Warped-twisted products and Einstein-like manifolds

Sibel Gerdan Aydın¹² and Hakan Mete Taştan³

Abstract. We study warped-twisted product manifolds in the form $f_2M_1 \times f_1 M_2$ with warping function f_2 on M_2 and twisting function f_1 . We give a necessary and sufficient condition for a warped-twisted product to be a doubly warped product. We also give some conditions for such manifolds to be a twisted and a base conformal warped product. Moreover, we give some results for Einstein-like warped-twisted product manifolds of different classes.

AMS Mathematics Subject Classification (2010): 53B20; 53C07; 53C25 Key words and phrases: warped product manifold; twisted product manifold; Einstein-like manifold; Codazzi Ricci tensor; killing Ricci tensor; Weyl conformal flat manifold

1. Introduction

Let (M_1,g_1) and (M_2,g_2) be Riemannian manifolds and f_1 and f_2 be positive smooth functions on $M_1 \times M_2$. Then doubly twisted product manifold [11] $M = f_2 M_1 \times f_1 M_2$ is the product manifold $M_1 \times M_2$ furnished with the metric tensor $g = f_2^2 \pi_1^* g_1 + f_1^2 \pi_2^* g_2$, where $\pi_i : M_1 \times M_2 \to M_i$ is canonical projections for i = 1, 2. Each function f_i is called a twisting function of $(M = f_2 M_1 \times f_1 M_2, g)$.

If the functions f_1 and f_2 in the above, depend only on the points of M_1 and M_2 , respectively, then we get doubly warped product manifold $M =_{f_2} M_1 \times_{f_1} M_2$ [5] with the metric g given by $g = (f_2 \circ \pi_2)^2 \pi_1^* g_1 + (f_1 \circ \pi_1)^2 \pi_2^* g_2$. Then each function f_i is called a warping function of $(f_2 M_1 \times_{f_1} M_2, g)$ for $f_1 \equiv 1$ or $f_2 \equiv 1$ in the definition of doubly twisted product manifold, then $(M_1 \times_{f_1} M_2, g)$ or $(f_2 M_1 \times M_2, g)$ is called a twisted product manifold [2]. In that case f_1 or f_2 is called a twisting function.

Moreover, $f_1 \equiv 1$ or $f_2 \equiv 1$, in the definition of doubly warped product manifold, then we get $(M_1 \times_{f_1} M_2, g)$ warped product manifold [1] with warping function f_1 .

In [13], we defined a new subclass of doubly twisted product under the name of nearly doubly twisted product of type 1. In this article, we rename of such products as warped-twisted products.

¹Department of Mathematics, Faculty of Science, İstanbul University, Vezneciler, 34134, İstanbul, Turkey. e-mail: sibel.gerdan@istanbul.edu.tr

²Corresponding author

³Department of Mathematics, Faculty of Science, İstanbul University, Vezneciler, 34134, İstanbul, Turkey. e-mail: hakmete@istanbul.edu.tr

Let $(f_2M_1 \times_{f_1} M_2, g)$ be a doubly twisted product manifold. If f_2 depends only on the points of M_2 , then $(f_2M_1 \times_{f_1} M_2, g)$ is a warped-twisted product manifold with the metric tensor $g = (f_2 \circ \pi_2)^2 \pi_1^* g_1 + f_1^2 \pi_2^* g_2$. In which case, f_2 is called a warping function and f_1 is called a twisting function of $(f_2M_1 \times_{f_1} M_2, g)$. In this case, if the function f_1 depends only on the the points of M_2 , then the warped-twisted product $f_2M_1 \times_{f_1} M_2$ becomes a base conformal warped product [4]. We say that a warped-twisted product is non-trivial if it is neither doubly warped product nor warped product or base conformal warped product.

Remark 1.1. Let (M_1, g_1) and (M_2, g_2) be pseudo-Riemannian manifolds with Levi-Civita connections ∇^1 and ∇^2 , respectively. By usual convenience, we denote the set of lifts of vector fields on M_i by $\mathcal{L}(M_i)$ and use the same notation for a vector field and for its lift. On the other hand, each π_i is a positive homothety, so it preserves the Levi-Civita connection. Thus, there is no confusion using the same notation for a connection on M_i and for its pullback via π_i .

Now, we recall some facts for later use [10].

