 3.4. A t-norm T is said to have the fixed point property if every
contraction mapping on a complete fuzzy normed linear space (X,N, T ) has a
fixed point.

The following result is easy to prove:

Lemma 3.5. If for every contraction mapping S on a fuzzy normed linear space
(X,N, T ) and for each point x0 ∈ X, the sequence {xn} defined by xn = Snx0

is a τ -Cauchy sequence, then S has the fixed point property.
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Theorem 3.6. Let (X,N, T ) be a fuzzy normed linear space such that T is of
H-type. Then T has the fixed point property.

Proof. Let (X,N, T ) be a fuzzy normed linear space such that T is of H-type
and S : X → X be a mapping satisfying the following:

N(Sx− Sy, kt) ≥ N(x− y, t), x, y ∈ X, t ≥ 0,

where k ∈ (0, 1) is a constant. (For the sake of convenience, we only consider
k ∈ (0, 1/2). If k ∈ (1/2, 1), we can prove it similarly). Let x0 ∈ X be any
given point. Then for any positive integer m and t ∈ R+, we have

N(x0 − Sm+1x0, 2t) ≥ T (N(x0 − Sx0, t), N(Sx0 − Sm+1x0, t))

≥ T (N(x0 − Sx0, t), N(x0 − Smx0, t))

≥ · · ·
≥ Tm(N(x0 − Sx0, t)).

Hence for any positive integers n,m, we have

N(Snx0 − Sn+mx0, 2t) ≥ Tm(N(x0 − Sx0, k
−nt).

Since T is of H-type, it follows that

lim
n→∞

N(Snx0 − Sn+mx0, 2t) = 1, t > 0,

uniformly in m. This implies that {Snx0} is a Cauchy sequence in X. There-
fore, the conclusion follows from Lemma 3.5 immediately. ■

Definition 3.7. [26] A function ϕ : [0,∞) → [0,∞) is said to satisfy the
condition (Φ) if it is strictly increasing, ϕ(0) = 0 and limn→∞ ϕn(t) = ∞ for
all t > 0.

Remark 3.8. It is easy to see that if ϕ satisfies the condition (Φ), then ϕ(t) > t
for all t > 0.

Definition 3.9. Let (X,N1, T ) and (Y,N2, T ) be two fuzzy normed spaces,
L(Y,X) the set of all linear operators from Y to X, Θ : X → L(Y,X) and
S : Dom(S) ⊂ X → Y be two mappings such that Θ(x)(y) ⊆ Dom(S). Θ
is called a fuzzy contractor of S if there exists a function ϕ : [0,∞) → [0,∞)
satisfying the condition (Φ) such that

(3.2) N2(S(x+Θ(x)y)−S(x)−y, t) ≥ N1(y, ϕ(t)), t ≥ 0, x ∈ Dom(S), y ∈ Y.

Theorem 3.10. Suppose that (X,N1, T ) is a τ1-complete N.A fuzzy normed
space, (Y,N2, T ) is a τ2-complete fuzzy normed space and T is a t-norm of
H-type. Assume that S : Dom(S) ⊂ X → Y is a closed operator and Θ : X →
L(Y,X). If the following conditions are satisfied:

(i) For all x ∈ Dom(S) and y ∈ Y ,

(3.3) x+Θ(x)y ∈ Dom(S),
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(ii) Θ is the fuzzy contractor of S and ϕ is a function defined by (3.2),

(iii) There exists a constant M > 0 such that for all x ∈ Dom(S) and y ∈ Y ,

(3.4) N1(Θ(x)y, t) ≥ N2

(
y,

t

M

)
, t ≥ 0,

then, for any given y0 ∈ Y , the nonlinear operator equation

(3.5) S(x) = y0

has a solution in Dom(S), and, for any given x0 ∈ Dom(S), the sequence

(3.6) xn+1 = xn −Θ(xn)(Sxn − y0)

τ1-converges to the solution of (3.5). In addition, if there exists some x ∈ X
such that Θ(x) : Y → X is a surjection, then for given y0 ∈ Y , (3.5) has a
unique solution in Dom(S).

Proof. Without loss of generality, we can assume that y0 = 0. If y0 ̸= 0, let
G(x) = S(x)− y0, x ∈ Dom(S). Then Dom(S) = Dom(G) and G satisfies all
the conditions in Theorem 3.10. Therefore we can turn to discuss G(x) = 0.
By the condition (i) and (3.6), for each n = 0, 1, · · · , we have xn ∈ Dom(S).
From condition (ii) and (3.2), it follows that

N2(Sxn+1, t) = N2(S(xn −Θ(xn)(Sxn))− (Sxn)− (−Sxn), t)

≥ N2(Sxn, ϕ(t)) ≥ · · ·(3.7)

≥ N2(Sx0, ϕ
n+1(t)), t ≥ 0.

By the condition (iii) and (3.7), we have

N1(xn − xn+1, t) = N1(Θ(xn)S(xn), t)

≥ N2

(
S(xn),

t

M

)
≥ N2

(
Sx0, ϕ

n

(
t

M

))
.

Since (X,N1, T ) is a fuzzy normed space, for any m,n with m > n, we have

N1(xn − xm, t)

≥ T (N1(xn − xn+1, t), N1(xn+1 − xm, t))

≥ T (N1(xn − xn+1, t), T (N1(xn+1 − xn+2, t),

T (· · · , T︸ ︷︷ ︸
m−n−3

(N1(xm−2 − xm−1, t), N1(xm−1 − xm, t)) · · · ))

≥ T

(
N2

(
Sx0, ϕ

n

(
t

M

)))
, T

(
N2

(
Sx0, ϕ

n+1

(
t

M

)))
,

T (· · · , T︸ ︷︷ ︸
m−n−3

(
N2

(
Sx0, ϕ

m−2

(
t

M

))
, N2

(
Sx0, ϕ

m−1

(
t

M

))
· · ·

)
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for all t ≥ 0. Since ϕ satisfies the condition (Φ), ϕ(t) > t for all t > 0. It follows
from the above inequality that

N1(xn − xm, t) ≥ T

(
N2

(
Sx0, ϕ

n

(
t

M

))
, N2

(
Sx0, ϕ

n

(
t

M

))
,

T (· · · , T︸ ︷︷ ︸
m−n−3

(
N2

(
Sx0, ϕ

n

(
t

M

))
, N2

(
Sx0, ϕ

n

(
t

M

))
· · ·

)
)

= Tm−n−1

(
N2

(
Sx0, ϕ

n

(
t

M

)))
, t ≥ 0.

