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RC−Class on some fixed point theorems for multivalued
monotone mappings in ordered uniform spaces
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Abstract. In this paper, we use the concepts of RC−class function
which was introduced by A. H. Ansari in [8] and define a new order
relation with RC−class function. Then we prove some new fixed point
and coupled fixed point theorems in ordered uniform spaces.
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1. Introduction

Considerable literature of fixed point theory dealing with contractive or
contractive type mappings (e.g. [1, 2, 3, 4, 6, 5, 7, 9, 10, 8, 11, 12, 13, 14,
15, 16, 18, 19, 20, 21, 22, 23, 8, 13]). Some of them are about fixed point and
coupled fixed point theorems in partially ordered metric spaces [5, 9, 10, 11, 12,
17, 23]. Aamri and El Moutawakil have presented the concept of an E−distance
function on uniform spaces [2]. I. Altun and M. Imdad have defined a partial
order relation in uniform spaces using the concept of an E−distance function
[7]. In this work, we use the relation on uniform spaces and we give RC−class
function on some fixed point theorems for multivalued monotone mappings in
ordered uniform spaces. Now, we will talk about some relevant concepts in
uniform spaces. We term a pair (X,ϑ) to be a uniform space. The uniform
space consist of a X ̸= ∅ with a uniformity ϑ with a filter on X × X which
includes the diagonal ∆ = {(x, x) : x ∈ X}. If V ∈ ϑ and (x, y) ∈ V, (y, x) ∈ V
then x and y are said to be V -close. Also a sequence {xn} in X, is said to be
a Cauchy sequence with regard to uniformity ϑ if for any V ∈ ϑ, there exists
N ≥ 1 such that xn and xm are V -close for m,n ≥ N. An uniformity ϑ defines
a unique topology τ (ϑ) on X for which the neighborhoods of x ∈ X are the
sets V (x) = {y ∈ X : (x, y) ∈ V } when V runs over ϑ.

A uniform space (X,ϑ) is said to be Hausdorff if and only if the intersection
of all the V ∈ ϑ reduces to diagonal ∆ of X i.e. (x, y) ∈ V for V ∈ ϑ implies
x = y. Notice that Hausdorffness of the topology induced by the uniformity
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guarantees the uniqueness of limit of a sequence in uniform spaces. An element
of uniformity ϑ is said to be symmetrical if V = V −1 = {(y, x) : (x, y) ∈ V }.
Since each V ∈ ϑ contains a symmetrical W ∈ ϑ and if (x, y) ∈ W then x
and y are both W and V -close and then one may assume that each V ∈ ϑ
is symmetrical. When topological concepts are mentioned in the context of
a uniform space (X,ϑ) , they are naturally interpreted with respect to the
topological space (X, τ (ϑ)) .

2. Preliminaries

We will talk about definitions and lemmas in the continuation of this work.

Definition 2.1 ([2]). Let (X,ϑ) be a Hausdorff uniform space. A function
p : X ×X → R+ is said to be an E-distance if

(p1) For any V ∈ ϑ there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ
for some z ∈ X, imply (x, y) ∈ V,

(p2) p (x, y) ≤ p (x, z) + p (z, y) , ∀x, y, z ∈ X.

The following lemma embodies some useful properties of E-distance.

Lemma 2.2 ([1, 2]). Let (X,ϑ) be a Hausdorff uniform space and p be an
E-distance on X. Let {xn} and {yn} be arbitrary sequences in X and {αn},
{βn} be sequences in R+ converging to 0. Then, for x, y, z ∈ X, the following
holds:

(a) If p (xn, y) ≤ αn and p (xn, z) ≤ βn for all n ∈ N, then y = z. In
particular, if p (x, y) = 0 and p (x, z) = 0, then y = z.

(b) If p (xn, yn) ≤ αn and p (xn, z) ≤ βn for all n ∈ N, then {yn} converges
to z.

(c) If p (xn, xm) ≤ αn for all m > n, then {xn} is a Cauchy sequence in
(X,ϑ) .

Let (X,ϑ) be a uniform space equipped with E-distance p. A sequence in X
is p-Cauchy if it satisfies the usual metric condition. There are several concepts
of completeness in this setting.