Let (\bar{M}, \bar{g}) be a Riemannian manifold of dimension m and $\bar{\nabla}$ be the Levi-Civita connnection on \bar{M} . Let $\{e_1, e_2, \dots, e_m\}$ denote the local orthonormal frame field of (\bar{M}, \bar{g}) .

The Ricci tensor S of (\bar{M}, \bar{g}) is defined by

(1.1)
$$S(\bar{U}, \bar{V}) = \sum_{i=1}^{m} \bar{g}(R(e_i, \bar{U})\bar{V}, e_i)$$

for any vector fields \bar{U}, \bar{V} on $\bar{M},$ where R is the Riemannian curvature tensor of $\bar{M}.$

The scalar curvature τ of (\bar{M}, \bar{g}) is given by

(1.2)
$$\tau = \sum_{i=1}^{m} S(e_i, e_i).$$

For a vector field \bar{U} on \bar{M} , divergence of \bar{U} is defined by

(1.3)
$$div\bar{U} = \sum_{i=1}^{m} \bar{g}(\bar{\nabla}_{e_i}\bar{U}, e_i).$$

For a function $f \in C^{\infty}(\bar{M})$ and a vector field \bar{U} on \bar{M} , the Hessian tensor of f is given by

(1.4)
$$H^f(\bar{U}) = \bar{\nabla}_{\bar{U}} \nabla f$$

and the Hessian form of f is given by

(1.5)
$$h^f(\bar{U}, \bar{V}) = \bar{g}(H^f(\bar{U}), \bar{V}).$$

For a function $f \in C^{\infty}(\bar{M})$, the Laplacian of f is defined by

$$(1.6) \Delta f = div \nabla f.$$

2. Warped Twisted Product Manifolds

In this section, we give the covariant derivative formulas, Ricci tensor, Weyl conformal curvature tensor and scalar curvature of a warped-twisted product manifolds in the form $f_2 M_1 \times_{f_1} M_2$, where f_2 is a warping function on M_2 and f_1 is a twisting function. We also give a necessary and sufficient condition for such manifolds to be a doubly warped product. We also give some conditions for such manifolds to be a twisted and a base conformal warped product.

Remark 2.1. From now on, throughout this article, M denotes a warped-twisted product manifold in the form $f_2M_1\times f_1M_2$ with warping function $f_2\in C^\infty(M_2)$, twisting function f_1 and endowed with the Riemannian metric g.

Lemma 2.2. Let M be a warped-twisted product manifold. Then, we have

(2.1)
$$\nabla_X Y = \nabla_X^1 Y - g(X, Y) \nabla \tilde{l},$$

(2.2)
$$\nabla_X U = \nabla_U X = U(\tilde{l})X + X(k)U,$$

(2.3)
$$\nabla_U V = \nabla_U^2 V + U(k)V + V(k)U - g(U, V)\nabla k,$$

for $X, Y \in \mathcal{L}(M_1)$ and $U, V \in \mathcal{L}(M_2)$, where $k = \log f_1$, $l = \log f_2$ and $\tilde{l} = l \circ \pi_2$ which is the pullback of l via π_2 .

Proof. The proof follows from Proposition 1 of [7] with $X(\tilde{l}) = 0$, for $X \in \mathcal{L}(M_1)$.

For $X, Y \in \mathcal{L}(M_1)$, we define [7]

(2.4)
$$h_1^k(X,Y) = XY(k) - (\nabla_X^1 Y)(k).$$

Then the Hessian form h^k of k on (M,g) satisfies

(2.5)
$$h^{k}(X,U) = XU(k) - X(k)U(l) - X(k)V(k),$$

$$(2.6) h^k(X,Y) = h_1^k(X,Y) - X(l)Y(k) - X(k)Y(l) + g(X,Y)g(\nabla k, \nabla l),$$

where $U \in \mathcal{L}(M_2)$.

Remark 2.3. From now on, throughout this paper, we denote by l the pullback of l, i.e., $l = l \circ \pi_2$.