Since T is of H-type and ϕn
(

t
M

)
→ ∞ (n → ∞), for any given λ ∈ (0, 1) and

t > 0, there exists positive integer n(t, λ), as n ≥ n(t, λ), m > n, we have

(3.8) N1(xn − xm, t) ≥ Tm−n−1

(
N2

(
Sx0, ϕ

n

(
t

M

)))
> 1− λ.

This implies that {xn} is a Cauchy sequence in X. Let xn
τ1−→ z. By (3.7), we

have
lim
n→∞

N2(Sxn, t) = 1, t > 0,

i.e., Sxn
τ2−→ θ. By the closedness of S, z ∈ Dom(S) and Sz = 0. That is to

say, z is a solution of (3.5), and the iterative sequence (3.6) τ1-converges to z.
Next we prove that if Θ(w) : Y → X is surjective, then z is the unique

solution of equation (3.5) in Dom(S). In fact, if z∗ ∈ Dom(S) is also a solution
of (3.5). By the surjective property, there exists a point y ∈ Y such that
z∗ − z = Θ(w)y. Hence we have

N2(y, t) = N2(S(z
∗)− S(z)− y, t)

= N2(S(z +Θ(w)y)− S(z)− y, t)

≥ N2(y, ϕ(t)) ≥ · · ·
≥ N2(y, ϕ

m(t)), m = 1, 2, · · · .

Let m → ∞, we have N2(y, t) = 1 for all t > 0, i.e., y = 0. Hence z = z∗. This
completes the proof. ■

From Theorem 3.10, we have the following result:

Corollary 3.11. Let (X,N1, T ), (Y,N2, T ), T , S be the same as in Theorem
3.10. Let F : Y → X be a linear operator satisfying the following conditions:

(i) x+ Fx ∈ Dom(S) for all x ∈ Dom(S) and y ∈ Y ,

(ii) N1(S(x+ Fx)− Sx− y, t) ≥ N2(y, ϕ(t)) for all x ∈ Dom(S) and y ∈ Y ,
where ϕ satisfies the condition (Φ),

(iii) there exists a constant M > 0 such that for all x ∈ Dom(S) and y ∈ Y

N1(Fy, t) ≥ N2

(
y,

t

M

)
, t ≥ 0.
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Then the nonlinear equation (3.5) has a solution in Dom(S), and for any given
x0 ∈ Dom(S), the iterative sequence

xn+1 = xn − F (Sxn − y0)

τ1-converges to a solution of (3.5). In addition, if F is surjective, then for each
y0 ∈ Y , the equation (3.5) has a unique solution in Dom(S).

As an application of Theorem 3.10 and Corollary 3.11, we generalize con-
traction condition of mappings in fuzzy normed linear space and get a fixed
point theorem.

Theorem 3.12. Let (X,N, T ) be a τ -complete N.A fuzzy normed space and T
be a t-norm of H-type. Let F : X → X satisfy the following condition:

N(Fx− Fy, t) ≥ N(x− y, ϕ(t)), t ≥ 0.

Then F has a unique fixed point, and for any x0 ∈ X, the iterative sequence
{xn}∞n=1 = {Fxn−1}∞n=1 τ -converges to this fixed point in X.

Proof. Letting Sx = x − Fx, x ∈ X, Θ(x) = I, x ∈ X, I is the identity
mapping, it is easy to see that S satisfies all conditions in Theorem 3.10. ■

Theorem 3.13. Let (X,N1, T ) be a τ1-complete fuzzy normed space and
(Y,N2, T ) be a τ2-complete fuzzy normed space. Let T be a t-norm of H-type,
S : Dom(S) ⊂ X → Y be a closed operator and Θ : X → L(Y,X) satisfy the
following conditions:

(i) for all y ∈ Y and x ∈ Dom(S), x+Θ(x)y ∈ Dom(S),

(ii) there exists q ∈ (0, 1) such that for all x ∈ Dom(S) and y ∈ Y ,

N2(S(x+Θ(x)y)− Sx− y, t) ≥ N2

(
y,

t

q

)
, t ≥ 0,

(iii) there exists a constant M > 0 such that

N1(Θ(x)y, t) ≥ N2

(
y,

t

M

)
, x ∈ Dom(S), y ∈ Y, t ≥ 0.

Then the conclusions of Theorem 3.10 still hold.

Theorem 3.14. Let (X,N, T ) be a τ -complete fuzzy normed space and T be
a t-norm of H-type. Let F : X → X be a mapping satisfying that there exists
q ∈ (0, 1) such that

N(Fx− Fy, t) ≥ N

(
x− y,

t

q

)
, t ≥ 0.

Then F has a unique fixed point z ∈ X, and for any x0 ∈ X, the iterative
sequence {xn}∞n=1 = {Fxn−1}∞n=1 τ -converges to z.
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4. Fuzzy Contractor Couple and Nonlinear Operator
Equations in fuzzy normed space

The aim of this section is to introduce the concept of fuzzy contractor
couple in a non-Archimedean fuzzy normed space to study the existence and
uniqueness of solutions of a system of nonlinear operator equations with a fuzzy
contractor couple and to discuss the existence problem of common fixed points
for a pair of mappings in a non-Archimedean fuzzy normed space.

Definition 4.1. A mapping Θ : Y → X is said to be odd if

Θ(−x) = −Θ(x), y ∈ Y.

We denote by O(Y,X) the set of all odd mappings from Y to X.

Definition 4.2. Let S : D ⊂ X → 2Y be a set-valued mapping. A single-
valued mapping s : D ⊂ X → Y is called the selection mapping of S if
s(x) ∈ S(x) for all x ∈ D.