Definition 2.3 ([1, 2]). Let (X,ϑ) be a Hausdorff uniform space and p be an
E-distance on X. Then

(i) X said to be S-complete if for every p-Cauchy sequence {xn} there
exists x ∈ X with lim

n→∞
p (xn, x) = 0,

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence {xn}
there exists x ∈ X with lim

n→∞
xn = x with respect to τ (ϑ) ,

(iii) f : X → X is p-continuous if lim
n→∞

p (xn, x) = 0 implies

lim
n→∞

p (fxn, fx) = 0,

(iv) f : X → X is τ (ϑ)-continuous if lim
n→∞

xn = x with respect to τ (ϑ)

implies lim
n→∞

fxn = fx with respect to τ (ϑ) .
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Remark 2.4 ([2]). Let (X,ϑ) be a Hausdorff uniform space and let {xn} be
a p-Cauchy sequence. Suppose that X is S-complete, then there exists x ∈
X such that lim

n→∞
p (xn, x) = 0. Then Lemma 1 (b) gives that lim

n→∞
xn = x

with respect to the topology τ (ϑ) which shows that S-completeness implies
p-Cauchy completeness.

Lemma 2.5 ([13]). Let (X,ϑ) be a Hausdorff uniform space, p be E-distance
on X and φ : X → R. Define the relation ” ⪯ ” on X as follows;

x ⪯ y ⇔ x = y or p(x, y) ≤ φ (x)− φ (y) .

Then ” ⪯ ” is a (partial) order on X induced by φ.

In September 2014 the concepts of RC−class and LC−class for Caristi’s
fixed point theorem (see Definition 2.6 and 2.10) were introduced by A. H.
Ansari in [8].

Definition 2.6. Let F : R2
1 → R,R1 ⊂ R be a function. F is said to be an

RC−class if F is continuous and satisfies

F (s, t) ≥ 0 =⇒ s ≥ t

F (t, t) = 0

s ≤ t =⇒ F (e, s) ≥ F (e, t)

t ≤ e ≤ s =⇒ F (s, e) + F (e, t) ≤ F (s, t)

∃g : R → R, F (g(s), g(t)) ≥ 0 =⇒ s ≤ t

where s, t, e ∈ R.

In the following, you can see some examples of RC−class functions.

Example 2.7. For n ∈ N and a > 1,

F (s, t) = s− t
F (s, t) = s−t

1+t

,
g(t) = −t

g(t) = 1
t − 1

F (s, t) = s2n+1 − t2n+1 , g(t) = −t
F (s, t) = as − at , g(t) = −t

F (s, t) = as − at + t− s , g(t) = −t

F (s, t) = es
2n+1−t2n+1 − 1 , g(t) = −t

F (s, t) = es−t − 1 , g(t) = −t

Remark 2.8. F (s, t) = es−t − 1 ≥ s− t, s ≥ t.

Remark 2.9. |φ (xm)− φ (xn)| < ε =⇒ F (φ (xm) , φ (xn)) → 0

Definition 2.10. We say that H: R+ → R+ is an LC−class function if H is a
continuous and increasing function such that H(t) > 0, t > 0,H(0) = 0 and

H(s+ t) ≤ H(s) +H(t).

and

x ≤ y =⇒ H(x) ≤ H(y)
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Example 2.11. For a > 1,m > 0 and n ∈ N

H(t) = 1− a−t,

H(t) = mt

H(t) = m
n
√
t

H(t) = loga 1 + t

H(t) = loga 1 +
n
√
t

are some examples of LC−class function.

Remark 2.12. H(t) = loga 1 + t ≤ t, a > ln a.

Lemma 2.13. Let (X,ϑ) be a Hausdorff uniform space, p be E-distance on X
and φ : X → R be an one to one function. Define the relation ” ⪯ ” on X as
follows;

x ⪯ y ⇔ x = y or p(x, y) ≤ F (φ (x) , φ (y)).

where F is RC−class. Then ” ⪯ ” is a (partial) order on X induced by φ.