Now let S and S^i be Ricci tensor of (M, g) and (M_i, g_i) , respectively. Then we have the following relations:

Lemma 2.4. Let M be a warped-twisted product manifold. Then, we have

$$S(X,Y) = S^{1}(X,Y) + h^{l}(X,Y) - m_{2} \left\{ h_{1}^{k}(X,Y) + X(k)Y(k) \right\}$$

$$(2.7) \qquad -g(X,Y) \left\{ \Delta l + g(\nabla l, \nabla l) \right\},$$

$$(2.8) S(X,U) = (1 - m_2)XU(k) + (m_1 + m_2 - 2)X(k)U(l),$$

$$S(U,V) = S^2(U,V) + h^k(U,V) + (1 - m_2)h_2^k(U,V) + m_2U(k)V(k)$$

$$-g(U,V) \left\{ \Delta k + g(\nabla k, \nabla k) \right\}$$

$$(2.9) -m_1 \left\{ h_2^l(U,V) + U(l)V(l) - U(l)V(k) - U(k)V(l) \right\}$$

for $X, Y \in \mathcal{L}(M_1)$ and $U, V \in \mathcal{L}(M_2)$.

Proof. The above equations can be easily obtained from Proposition 3 of [7] with X(l) = 0, for $X \in \mathcal{L}(M_1)$.

Now let τ^1 and τ^2 be scalar curvature tensors of (M_1,g_1) and (M_2,g_2) , respectively. Let $\{e_1,\ldots,e_{m_1},e_{m_1+1},\ldots,e_{m_1+m_2}\}$ be an orthonormal basis of M, where $\{f_2e_1,\ldots,f_2e_{m_1}\}$ is an orthonormal basis of M_1 and $\{f_1e_{m_1+1},\ldots,f_1e_{m_1+m_2}\}$ is an orthonormal basis of M_2 . Then we have the following relation from Lemma 2.4:

Lemma 2.5. Let M be a warped-twisted product manifold and let τ be the scalar curvature of M. Then, we have

$$\tau = \frac{\tau^{1}}{f_{2}^{2}} + \frac{\tau^{2}}{f_{1}^{2}} + \tilde{\Delta}_{1}(l) + \tilde{\Delta}_{2}(k) - \frac{m_{2}}{f_{2}^{2}} \Delta_{1}(k) - \frac{m_{1}}{f_{1}^{2}} \Delta_{2}(l) + \frac{(1 - m_{2})}{f_{1}^{2}} \Delta_{2}(k) - m_{2}g(P_{1}\nabla k, P_{1}\nabla k) - m_{1}\Delta l - 2m_{1}g(\nabla l, \nabla l) (2.10) - m_{2} \left\{ \Delta k + g(\nabla k, \nabla k) \right\} + m_{2}g(P_{2}\nabla k, P_{2}\nabla k) + 2m_{1}g(P_{2}\nabla k, \nabla l)$$

for
$$X, Y \in \mathcal{L}(M_1)$$
 and $U, V \in \mathcal{L}(M_2)$, where $\tilde{\Delta}_1(k) = \sum_{i=1}^{m_1} h^k(e_i, e_i)$,

$$\tilde{\Delta}_2(k) = \sum_{i=m_1+1}^{m_1+m_2} h^k(e_i, e_i), \ \Delta k = \tilde{\Delta}_1(k) + \tilde{\Delta}_2(k) \ and \ \nabla k = P_1 \nabla k + P_2 \nabla k.$$

Definition 2.6. Let (\bar{M}, \bar{g}) be a Riemannian manifold of dimension m. Then the Weyl conformal curvature tensor field of \bar{M} is the tensor field W of type (1,3) defined as

$$\mathcal{W}(\bar{X}, \bar{Y})\bar{Z} \\
= R_{\bar{X}\bar{Y}}\bar{Z} \\
+ \frac{1}{m-2} \left\{ S(\bar{X}, \bar{Z})\bar{Y} - S(\bar{Y}, \bar{Z})\bar{X} + \bar{g}(\bar{X}, \bar{Z})Q\bar{Y} - \bar{g}(\bar{Y}, \bar{Z})Q\bar{X} \right\} \\
(2.11) \qquad - \frac{\tau}{(m-1)(m-2)} \left\{ \bar{g}(\bar{X}, \bar{Z})\bar{Y} - \bar{g}(\bar{Y}, \bar{Z})\bar{X} \right\}$$

for any vector fields \bar{X}, \bar{Y} and \bar{Z} on \bar{M} , where Q is the Ricci operator and τ is the scalar curvature of \bar{M} [17].