Definition 4.3. Let (X,N1, T ) and (Y,N2, T ) be two N.A fuzzy normed spaces
and Θi : X → O(Y,X), i = 1, 2. Let S,R : D ⊂ X → 2Y and s, r : D → Y
be the selection mappings of S and R, respectively. (Θ1,Θ2) is called a fuzzy
contractor couple of S and R if there exists a function ϕ : [0,∞) → [0,∞)
satisfying the condition (Φ) and such that for any t ≥ 0, x ∈ D and y ∈ Y the
following hold:

N2(s(x+Θ1(x)y)− r(x)− y, t)

≥ min{N2(y, ϕ(t)), N2(s(x+Θ1(x)y), ϕ(t))

N2(r(x), ϕ(t)), N2(s(x+Θ1(x)y)− r(x), ϕ(t)),

N2(r(x) + y, ϕ(t)), N2(s(x+Θ1(x)y)− y, ϕ(t))},
N2(r(x+Θ2(x)y)− s(x)− y, t)(4.1)

≥ min{N2(y, ϕ(t)), N2(r(x+Θ2(x)y), ϕ(t))

N2(s(x), ϕ(t)), N2(r(x+Θ2(x)y)− s(x), ϕ(t)),

N2(s(x) + y, ϕ(t)), N2(r(x+Θ2(x)y)− y, ϕ(t))}.

Definition 4.4. Let S,R : D ⊂ X → 2Y be two given set-valued mappings.
For given y0 ∈ Y , if there exists a z ∈ D such that

(4.2) y0 ∈ S(z) and y0 ∈ R(z),

then z is called a solution of the system of set-valued mapping equations (4.2).

Theorem 4.5. Let (X,N1, T ) and (Y,N2, T ) be τ -complete N.A fuzzy normed
spaces with T = min. Let S,R : D ⊂ X → 2Y and let s and r be τ -closed
selection mappings of S and R, respectively. If Θi : X → O(Y,X) (i = 1, 2)
and the following conditions are satisfied:

(i) x+Θi(x)y ∈ D for all x ∈ X and y ∈ Y,
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(ii) (Θ1,Θ2) is the fuzzy contractor couple of S and R,

(iii) there exists a nonnegative strictly increasing function g(t) with g(0) = 0
such that for any x ∈ D and y ∈ Y , the following holds:

(4.3) N1(Θi(x)y, t) ≥ N2(y, g(t)), t ≥ 0.

Then for given y0 ∈ Y , the following system of nonlinear set-valued map-
ping equations

(4.4) y0 ∈ S(x) and y0 ∈ R(x)

has a solution in D and for any given x0 ∈ D, the iterative sequence

x2n+1 = x2n −Θ1(x2n)(r(x2n)− y0)

x2n+2 = x2n+1 −Θ2(x2n+1)(s(x2n+1)− y0)(4.5)

τ -converges to a solution of (4.4).

Proof. Without loss of generality, we can assume that y0 = 0. In fact, if
y0 ̸= 0, letting S1(x) = {u− y0 : u ∈ S(x)}, R1(x) = {u− y0 : u ∈ R(x)}, then
s1(x) = s(x) − y0, r1(x) = r(x) − y0, Dom(S1) = Dom(R1) = D and S1, R1

satisfy all the conditions of Theorem 4.5. Therefore we can turn to discuss the
following equations:

0 ∈ S1(x) and 0 ∈ R1(x).

It follows from the condition (i) and (4.5) that for each n = 0, 1, · · · , xn ∈ D
and the following holds:

N2(s(x2n+1), t)

= N2(s(x2n +Θ1(x2n)(−r(x2n)))− r(x2n)− (−r(x2n)), t)

≥ min{N2(r(x2n), ϕ(t)), N2(r(x2n+1), ϕ(t)), N2(r(x2n), ϕ(t)),

N2(s(x2n+1)− r(x2n), ϕ(t)), N2(r(x2n)− r(x2n), ϕ(t)), N2(s(x2n+1)

+r(x2n), ϕ(t))}
= min{N2(r(x2n), ϕ(t)), N2(s(x2n+1), ϕ(t)), N2(s(x2n+1 − r(x2n), ϕ(t))),

N2(s(x2n+1) + r(x2n), ϕ(t))}
≥ min{N2(r(x2n), ϕ(t)), N2(s(x2n+1), ϕ(t)), N2(s(x2n+1),

ϕ(t)), N2(r(x2n), ϕ(t))}
= N2(r(x2n), ϕ(t)).

On the other hand, we have

N2(r(x2n), ϕ(t))

= N2(r(x2n−1 +Θ2(x2n−1)(−s(x2n−1)))− s(x2n−1)− (−r(x2n−1)), ϕ(t))

≥ min{N2(s(x2n−1), ϕ
2(t)), N2(r(x2n), ϕ

2(t)), N2(s(x2n−1), ϕ
2(t)),

N2(r(x2n)− s(x2n−1), ϕ
2(t)), N2(s(x2n−1)− s(x2n−1), ϕ

2(t)), N2(r(x2n)

−s(x2n−1), ϕ
2(t))}

≥ min{N2(s(x2n−1), ϕ
2(t)), N2(r(x2n), ϕ

2(t))}
= N2(s(x2n−1), ϕ

2(t)).
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By induction, we can prove that

(4.6) N2(s(x2n+1), t) ≥ N2(s(x1), ϕ
2n+1(t)), t ≥ 0, n = 0, 1, 2, · · · .

In the same way, we can prove that

(4.7) N2(r(x2n), t) ≥ N2(r(x0), ϕ
2n(t)), t ≥ 0, n = 1, 2, · · · .

From the condition (ii) and (4.6), (4.7), when n is odd, we have

N1(xn+1 − xn, t) = N1(Θ2(xn)s(xn), t)

≥ N2(s(xn), g(t)) ≥ N2(s(x1), ϕ
n−1(g(t))), t ≥ 0.

When n is even, we have

N1(xn+1 − xn, t) = N1(Θ1(xn)r(xn), t)

≥ N2(r(xn), g(t)) ≥ N2(r(x0), ϕ
n(g(t))), t ≥ 0.