3. The Fixed Point Theorems of Multivalued mappings

Lemma 3.1. Let (X,ϑ) be a Hausdorff uniform space and p an E-distance
on X, φ : X → R be an one to one function which is bounded below and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space,
T : X → 2X be a multivalued mapping, [x,+∞) = {y ∈ X : x ⪯ y} and
M = {x ∈ X | T (x) ∩ [x,+∞) ̸= ∅}. Suppose that:

(i) T is upper semi-continuous, that is xn ∈ X and yn ∈ T (xn) with
xn → x0 and yn → y0, implies y0 ∈ T (x0) ;

(ii) M ̸= ∅;
(iii) for each x ∈ M, T (x) ∩M ∩ [x,+∞) ̸= ∅.
Then T has a fixed point x∗ and there exists a sequence {xn} with

xn−1 ⪯ xn ∈ T (xn−1) , n = 1, 2, 3, ...

such that xn → x∗. Moreover, if φ is lower semi-continuous, then xn ⪯ x∗ for
all n.

Proof. By the condition (ii), take x0 ∈ M. From (iii), there exist x1 ∈ T (x0)∩
M and x0 ⪯ x1. Again from (iii), there exist x2 ∈ T (x1)∩M and thus x1 ⪯ x2.

Continuing this procedure we get a sequence {xn} satisfying

xn−1 ⪯ xn ∈ T (xn−1) , n = 1, 2, 3, ...

So by the definition of ” ⪯ ”, we have ...φ (x2) ≤ φ (x1) ≤ φ (x0) i.e. the
sequence {φ (xn)} is a non-increasing sequence in R. Since φ is bounded from
below, {φ (xn)} is convergent and hence it is Cauchy i.e. for all ε > 0, there
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exists n0 ∈ N such that for all m > n > n0 we have |φ (xm)− φ (xn)| < ε.
Since xn ⪯ xm and by Remark 3, we have xn = xm or

p (xn, xm) ≤ F (φ (xn) , φ (xm))

< ε

which shows that (in view of Lemma 1 (c)) that {xn} is p-Cauchy sequence.
By the p-Cauchy completeness of X, {xn} converges to x∗. Since T is upper
semi-continuous, x∗ ∈ T (x∗) .

Moreover, when φ is lower semi-continuous, for each n

p (xn, x
∗) = lim

m→∞
p (xn, xm)

≤ lim
m→∞

supF (φ (xn) , φ (xm))

= F (φ (xn) , lim
m→∞

inf φ (xm))

≤ F (φ (xn) , φ (x∗)).

So xn ⪯ x∗, for all n.

Similarly we can prove the following.

Theorem 3.2. Let (X,ϑ) be a Hausdorff uniform space and p an E-distance
on X, φ : X → R be an one to one function which is bounded above and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space,
T : X → 2X be a multivalued mapping, (−∞, x] = {y ∈ X : y ⪯ x} and
M = {x ∈ X | T (x) ∩ (−∞, x] ̸= ∅}. Suppose that:

(i) T is upper semi-continuous, that is xn ∈ X and yn ∈ T (xn) with
xn → x0 and yn → y0, implies y0 ∈ T (x0) ;

(ii) M ̸= ∅;
(iii) for each x ∈ M , T (x) ∩M ∩ (−∞, x] ̸= ∅.
Then T has a fixed point x∗ and there exists a sequence {xn} with

xn−1 ⪰ xn ∈ T (xn−1) , n = 1, 2, 3, ...

such that xn → x∗. Moreover, if φ is upper semi-continuous, then x∗ ⪯ xn for
all n.

Corollary 3.3. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X, φ : X → R be an one to one function which is bounded below and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space,
T : X → 2X be a multivalued mapping and [x,+∞) = {y ∈ X : x ⪯ y}.
Suppose that:

(i) T is upper semi-continuous, that is xn ∈ X and yn ∈ T (xn) with
xn → x0 and yn → y0, implies y0 ∈ T (x0) ;

(ii) T satisfies the monotonic condition: for any x, y ∈ X with x ⪯ y and
any u ∈ T (x) , there exists v ∈ T (y) such that u ⪯ v;

(iii) there exists an x0 ∈ X such that T (x0) ∩ [x0,+∞) ̸= ∅.
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Then T has a fixed point x∗ and there exists a sequence {xn} with

xn−1 ⪯ xn ∈ T (xn−1) , n = 1, 2, 3, ...

such that xn → x∗. Moreover, if φ is lower semi-continuous, then xn ⪯ x∗ for
all n.