Lemma 2.7. Let M be a warped-twisted product manifold. Then, for $X \in \mathcal{L}(M_1)$ and $U, V \in \mathcal{L}(M_2)$, the Weyl conformal curvature tensor W satisfies

(2.12)
$$W(U,V)X = \frac{(m_1 - 1)}{(m_1 + m_2 - 2)} \left\{ XU(k)V - XV(k)U \right\},$$

where $m_i = dim M_i$, i=1,2.

Proof. Let $X \in \mathcal{L}(M_1)$ and $U, V \in \mathcal{L}(M_2)$. Then we have

$$(2.13) \quad \mathcal{W}(U,V)X = R(U,V)X + \frac{1}{(m_1 + m_2 - 2)} \bigg\{ S(U,X)V - S(V,X)U \bigg\},\,$$

from (2.11), since g(U, X) = g(V, X) = 0. If we use (2.8) in (2.13), we get (2.12).

Definition 2.8. Let M be a warped-twisted product manifold. Then we say that M_2 is Weyl conformal flat along M_1 if $\mathcal{W}(U,V)=0$ and M_1 is Weyl conformal flat along M_2 if $\mathcal{W}(X,Y)=0$, where $X,Y\in\mathcal{L}(M_1)$ and $U,V\in\mathcal{L}(M_2)$.

Now, we are ready to give an another main result.

Theorem 2.9. Let M be a warped-twisted product manifold and $dim M_1 > 1$. Then (M, g) can be expressed as a doubly warped product manifold $f_2 M_1 \times_f M_2$ of (M_1, g_1) and $(M_2, \tilde{g_2})$ with warping functions f_1 and f, if and only if M_2 is Weyl conformal flat on M_1 , where $\tilde{g_2} = f^2 g_2$ for some positive smooth function f on M_2 .

Proof. If (M, g) is a doubly warped product manifold of (M_1, g_1) and $(M_2, \tilde{g_2})$ with warping functions f_1 and f, then we have V(k) = 0 for $V \in \mathcal{L}(M_2)$. Thus, the assertion comes immediately from (2.12).

Conversely, if W(U, V)X = 0 for all $X \in \mathcal{L}(M_1)$ and $U, V \in \mathcal{L}(M_2)$, then we have

(2.14)
$$XV(k)U - XU(k)V = 0,$$

from (2.12). For linearly independent vector field U and V, we deduce that XV(k)=XU(k)=0 from (2.14). Hence, it follows that $f_1=e^k=a(x)b(y)$, where a and b are positive smooth functions on M_1 and M_2 , respectively. Then, we can write the metric g as $g=f_2^2(y)g_1+a^2(x)\tilde{g_2}$, where $\tilde{g_2}=b^2(y)g_2$. Therefore, $(f_2M_1\times_{f_1}M_2,g)$ is a doubly warped product with f=a.

Definition 2.10. A vector field \bar{V} on a Riemannian manifold (\bar{M}, \bar{g}) is called *torse-forming*, if it satisfies [15]

(2.15)
$$\bar{\nabla}_{\bar{X}}\bar{V} = \lambda \bar{X} + \mu(\bar{X})\bar{V}$$

for any vector field \bar{X} on \bar{M} , where λ is a function, μ is a 1-form. If the 1-form μ in (2.15) vanishes identically, then the vector field \bar{V} is called *concircular* [3, 12, 16, 14].

Now, we give another characterization for a warped-twisted product admitting a concircular vector field.

Proposition 2.11. Let M be a warped-twisted product manifold. Then

- a) If M admits a concircular vector field in $\mathcal{L}(M_1)$, then $f_2M_1 \times f_1 M_2$ is a twisted product.
- **b)** If M admits a concircular vector field in $\mathcal{L}(M_2)$, then $f_2M_1 \times f_1 M_2$ is a base-conformal warped product.