Therefore, for any positive integers m,n with m > n (without loss of general-
ity), we can assume that n is odd and m is even. In the other cases we can
prove it similarly, we have

N1(xm − xn, t)

≥ min{N1(xm − xm−1, t), N1(xm−1 − xn, t)}
≥ min{N1(xm − xm−1, t), N1(xm−1 − xm−2, t), · · · , N1(xn+1 − xn, t)}
≥ min{N2(s(x1), ϕ

m−2(t)), N2(r(x0), ϕ
m−2(g(t))), · · · ,

N2(r(x0), ϕ
n+1(g(t))), N2(s(x1), ϕ

n−1(g(t)))}, t ≥ 0.

Since ϕ(t) satisfies the condition (Φ), ϕ(t) > t for all t > 0 and so

N1(xm − xn, t) ≥ min{N2(r(x0), ϕ
n+1(g(t))), N2(s(x1), ϕ

n−1(g(t)))}, t ≥ 0.

Again by the condition (Φ), when n → ∞, we have ϕn(g(t)) → ∞ for all t > 0.
Hence we have

lim
n,m→∞

N1(xm − xn, t) = 1, t > 0,

which implies that {xn} is a τ -Cauchy sequence in X. By the completeness of

X, let xn
τ1−→ z. Letting n → ∞ in (4.6) and (4.7) and using the condition (Φ),

we have

lim
n→∞

N2(s(x2n+1), t) = 1 = lim
n→∞

N2(r(x2n), t), t > 0.

This means that s(x2n+1)
τ2−→ 0 and r(x2n)

τ2−→ 0. By the τ -closedness of s and
r, we know that z ∈ D and s(z) = 0 = r(z). Thus we have

0 ∈ S(z), 0 ∈ R(z),

which show that z is a solution of (4.4) for y0 = 0, and the iterative sequence
(4.5) (in which y0 = 0) is τ -convergent to z. This completes the proof. ■
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Definition 4.6. Let (X,N1, T ) and (Y,N2, T ) be two N.A fuzzy normed spaces.
Let Θi : X → O(Y,X) and S,R : D ⊂ X → Y be two single-valued mappings.
(Θ1,Θ2) is called a fuzzy contractor couple of S and R if there exists a function
ϕ : [0,∞) → [0,∞) satisfying the condition (Φ) such that for any x ∈ D and
y ∈ Y , the following hold:

N2(S(x+Θ1(x)y)−R(x)− y, t)

≥ min{N2(y, ϕ(t)), N2(S(x+Θ1(x)y), ϕ(t))

N2(R(x), ϕ(t)), N2(S(x+Θ1(x)y)−R(x), ϕ(t)),

N2(R(x) + y, ϕ(t)), N2(S(x+Θ1(x)y)− y, ϕ(t))},
N2(R(x+Θ2(x)y)− S(x)− y, t)(4.8)

≥ min{N2(y, ϕ(t)), N2(R(x+Θ2(x)y), ϕ(t))

N2(S(x), ϕ(t)), N2(R(x+Θ2(x)y)− S(x), ϕ(t)),

N2(S(x) + y, ϕ(t)), N2(R(x+Θ2(x)y)− y, ϕ(t))}.

Theorem 4.7. Let (X,N1, T ) and (Y,N2, T ) be τ -complete N.A fuzzy normed
spaces and T = min. Let S,R : D ⊂ X → Y be two τ -closed single-valued
operators and Θi : X → O(Y,X) (i = 1, 2). If the following conditions are
satisfied:

(i) x+Θi(x)y ∈ D for all x ∈ D and y ∈ Y ,

(ii) (Θ1,Θ2) is the fuzzy contractor couple of S and R,

(iii) there exists a nonnegative strictly increasing function g(t) with g(0) = 0
such that for any x ∈ D and y ∈ Y , the following holds:

(4.9) N1(Θi(x)y, t) ≥ N2(y, g(t)), t ≥ 0.

Then for given y0 ∈ Y , the following system of nonlinear operator equations

(4.10) Sx = y0 and Rx = y0

has a solution in D, and for any given x0 ∈ D, the iterative sequence

x2n+1 = x2n −Θ1(x2n)(R(x2n)− y0)

x2n+2 = x2n+1 −Θ2(x2n+1)(S(x2n+1)− y0)(4.11)

τ1-converges to a solution of (4.10).
Especially, if there exists some w ∈ X such that either Θ1(w) or Θ2(w) is a

surjection, then for given y0 ∈ X, the system (4.10) of equations has a unique
solution in D.

Proof. As a special case of Theorem 4.5, it is easy to see that the the preceding
conclusion of Theorem 4.7 is true.

Now we prove the second conclusion. Suppose that there exists some w ∈ D
such that either Θ1 or Θ2 is surjection (without loss of generality we assume
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that Θ1(w) is surjective) and there exist two solution z, z∗ of (4.10). By the
surjective property of Θ1(w), there exists an y ∈ Y such that

z∗ − z = Θ1(w)y.

Hence we have

N2(y, t) = N2(Rz∗ − Sz − y, t) = N2(R(z +Θ(w)y)− Sz − y, t)

≥ min{N2(Rz∗, ϕ(t)), N2(Sz, ϕ(t)), N2(y, ϕ(t)),

N2(Rz∗ − Sz, ϕ(t)), N2(Sz + y, ϕ(t)), N2(Rz∗ − y, ϕ(t))}
= N2(y, ϕ(t)) ≥ · · ·
≥ N2(y, ϕ

n(t)), n = 1, 2, · · · , t ≥ 0.

Letting n → ∞, we have N2(y, t) = 1 for all t > 0, which implies that y = 0,
i.e., z = z∗. This completes the proof. ■

Now, we show the existence of a common fixed points for a pair of mappings
in fuzzy normed spaces.