Proof. By (iii), x0 ∈ M = {x ∈ X : T (x) ∩ [x,+∞) ̸= ∅}. For x ∈ M, take
y ∈ T (x) and x ⪯ y. By the monotonicity of T , there exists z ∈ T (y) such that
y ⪯ z. So y ∈ M , and T (x) ∩M ∩ [x,+∞) ̸= ∅. The conclusion follows from
Theorem 1.

Corollary 3.4. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X, φ : X → R be an one to one function which is bounded above and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space,
T : X → 2X be a multivalued mapping and (−∞, x] = {y ∈ X : y ⪯ x}.
Suppose that:

(i) T is upper semi-continuous;
(ii) T satisfies the monotonic condition; for any x, y ∈ X with x ⪯ y and

any v ∈ T (y) , there exists u ∈ T (x) such that u ⪯ v;
(iii) there exists an x0 ∈ X such that T (x0) ∩ (−∞, x0] ̸= ∅.
Then T has a fixed point x∗ and there exists a sequence {xn} with

xn−1 ⪰ xn ∈ T (xn−1), n = 1, 2, ...

such that xn → x∗. Moreover, if φ is upper semi-continuous, then xn ⪰ x∗ for
all n.

Corollary 3.5. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X, φ : X → R be an one to one function which is bounded below and ” ⪯ ”
the order introduced by φ. Let X be also a p-Cauchy complete space, f : X → X
be a map and M = {x ∈ X : x ⪯ f (x)}. Suppose that:

(i) f is τ (ϑ)-continuous;
(ii) M ̸= ∅;
(iii) for each x ∈ M, f (x) ∈ M.
Then f has a fixed point x∗ and the sequence

xn−1 ⪯ xn = f(xn−1), n = 1, 2, 3, ..

converges to x∗. Moreover, if φ is lower semi-continuous, then xn ⪯ x∗ for all
n.

Corollary 3.6. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance on
X, φ : X → R be an one to one function which is bounded above, and ” ⪯ ” the
order introduced by φ. Let X be also a p-Cauchy complete space, f : X → X
be a map and M = {x ∈ X : x ⪰ f (x)}. Suppose that:

(i) f is τ (ϑ)-continuous;
(ii) M ̸= ∅;
(iii) for each x ∈ M, f (x) ∈ M.
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Then f has a fixed point x∗ and the sequence

xn−1 ⪰ xn = f(xn−1), n = 1, 2, 3, ...

converges to x∗. Moreover, if φ is upper semi-continuous, then xn ⪰ x∗ for all
n.

Corollary 3.7. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance on
X, φ : X → R be an one to one function which is bounded below, and ” ⪯ ” the
order introduced by φ. Let X be also a p-Cauchy complete space, f : X → X
be a map and M = {x ∈ X : x ⪰ f (x)}. Suppose that:

(i) f is τ (ϑ)-continuous;
(ii) f is monotone increasing, that is for x ⪯ y we have f (x) ⪯ f (y) ;
(iii) there exists an x0, with x0 ⪯ f (x0) .
Then f has a fixed point x∗ and the sequence

xn−1 ⪯ xn = f (xn−1) , n = 1, 2, 3, ...

converges to x∗. Moreover, if φ is lower semi-continuous, then xn ⪯ x∗ for all
n.

Example 3.8. Let A = {a, b, c} and ϑ = {V ⊂ A×A : ∆ ⊂ V }. Define p : A×
A → R+ as p(x, x) = 0 for all x ∈ A, p(a, b) = p(b, a) = 2, p(a, c) = p(c, a) = 1
and p(b, c) = p(c, b) = 3. By the definition of ϑ, ∩

V ∈ϑ
V = ∆ and this shows that

the uniform space (A, ϑ) is a Hausdorff uniform space. Furthermore, p (a, b) ≤
p (a, c) + p (c, b) , p (a, c) ≤ p (a, b) + p (b, c) and p (b, c) ≤ p (b, a) + p (a, c) for
a, b, c ∈ A and thus p is an E-distance on A. Next define φ : A → R, φ (a) = 3,
φ (b) = 2, φ (c) = 1. Since p (a, c) = p (c, a) = 1 ≤ φ (a)−φ (c) , therefore a ⪯ c.
But as p (b, a) = p (a, b) = 2 ≰| φ (a)−φ (b) | therefore a ⪯̸ b and b ⪯̸ a. Again,
b ⪯̸ c and c ⪯̸ b which show that this ordering is partial and hence (A, ϑ) is
a partially ordered uniform space. Define g : A → A as g(a) = a, g(b) = b
and g(c) = c, then we can verify that all conditions of Corollary 5 are satisfied
and g has a fixed point. Notice that p(g (a) , g (b)) = p (a, b). This shows that
g is neither E-contractive nor E expansive, therefore the results of [2] are not
applicable in the context of this example.

Corollary 3.9. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance on
X, φ : X → R be an one to one function which is bounded above and ” ⪯ ” the
order introduced by φ. Let X be also a p-Cauchy complete space and f : X → X
be a map. Suppose that:

(i) f is τ (ϑ)-continuous;
(ii) f is monotone increasing, that is, for x ⪯ y we have f (x) ⪯ f (y) ;
(iii) there exists an x0 with x0 ⪰ f (x0) .
Then f has a fixed point x∗ and the sequence

xn−1 ⪰ xn = f (xn−1) , n = 1, 2, 3, ...

converges to x∗. Moreover, if φ is upper semi-continuous, then xn ⪰ x∗ for all
n.
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Theorem 3.10. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance on
X, φ : X → R be an one to one and continuous function bounded below and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space,
T : X → 2X be a multivalued mapping and [x,+∞) = {y ∈ X : x ⪯ y}.
Suppose that:

(i) T satisfies the monotonic condition: for each x ⪯ y and each u ∈ T (x)
there exists v ∈ T (y) such that u ⪯ v;

(ii) T (x) is compact for each x ∈ X;
(iii) M = {x ∈ X : T (x) ∩ [x,+∞) ̸= ∅} ≠ ∅.
Then T has a fixed point x0.

Proof. We shall prove that M has a maximal element. Let {xv}v∈Λ be a totally
ordered subset in M, where Λ is a directed set. For v, µ ∈ Λ and v ≤ µ, one
has xv ⪯ xµ, which implies that φ (xv) ≥ φ (xµ) for v ≤ µ. Since φ is bounded
below, {φ (xv)} is a convergence net in R. So it is a Cauchy net i.e. for all
ε > 0, there exists n0 ∈ N such that for all v ≤ µ we have | φ (xµ)−φ (xv) |< ε.
By the p-Cauchy completeness of X, let xv converge to z in X.

For given µ ∈ Λ, from Remark 3
p(xµ, z) = lim

v
p (xµ, xv) ≤ lim

v
F (φ (xµ) , φ (xv)) = F (φ (xµ) , φ (xz)). So

xµ ⪯ z for all µ ∈ Λ.
For µ ∈ Λ, by the condition (i), for each uµ ∈ T (xµ), there exists a vµ ∈ T (z)

such that uµ ⪯ vµ. By the compactness of T (z), there exists a convergence
subnet {vµp} of {vµ}. Suppose that {vµp} converges to w ∈ T (z). Take Λp such
that µp ≥ Λp implies uµ ⪯ vµ ⪯ vµp .

We have
p (uµ, w) = lim

µp
p(uµ, vµp) ≤ lim

µp
F (φ (uµ) , φ

(
vµp

)
) = F (φ (uµ) , φ (w)).

So uµ ⪯ w for all µ and

p (z, w) = lim
µ
p (uµ, w) ≤ lim

µ
F (φ (uµ) , φ (w)) = F (φ (z) , φ (w)).

So z ⪯ w and this gives that z ∈ M. Hence we have proven that {xµ} has
an upper bound in M.

By Zorn’s Lemma, there exists a maximal element x0 inM. By the definition
of M, there exists a y0 ∈ T (x0) such that x0 ⪯ y0. By the condition (i), there
exists a z0 ∈ T (y0) such that y0 ⪯ z0. Hence y0 ∈ M. Since x0 is a maximal
element in M, it follows that y0 = x0 and x0 ∈ T (x0). So x0 is a fixed point
of T.

Theorem 3.11. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance on
X, φ : X → R be an one to one and continuous function bounded above and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space,
T : X → 2X be a multivalued mapping and (−∞, x] = {y ∈ X : y ⪯ x}.
Suppose that

(i) T satisfies the following condition; for each x ⪯ y and v ∈ T (x), there
exists u ∈ T (y) such that u ⪯ v;

(ii) T (x) is compact for each x ∈ X;
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(iii) M = {x ∈ X : T (x) ∩ (−∞, x] ̸= ∅} ≠ ∅.
Then T has a fixed point.