Theorem 4.8. Let (X,N, T ) be a τ -complete N.A fuzzy normed space with
T = min . Suppose that F,G : X → X satisfy the following condition:

N(Gx− Fy, t)

≥ min{N(x− y, ϕ(t)), N(x−Gx, ϕ(t)), N(y − Fy, ϕ(t)),

N(x− Fy, ϕ(t)), N(y −Gx, ϕ(t)), N((x−Gx)− (y − Fy), ϕ(t))(4.12)

for all t ≥ 0, where ϕ : [0,∞) → [0,∞) satisfies the condition (Φ). Then F and
G have a unique common fixed point z in X and for any x0 ∈ X the iterative
sequence

(4.13) x2n+1 = F (x2n) and x2n+2 = G(x2n+1)

τ -converges to the point z.

Proof. Letting S(x) = x− F (x), R(x) = x−G(x) for all x ∈ X, and Θi = IX ,
x ∈ X, i = 1, 2, we prove that S,R,Θ1,Θ2 satisfy all the conditions of Theorem
4.7.

In fact, it is obvious that the conditions (i) and (ii) in Theorem 4.7 are
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satisfied. Besides, for any x, y ∈ X and any t ≥ 0, we have

N(S(x+Θ1(x)y)−R(x)− y, t)

= N(S(x+ y)−R(x)− y, t)

= N(x+ y − F (x+ y)− x+Gx− y, t)

= N(Gx− F (x+ y), t)

≥ min{N(x− (x+ y), ϕ(t)), N(x−Gx, ϕ(t)), N((x+ y)

−F (x+ y), ϕ(t)),

N(x− F (x+ y), ϕ(t)), N(x+ y −Gx, ϕ(t)),

N(x−Gx− ((x+ y)− F (x+ y)), ϕ(t))}
= min{N(y, ϕ(t)), N(R(x), ϕ(t)), N(S(x+ y), ϕ(t)),

N(S(x+ y)− y, ϕ(t)),

N(R(x)− y, ϕ(t)), N(S(x+ y)−R(x), ϕ(t))}

N(R(x+Θ2(x)y)− S(x)− y, t)

= N((x+ y)−G(x+ y)− x+ Fx− y, t)

= N(G(x+ y)− Fx, t)

≥ min{N(x+ y − x, ϕ(t)), N((x+ y)−G(x+ y), ϕ(t)),

N(x− Fx, ϕ(t)),

N(x+ y − Fx, ϕ(t)), N(x−G(x+ y), ϕ(t)),

N(x+ y −G(x+ y)− (x− Fx), ϕ(t))}
= min{N(y, ϕ(t)), N(R(x+ y), ϕ(t)), N(S(x), ϕ(t)),

N(S(x) + y, ϕ(t)),

N(R(x+ y)− y, ϕ(t)), N(R(x+ y)− S(x), ϕ(t))}.

This implies that the condition (ii) in Theorem 4.7 is satisfied.
Next, since Θ1 = Θ2 = IX is surjective, by Theorem 4.7, the iterative

sequence

x2n+1 = x2n −Θ1(x2n)(Rx2n) = Fx2n,

x2n+2 = x2n+1 −Θ2(x2n+1)(Sx2n+1) = Gx2n+1

τ -converges to the unique solution z ∈ X of the system of equations

S(x) = 0 and R(x) = 0.

Hence we have z = Fz, z = Gz, which imply that z is the unique fixed point
of F and G in X. This completes the proof. ■

5. Existence and uniqueness problems of solutions for set-
valued and single-valued nonlinear operator equations
in fuzzy normed space

In this section, we introduce the concept of more general fuzzy contractors
in fuzzy normed spaces and show the existence and uniqueness of solutions
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for set-valued and single-valued nonlinear operator equations in fuzzy normed
spaces. The results in this section extend and improve the corresponding results
of Altman [1], Chang et al. [5], [30], Lee and Pedgett [17].

Let (X,N, T ) be a fuzzy normed space with a t-norm satisfying the condition
(3.1) and ΩX be a family of all non-empty τ -closed fuzzy bounded subsets of
X. For any given A,B ∈ ΩX , define the fuzzy functions N(A,B, .) and N(A, .)
by

N(A,B, t) = sup
s<t

T{ inf
a∈A

sup
b∈B

N(a− b, s), inf
b∈B

sup
a∈A

N(a− b, s)}

and

N(A, t) = sup
s<t

sup
a∈A

N(a, s), s, t ∈ R,

respectively.
Then, from the definition of N(A,B, .) and N(A, .), we have the following:

Lemma 5.1. Let (X,N, T ) be a fuzzy normed space (resp., a N.A fuzzy normed
space) with a t-norm satisfying the condition (3.1) and A ∈ ΩX . Then we have
the following:

1. N(A, 0) = 0,

2. N(A, t) = 1 for all t > 0 if and only if θ ∈ A,

3. N(cA, t) = N
(
A, t

|c|

)
for all c ∈ R and c ̸= 0,

4. for any A,B ∈ ΩX and θ ∈ B, N(A, t) ≥ N(A,B, t) for all t ∈ R,

5. If t-norm T is continuous, then we have

N(A+ x, t1 + t2) ≥ T (N(x, t1), N(A, t2))

for all t1, t2 ∈ R+ and x ∈ X.

Definition 5.2. Suppose that (X,N1, T ) and (Y,N2, T ) are two fuzzy normed
spaces with the t-norm T satisfying the condition (3.1). Let τ1 and τ2 be
the topologies induced by the family of (ϵ, λ)-neighborhoods on (X,N1, T ) and
(Y,N2, T ), respectively. A set-valued mapping S : Dom(S) ⊂ X → ΩY (resp.
a single-valued mapping S : Dom(S) ⊂ X → Y ) is said to be τ -closed if for

any xn ∈ Dom(S) and yn ∈ S(xn) (resp., yn = S(xn)), whenever xn
τ1−→ x and

yn
τ2−→ y, we have x ∈ Dom(S) and y ∈ S(x) (resp., y = S(x)).