Corollary 3.12. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance
on X, φ : X → R be an one to one continuous function bounded below and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space and
f : X → X be a map. Suppose that;

(i) f is monotone increasing, that is for x ⪯ y, f (x) ⪯ f (y) ;
(ii) there is an x0 ∈ X such that x0 ⪯ f (x0) .
Then f has a fixed point.

Corollary 3.13. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance
on X, φ : X → R be an one to one continuous function bounded above and
” ⪯ ” the order introduced by φ. Let X be also a p-Cauchy complete space and
f : X → X be a map. Suppose that;

(i) f is monotone increasing, that is for x ⪯ y, f (x) ⪯ f (y) ;
(ii) there is an x0 ∈ X such that x0 ⪰ f (x0) .
Then f has a fixed point.

4. The Coupled Fixed Point Theorems of Multivalued
Mappings

Definition 4.1. An element (x, y) ∈ X ×X is called a coupled fixed point of
the multivalued mapping T : X ×X → 2X if x ∈ T (x, y) , y ∈ T (y, x).

Theorem 4.2. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance on X,
φ : X → R be an one to one function bounded below and ” ⪯ ” be the order in
X introduced by φ. Let X be also a p-Cauchy complete space, T : X ×X → 2X

be a multivalued mapping, [x,+∞) = {y ∈ X : x ⪯ y}, (−∞, y] = {x ∈
X : x ⪯ y}, and M = {(x, y) ∈ X × X : x ⪯ y, T (x, y) ∩ [x,+∞) ̸= ∅ and
T (y, x) ∩ (−∞, y] ̸= ∅}. Suppose that:

(i) T is upper semi-continuous, that is, xn ∈ X, yn ∈ X and zn ∈
T (xn, yn), with xn → x0, yn → y0 and zn → z0 implies z0 ∈ T (x0, y0);

(ii) M ̸= ∅;
(iii) for each (x, y) ∈ M, there is (u, v) ∈ M such that u ∈ T (x, y)∩[x,+∞)

and v ∈ T (y, x) ∩ (−∞, y]
Then T has a coupled fixed point (x∗, y∗) i.e. x∗ ∈ T (x∗, y∗) and y∗ ∈

T (y∗, x∗). Also there exist two sequences {xn} and {yn} with

xn−1 ⪯ xn ∈ T (xn−1, yn−1), yn−1 ⪰ yn ∈ T (yn−1, xn−1), n = 1, 2, 3, ...

such that xn → x∗ and yn → y∗.

Proof. By the condition (ii), take (x0, y0) ∈ M. From (iii), there exist (x1, y1) ∈
M such that x1 ∈ T (x0, y0), x0⪯x1 and y1 ∈ T (y0, x0), y1 ⪯ y0. Again
from (iii), there exist (x2, y2) ∈ M such that x2 ∈ T (x1, y1), x1⪯x2 and
y2 ∈ T (y1, x1), y2 ⪯ y1.
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Continuing this procedure we get two sequences {xn} and {yn} satisfying
(xn, yn) ∈ M and

xn−1 ⪯ xn ∈ T (xn−1, yn−1), n = 1, 2, ...

and

yn−1 ⪰ yn ∈ T (yn−1, xn−1), n = 1, 2, ...

So

x0 ⪯ x1 ⪯ ... ⪯ xn ⪯ ... ⪯ yn ⪯ ... ⪯ y2 ⪯ y1.

Hence

φ(x0) ≥ φ (x1) ≥ ... ≥ φ(xn) ≥ ... ≥ φ (yn) ≥ ... ≥ φ (y1) ≥ φ (y0) .

From this we get that φ (xn) and φ (yn) are convergent sequences. By the
definition of ” ⪯ ” as in the proof of Theorem 1, it is easy to prove that {xn}
and {yn} are p-Cauchy sequences. Since X is p-Cauchy complete, let {xn}
converge to x∗ and {yn} converge to y∗. Since T is upper semi-continuous,
x∗ ∈ T (x∗, y∗) and y∗ ∈ T (y∗, x∗). Hence (x∗, y∗) is a coupled fixed point of
T.

Corollary 4.3. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance
on X, φ : X → R be an one to one function bounded below, and ” ⪯ ” be
the order in X introduced by φ. Let X be also a p-Cauchy complete space,
f : X × X → X be a mapping and M = {(x, y) ∈ X × X : x ⪯ y and
x ⪯ f(x, y) and f(x, y) ⪯ y}. Suppose that;

(i) f is τ (ϑ)-continuous;
(ii) M ̸= ∅;
(iii) for each (x, y) ∈ M, x ⪯ f(x, y) and f(y, x) ⪯ y.
Then f has a coupled fixed point (x∗, y∗), i.e. x∗ = f(x∗, y∗) and y∗ =

f(y∗, x∗) and there exist two sequences {xn} and {yn} with xn−1 ⪯ xn =
f(xn−1, yn−1), yn−1 ⪰ yn = f(yn−1, xn−1), n = 1, 2, ... such that xn → x∗ and
yn → y∗.

Corollary 4.4. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance
on X, φ : X → R be an one to one function bounded below, and ” ⪯ ” be
the order in X introduced by φ. Let X be also a p-Cauchy complete space,
f : X × X → X be a mapping and M = {(x, y) ∈ X × X : x ⪯ y and
x ⪯ f(x, y) and f(x, y) ⪯ y}. Suppose that;

(i) f is τ (ϑ)-continuous;
(ii) M ̸= ∅;
(iii) f is mixed monotone, that is for each x1 ⪯ x2 and y1 ⪰ y2, f(x1, y1) ⪯

f(x2, y2).
Then f has a coupled fixed point (x∗, y∗) and there exist two sequences

{xn} and {yn} with xn−1 ⪯ xn = f(xn−1, yn−1), yn−1 ⪰ yn = f(yn−1, xn−1),
n = 1, 2, ... such that xn → x∗ and yn → y∗.
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Theorem 4.5. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance on
X, φ : X → R be an one to one continuous function, and ” ⪯ ” be the order in
X introduced by φ. Let X be also a p-Cauchy complete space, T : X ×X → 2X

be a multivalued mapping, [x,+∞) = {y ∈ X : x ⪯ y}, (−∞, y] = {x ∈
X : x ⪯ y}, and M = {(x, y) ∈ X × X : x ⪯ y, T (x, y) ∩ [x,+∞) ̸= ∅ and
T (y, x) ∩ (−∞, y] ̸= ∅}. Suppose that;

(i) T is mixed monotone, that is for x1 ⪯ y1, x2 ⪰ y2 and u ∈ T (x1, y1),
v ∈ T (y1, x1), there exist w ∈ T (x2, y2), z ∈ T (y2, x2) such that u ⪯ w, v ⪰ z;

(ii) M ̸= ∅;
(iii) T (x, y) is compact for each (x, y) ∈ X ×X.

Then T has a coupled fixed point.

Proof. By (ii), there exists (x0, y0) ∈ M with x0 ⪯ y0, T (x0, y0)∩ [x0,+∞) ̸= ∅
and T (y0, x0) ∩ (−∞, y0] ̸= ∅. Let C = {(x, y) : x0 ⪯ x, y ⪯ y0, T (x, y) ∩
[x,+∞) ̸= ∅ and T (y, x) ∩ (−∞, y] ̸= ∅}. Then (x0, y0) ∈ C. Define the order
relation ” ⪯ ” in C by

(x1, y1) ⪯ (x2, y2) ⇔ x1 ⪯ x2, y2 ⪯ y1.

It is easy to prove that (C,⪯) becomes an ordered space.

We shall prove that C has a maximal element. Let {xv, yv}v∈Λ be a totally
ordered subset in C, where Λ is a directed set. For v, µ ∈ Λ and v ≤ µ, one has
(xv, yv) ⪯ (xµ, yµ) . So xv ⪯ xµ and yµ ⪯ yv, which implies that

φ (x0) ≥ φ (xv) ≥ φ (xµ) ≥ φ (y0)

and

φ (y0) ≤ φ (yµ) ≤ φ (yv) ≤ φ (x0)

for v ≤ µ.