Assume that (X,N1, T ) is a τ1-complete N.A fuzzy normed space, (Y,N2, T )
is a τ2-complete fuzzy metric space, T is a t-norm of H-type, and ΩY is a
nonempty family of τ2-closed fuzzy bounded subsets of Y . Let S : Dom(S) ⊂
X → ΩY (resp., S : Dom(S) ⊂ X → Y ) be a nonlinear set-valued (resp., single-
valued) mapping and Θ : X → L(Y,X), where L(Y,X) denotes the space of
linear operators from Y into X. Let ϕ : [0,∞) → [0,∞) satisfy the condition
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(Φ) and u ∈ Y be a given point. Then Θ is called a fuzzy contractor of S with
respect to u if for all x ∈ Dom(S) and y ∈ {y ∈ Y : x+Θ(x)y ∈ Dom(S)},

N2(S(x+Θ(x)y), S(x) + y, t) ≥ min{N2(y, ϕ(t)), N2(S(x)− y, ϕ(t)),

N2(S(x+Θ(x))− u, ϕ(t))}, t ≥ 0.(5.1)

(resp., N2(S(x+Θ(x)y)− S(x)− y, t) ≥ min{N2(y, ϕ(t)), N2(S(x)− u, ϕ(t)),

N2(S(x+Θ(x)y)− u, ϕ(t))}).(5.2)

Remark 5.3. It follows from (5) of Lemma 5.1 that if T is a continuous t-norm
with T (t, t) ≥ t for all t ∈ [0, 1], then (5.1) is equal to the following:

N2(S(x+Θ(x)y), S(x) + y, t)

≥ min{N2(y, ϕ(t)), N2(S(x)− u, ϕ(t)),

N2(S(x+Θ(x)y)− u, ϕ(t)), N2(S(x) + y − u, 2ϕ(t)),

N2(S(x+Θ(x)y)− y − u, 2ϕ(t))}, t ≥ 0.

If (Y,N2, T ) is also a N.A fuzzy normed space, then (5.1) is equal to the fol-
lowing:

N2(S(x+Θ(x)y), S(x) + y, t)

≥ min{N2(y, ϕ(t)), N2(S(x)− u, ϕ(t)),

N2(S(x+Θ(x)y)− u, ϕ(t)), N2(S(x) + y − u, ϕ(t)),

N2(S(x+Θ(x)y)− y − u, ϕ(t))}, t ≥ 0.

For the single-valued mapping S, we have similar inequalities which are equal
to (5.2).

Now we are ready to show the existence and uniqueness of solutions for the
set-valued nonlinear equation

(5.3) u ∈ S(x).

Theorem 5.4. Let (X,N1, T ) be a τ1-complete N.A. fuzzy normed space,
(Y,N2, T ) be a τ2-complete fuzzy metric space, and T be a t-norm of H-type.
Let S : Dom(S) ⊂ X → ΩY be a τ -closed set-valued mapping. Suppose that
Θ : X → L(Y,X) satisfies the following conditions:

1. x+Θ(x)y ∈ Dom(S) for all x ∈ Dom(S) and y ∈ Y ,

2. Θ is a fuzzy contractor of S with respect to u, i.e., Θ satisfies the condition
(5.1),

3. there exists a constant M > 0 such that, for any x ∈ Dom(S) and y ∈ Y ,

N1(Θ(x)y, t) ≥ N2(y, t/M), t ≥ 0,
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4. for any A,B ∈ ΩY and a ∈ A, there exists a point b ∈ B such that

N1(a− b, t) ≥ N1(A−B, t), t ≥ 0.

Then the nonlinear set-valued operator equation (5.3) has a solution w in
Dom(S). Further, the sequence {xn} defined by

xn+1 = xn −Θ(xn)yn

τ1-converges to the solution w in the topology τ1.

Proof. (i) The case of u = θ: In this case, (5.1) can be written as follows:

N1(S(x+Θ(x)y), S(x) + y, t) ≥ min{N1(y, ϕ(t)), N1(S(x), ϕ(t)),

N1(S(x+Θ(x)y, ϕ(t)), t ≥ 0.(5.4)

For any given x0 ∈ Dom(S), take y0 ∈ S(x0) and let x1 = x0 − Θ(x0)y0. By
the assumption (1), we have x1 ∈ Dom(S). Replacing x and y by x0 and −y0
in (5.4), respectively, from (4) of Lemma 5.1 and θ ∈ S(x0)− y0, we have

N1(S(x1), t) ≥ N1(S(x1)− S(x0) + y0, t)

= N1(S(x0 −Θ(x0)y0 − S(x0) + y0, t)

≥ min{N1(y0, ϕ(t)), N1(S(x0), ϕ(t)), N1(S(x1), ϕ(t))}
= min{N1(y0, ϕ(t)), N1(S(x1), ϕ(t))}, t ≥ 0.

Hence

(5.5) N1(y0, ϕ(t)) ≤ N1(S(x1), ϕ(t)), t ≥ 0.

By the assumption (4), for θ ∈ S(x0)− y0, there exists a point y1 ∈ S(x1) such
that

N1(y1, t) ≥ N1(S(x1)− S(x0) + y0, t), t ≥ 0.

Hence, by (5.4) and (5.5), we have N1(y1, t) ≥ N1(y0, ϕ(t)) for all t ≥ 0.
Let x2 = x1 − Θ(x1)y1. By the same method as stated above, there exists

a point y2 ∈ S(x2) such that

N1(y2, t) ≥ N1(y1, ϕ(t)) ≥ N1(y0, ϕ
2(t)), t ≥ 0.