Since {φ (xv)} and {φ (yv)} are convergence nets in R. From

p(xv, xµ) ≤ F (φ (xv) , φ (xµ)) and p (yµ, yv) ≤ F (φ (yµ) , φ (yv)),

we get that {xv} and {yv} are p-Cauchy nets in X. By the p-Cauchy com-
pleteness of X, let xv converge to x∗ and yv converge to y∗ in X. For given
µ ∈ Λ,

p(xµ, x
∗) = lim

v
p(xµ, xv) ≤ lim

v
F (φ (xµ) , φ (xv)) = F (φ (xµ) , φ (x∗))

p(yµ, y
∗) = lim

v
p(yµ, yv) ≤ lim

v
F (φ (yv) , φ (yµ)) = F (φ (yv) , φ (y∗)).

So x0 ⪯ xµ ⪯ x∗ and yµ ⪰ y∗ ⪰ y0 for all µ ∈ Λ.

For µ ∈ Λ, by the condition (i), for each uµ ∈ T (xµ, yµ) with xµ ⪯ uµ and
vµ ∈ T (yµ, xµ) with vµ ⪯ yµ, there exist wµ ∈ T (x∗, y∗) and zµ ∈ T (y∗, x∗)
such that uµ ⪯ wµ and vµ ⪰ zµ. By the compactness of T (x∗, y∗) and T (y∗, x∗),
there exist convergence subnets {wµp} of {wµ} and {zµp} of {zµ}. Suppose that
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{wµp} converges to w ∈ T (x∗, y∗) and {zµp} converges to z ∈ T (y∗, x∗). Take
Λp, such that µp ≥ Λp implies uµ ⪯ vµ ⪯ vµp . We have

p (uµ, w) = lim
µp

p(uµ, uµp) ≤ lim
µp

F (φ (uµ) , φ
(
uµp

)
) = F (φ (uµ) , φ (w))

p (z, vµ) = lim
µp

p(vµp , vµ) ≤ lim
µp

F (φ
(
vµp

)
, φ (vµ)) = F (φ (z) , φ (vµ)).

So xµ ⪯ uµ ⪯ w and z ⪯ vµ ⪯ yµ for all µ. Also

p (x∗, w) = lim
µp

p(xµp , uµp) ≤ lim
µp

F (φ
(
xµp

)
, φ

(
uµp

)
) = F (φ (x∗) , φ (w))

p (z, y∗) = lim
µp

p(vµp , yµp) ≤ lim
µp

F (φ
(
vµp

)
, φ

(
yµp

)
) = F (φ (z) , φ (y∗)).

So x∗ ⪯ w and z ⪯ y∗, this gives that (x∗, y∗) ∈ C. Hence we have proven that
{xµ, yµ}µ∈Λ has an upper bound in C.

By Zorn’s lemma, there exists a maximal element (
−
x,

−
y) in C. By the defini-

tion of C, there exist
−
u ∈ T

(
−
x,

−
y
)
,
−
v ∈ T

(
−
y,

−
x
)
, such that x0 ⪯ −

u,
−
v ⪯ y0 and

−
x ⪯ −

u,
−
v ⪯ −

y. By the condition (i) there exist
−
w ∈ T (

−
u,

−
v),

−
z ∈ T (

−
v,

−
u) such

that x0 ⪯ −
u ⪯ −

w and
−
z ⪯ −

v ⪯ y0. Hence
(
−
u,

−
v
)
∈ C and

(
−
x,

−
y
)
⪯

(
−
u,

−
v
)
.

Since
(
−
x,

−
y
)
is a maximal element in C, it follows that

(
−
x,

−
y
)
=

(
−
u,

−
v
)
, and

it follows that
−
x =

−
u ∈ T (

−
x,

−
u) and

−
y =

−
v ∈ T (

−
y,

−
x). So

(
−
x,

−
y
)
is a coupled

fixed point of T.

Corollary 4.6. Let (X,ϑ) be a Hausdorff uniform space, p an E-distance
on X, φ : X → R be a continuous function, and ” ⪯ ” be the order in X
introduced by φ. Let X be also a p-Cauchy complete space and f : X ×X → X
be a mapping. Suppose that;

(i) f is mixed monotone, that is for x1 ⪯ y1, x2 ⪰ y2 and f(x1, y1) ⪯
f(y2, x2);

(ii) there exist x0, y0 ∈ X such that x0 ⪯ f (x0, y0) and f (y0, x0) ⪯ y0.
Then f has a coupled fixed point.
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