Inductively, we obtain two sequences {xn} in Dom(Θ) and {yn} in Y such that

xn+1 = xn −Θ(xn)yn(5.6)

yn ∈ S(xn)(5.7)

N1(yn, t) ≥ N1(y0, ϕ
n(t)), t ≥ 0.(5.8)

By the assumption (3), (5.6) and (5.8), we have

N1(xn − xn+1, t) = N1(Θ(xn)yn, t) ≥ N2(yn, t/M) ≥ · · · ≥ N2(y0, ϕ
n(t/M))
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for all t ≥ 0. Hence, for any integers m,n (m > n),

N1(xn − xm, t) ≥ T (N1(xn − xn+1, t), N1(xn+1 − xm, t)

≥ T (N1(xn − xn+1, t), T (N1(xn+1 − xn+2, t),

T (· · · ,︸ ︷︷ ︸
m−n−3

T (N1(xm−2 − xm−1, t), N1(xm−1 − xm, t)) · · · ))

≥ T (N2(y0, ϕ
n(t/M)), T (N2(y0, ϕ

n+1(t/M)),

T (· · ·︸ ︷︷ ︸
m−n−3

, T (N2(y0, ϕ
m−2(t/M)), N2(y0, ϕ

m−1(t/M)) · · · )).

for all t ≥ 0. Since ϕ satisfies the condition (Φ), ϕ(t) > t and so, we have

N1(xn − xm, t) ≥ T (N2(y0, ϕ
n(t/M)), T (N2(y0, ϕ

n(t/M)),

T (· · ·︸ ︷︷ ︸
m−n−3

, T (N2(y0, ϕ
n(t/M)), N2(y0, ϕ

n(t/M)) · · · ))

= Tm−n−1(N2(y0, ϕ
n(t/M))), t ≥ 0.

Since T is of H-type, ϕn(t/M) → ∞ for all t > 0 as n → ∞ and so, for all
λ ∈ (0, 1) and t > 0, there exists an integer n(t, λ), n ≥ n(t, λ), m > n, such
that

N1(xn − xm, t) ≥ Tm−n−1(N2(y0, ϕ
n(t/M)) > 1− λ.

This means that the sequence {xn} is a τ -Cauchy sequence in X. Since

(X,N1, T ) is a τ1-complete fuzzy normed space, let xn
τ1−→ w. Since ϕ sat-

isfies the condition (Φ), from (5.8), we have

lim
n→∞

N2(yn, t) = 1, t > 0,

i.e., yn
τ2−→ θ. Therefore, from the τ -closedness of S and (5.7), we have w ∈

Dom(S) and θ ∈ S(w), i.e., w is a solution of (5.2).
(ii) the case of u ̸= θ: Let R(x) = S(x)− u for x ∈ Dom(S). Then Dom(S) =
Dom(R) and S satisfying (5.1) is equal to R satisfying (5.4). Therefore, by
using the case of u = θ, we can show the existence of solution for the nonlinear
set-valued operator equation θ ∈ R(x). This completes the proof.

■

For the nonlinear single-valued operator equation

(5.9) u = S(x),

we also have the following:

Theorem 5.5. Let (X,N1, T ) be a τ1-complete N.A. fuzzy normed space,
(Y,N2, T ) be a τ2-complete fuzzy metric space, and T be a t-norm of H-type.
Let S : Dom(S) ⊂ X → Y be a τ -closed single-valued operator and Θ : X →
L(Y,X) be such that
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1. x+Θ(x)y ∈ Dom(S) for all x ∈ Dom(S) and y ∈ Y ,

2. Θ is a fuzzy contractor of S with respect to u, i.e., Θ satisfies the condition
(5.2),

3. there exists a constant M > 0 such that, for any x ∈ Dom(S) and y ∈ Y ,

N1(Θ(x)y, t) ≥ N2(y, t/M), t ≥ 0,

Then operator equation (5.9) has a solution w in Dom(S) and for any given
x0 ∈ Dom(S), the sequence {xn} defined by

(5.10) xn+1 = xn −Θ(xn)(S(xn)− u)

converges to the solution w of the equation (5.9) in the topology τ1. If Θ(w) :
Y → X is surjective, then w is the unique solution of (5.9).

Proof. Without loss of generality, we may assume that u = θ. In this case,
(5.2) can be written as follows:

N2(S(x+Θ(x)y)− S(x)− y, t) ≥ min{N2(y, ϕ(t)), N2(S(x), ϕ(t)),

N2(S(x+Θ(x)y), ϕ(t)), t ≥ 0.(5.11)

By the condition (1) and (5.10), we have xn ∈ Dom(S) for n = 0, 1, 2, · · · .
Replacing x and y by xn and −S(xn), n = 0, 1, 2, · · · , in (5.11), respectively,
we have

N2(S(xn+1), t) ≥ min{N2(S(xn), ϕ(t)), N2(S(xn), ϕ(t)), N2(S(xn+1), ϕ(t))}
= min{N2(S(xn), ϕ(t)), N2(S(xn+1), ϕ(t))}, t ≥ 0.

By the decreasing property of N2, we have

(5.12) N2(S(xn+1), t) ≥ N2(S(xn), ϕ(t)) ≥ · · · ≥ N2(S(x0), ϕ
n+1(t))

for all t ≥ 0. In view of the assumption (3), (5.10) and (5.12), we have

N1(xn − xn+1, t) = N1(Θ(xn)(S(xn)), t)

≥ N2(S(xn), t/M)

...

≥ N2(S(x0), ϕ
n(t/M))

for all t ≥ 0. By the same method as in the proof of Theorem 5.4, we can
prove that {xn} is a τ1-Cauchy sequence in X. Since (X,N1, T ) is τ1-complete,

let xn
τ1−→ w. Hence, from the condition (Φ) and (5.12), we have S(xn)

τ1−→ θ.
Therefore, by the closedness of S, we have w ∈ Dom(S) and S(w) = θ.

Next, we prove the uniqueness of solution of the operator equation u = S(x).
In fact, if z ∈ Dom(S) and S(z) = θ, by the surjectivity of Θ(w), there exists a
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point y ∈ Y such that z−w = Θ(w)y. Since S(w) = S(z) = θ and N2(θ, t) = 1,
from (5.11), we have

N2(y, t) ≥ N2(S(z)− S(w)− y, t) ≥ min{N2(y, ϕ(t)), N2(S(w), ϕ(t)), N2(S(z), ϕ(t))

= N2(y, ϕ(t)), t ≥ 0,

which implies that

N2(y, t) ≥ N2(y, ϕ(t)) ≥ · · · ≥ N2(y, ϕ
n(t))

for all t ≥ 0 and n = 1, 2, · · · . Letting n → ∞, from the condition (Φ) we have
N2(y, t) = 1 for all t > 0. This means that y = θ, i.e., z = w. This completes
the proof. ■

Now, using Theorems 5.4 and 5.5, we obtain two fixed point theorems for
set-valued and single-valued mappings:

Theorem 5.6. Let (X,N, T ) be a τ -complete N.A. fuzzy normed space and T
be a t-norm of H-type. Let Q : X → ΩX satisfy the following condition:

(5.13) N(Qx,Qy, t) ≥ min{N(x− y, ϕ(t)), N(x−Qx, ϕ(t)), N(y −Qy, ϕ(t))}

for all t ≥ 0 and x, y ∈ X, where ϕ : [0,∞) → [0,∞) satisfies the condition
(Φ). Suppose further that, for any A,B ∈ ΩX and a ∈ A, there exists a point
b ∈ B such that

N(a− b, t) ≥ N(A,B, t), t ≥ 0.

Then there exists a point w ∈ X such that w ∈ Qw, i.e., w is a fixed point of
Q.

Proof. Putting S(x) = x−Qx and Θ(x) = IX , where IX is the identity map-
ping on X, the mappings S and Θ satisfy all the hypotheses of Theorem 5.4.
Therefore, there exists a point w ∈ X such that θ ∈ S(w) = w − Qw, which
means that w is a fixed point of Q. This completes the proof. ■

Theorem 5.7. Let (X,N, T ) be a τ -complete N.A. fuzzy normed space and T
be a t-norm of H-type. Let Q : X → X satisfy the following condition:

(5.14) N(Qx−Qy, t) ≥ min{N(x−y, ϕ(t)), N(x−Qx, ϕ(t)), N(y−Qy, ϕ(t))}

for all t ≥ 0 and x, y ∈ X, where ϕ : [0,∞) → [0,∞) satisfies the condition
(Φ). Then there exists a point w ∈ X such that w = Qw, that is, w is the
unique fixed point of Q and, for any x0 ∈ X, the iterative sequence {xn} in X
converges to w in the topology τ , where xn = Qxn−1, n = 2, 3, 4, · · · .

Proof. Putting S(x) = x−Qx and Θ(x) = IX , the mappings S and Θ satisfy
all the hypotheses of Theorem 5.5. Therefore, there exists a point w ∈ X such
that θ = S(w) = w − Qw, i.e., w is a fixed point of Q. This completes the
proof. ■
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Remark 5.8. In Theorem 5.6, if we assume that T (t, t) ≥ t for all t ∈ [0, 1],
then by Remark 5.3, (5.13) can be weakened as follows:

N(Qx−Qy, t) ≥ min{N(x− y, ϕ(t)), N(x−Qx, ϕ(t)), N(y −Qy, ϕ(t)),

N(y −Qx, ϕ(t)), N(x−Qy, ϕ(t))}

for all t ≥ 0.

As an application, in the sequel we use some result stated above to show
the existence and uniqueness of the solutions for nonlinear Volterra integral
equations on a kind of particular fuzzy normed space.

In what follows, let [0, a] be a fixed real interval (0 < a < ∞) and (X, ∥.∥X)
a real Banach space. We denote by C([0, a];X) the Banach space of all X-
valued continuous functions defined on [0, a] with the norm defined by

(5.15) ∥x∥C = sup
0≤t≤a

∥x(t)∥X , x(t) ∈ C([0, a];X).

As well as the norm ∥.∥C , the space C([0, a];X) can be endowed with another
norm ∥.∥∗ which is defined as follows:

(5.16) ∥x∥∗ = sup
0≤t≤a

(e−Lt ∥x(t)∥X),

where L is any positive number. It is clear that the norm ∥x∥∗ is equivalent to
the norm ∥.∥C .

We also denote by (C([0, a];X), N,min) the fuzzy normed space, where N
is the fuzzy norm defined by

N(x, t) =

{
0, if t ≤ ∥x∥∗;
1, if t > ∥x∥∗.

where x(s), y(s) ∈ C([0, a];X), t ∈ R.
Now we study the existence and uniqueness of solutions of the following

kind of nonlinear Volterra integral equations:

(5.17) x(t) = y(t) +

∫ t

0

K(t, s, x(s)) ds, 0 ≤ t ≤ t,

where y(t) ∈ C([0, a];X) is any given function.

Example 5.9. Let (X, ∥.∥X), C([0, a];X) and (C([0, a];X), N,min) be the
same as stated as above. Suppose the following conditions are satisfied:

(i) K(t, s, x(s)) ∈ C(([0, a]× [0, a]× C([0, a];X));X) and

∥K∥C = sup
t,s∈[0,a],x∈X

∥K(s, t, x)∥X < ∞,

(ii) there exists m ∈ Z+ and a constant α ∈ (0, 1) such that

N(Smx− Smy, t) = min
p,q∈{x,y,Smx,Smy}

N

(
p− q,

t

α

)



Fuzzy Contractor and Nonlinear 53

for all x, y ∈ C([0, a];X) and t ∈ R+, where the mappings S and Tm are
defined as follows:

(Sx)(t) = y(t) +

∫ t

0

K(t, s, x(s)) ds,

(Smx)(t) = y(t) +

∫ t

0

K(t, s, Sm−1x(s)) ds,

(iii) for any x(t) ∈ C([0, a];X), the set {Snx(t)}∞n=0 is bounded.

Then for any x0(t) ∈ C([0, a];X), the sequence {Snx0(t)}∞n=0 converges in the
norm ∥.∥C to a solution x∗(t) ∈ C([0, a];X) of the equation (5.17).

6. Conclusion

Chang [4] defined contractor and contractor couple in probabilistic normed
spaces. In this paper, we have extended the notion of contractor and contractor
couple to fuzzy normed spaces. With the help of contractor couple we have
proved the existence theorem of solutions for set-valued nonlinear operator
equations in fuzzy normed spaces. We have applied our existence theorem to
prove a new fixed point theorem in fuzzy normed spaces. Several queries are
raised by this work. The first of those, the examination of the conditions that
allow one to simply apply the existence theorem and fixed point theorem, we
have discussed, which are mostly stated as purely mathematical results. The
second question is which of our theorems can give constructive proofs. Other
queries will be posed and and indeed all are under investigation and can be
thought of elsewhere.
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