Proof. Let M be a warped-twisted product manifold. Then

a) Let X be a concircular vector field in $\mathcal{L}(M_1)$, then for any $V \in \mathcal{L}(M_2)$, we have

$$(2.16) \nabla_V X = \lambda V$$

from (2.15). By using (2.2), we obtain

$$V(l)X + X(k)V = \lambda V$$

from (2.16). Hence, we get V(l) = 0 for all $V \in \mathcal{L}(M_2)$. Which means that the function l is constant, so f_2 is also constant. Thus, $f_2M_1 \times f_1 M_2$ is a twisted product.

b) Let U be a concircular vector field in $\mathcal{L}(M_2)$, then for any $Y \in \mathcal{L}(M_1)$, we have

$$(2.17) \nabla_Y U = \lambda Y$$

from (2.15). By using (2.2), we obtain

$$U(l)Y + Y(k)U = \lambda Y$$

from (2.17). Hence, we get Y(k) = 0 for all $Y \in \mathcal{L}(M_1)$. Which means that the function $k = \ln f_1$ depends only points of M_2 . Thus, $f_2 M_1 \times_{f_1} M_2$ is a base-conformal warped product.

3. Einstein-Like Warped-Twisted Products

In [8], Gray defined Einstein-like Riemannian manifolds of different classes. Mantica and Shenawy studied Einstein-like warped product manifolds in [9]. Besides this, El-Sayied and etc. [6] consider the Einstein-like doubly warped products and its applications. In this section, we introduce the different classes of Einstein-like warped-twisted product manifolds.

Class \mathcal{A} . A Riemannian manifold (\bar{M}, \bar{g}) admitting a cyclic parallel Ricci tensor, that is,

$$(\bar{\nabla}_{\bar{X}}S)(\bar{Y},\bar{Z}) + (\nabla_{\bar{Y}}S)(\bar{Z},\bar{X}) + (\bar{\nabla}_{\bar{Z}}S)(\bar{X},\bar{Y}) = 0,$$

for any vector fields $\bar{X}, \bar{Y}, \bar{Z}$ on \bar{M} is called an Einstein-like manifold of class A. It is noted that the above condition is equivalent to

$$(\bar{\nabla}_{\bar{X}}S)(\bar{X},\bar{X}) = 0,$$

for any vector field \bar{X} on \bar{M} . The inheritance property of Class \mathcal{A} is given by the following result.

Theorem 3.1. Let M be an Einstein-like warped-twisted product of class A. Then

a)
$$(M_1, g_1)$$
 is an Einstein-like manifold of class \mathcal{A} if and only if
$$(\nabla_X^1 h^l)(X, X) = m_2\{(\nabla_X^1 h_1^k)(X, X) + 2X(k)h_1^k(X, X)\}$$

$$-2g(X, X)S(\nabla l, X),$$

b) (M_2, g_2) is an Einstein-like manifold of class A if and only if

$$(\nabla_{U}^{2}h^{k})(U,U) + (1 - m_{2})(\nabla_{U}^{2}h_{2}^{k})(U,U)$$

$$= m_{1}(\nabla_{U}^{2}h_{2}^{l})(U,U) - 2m_{2}h_{2}^{k}(U,U)U(k)$$

$$+2U(f_{1})f_{1}g_{2}(U,U)k^{\diamond} + g(U,U)U(k^{\diamond})$$

$$+2m_{1}\{h_{2}^{l}(U,U)U(l) - h_{2}^{l}(U,U)U(k)$$

$$-h_{2}^{k}(U,U)U(l)\}$$

$$+4U(k)S(U,U) - 2g(U,U)S(\nabla k,U)$$

$$(3.3)$$

for
$$X \in \mathcal{L}(M_1)$$
 and $U \in \mathcal{L}(M_2)$, where $k^{\diamond} = \triangle k + ||\nabla k||^2$.

Proof. Let M be an Einstein-like warped-twisted product of class \mathcal{A} . Then, for any vector field X on M, we have $(\nabla_X S)(X,X) = 0$, from (3.1).

a) (M_1, g_1) is an Einstein-like manifold of class \mathcal{A} if and only if

(3.4)
$$(\nabla_X^1 S^1)(X, X) = 0.$$

for any vector field X on M_1 . On the other hand, from (2.1) and (2.7), we have $(\nabla_X S)(X, X)$

$$= X(S(X,X)) - 2S(\nabla_X X, X)$$

$$= X(S^1(X,X) + h^l(X,X) - m_2\{h_1^k(X,X) + X(k)X(k)\} - g(X,X)l^{\diamond})$$

$$-2S(\nabla_X^1 X - g(X,X)\nabla l, X).$$

$$= X(S^1(X,X)) - 2S^1(\nabla_X^1 X, X) + X(h^l(X,X)) - 2h^l(\nabla_X^1 X, X)$$

$$= X(S(X,X)) - 2S(V_XX,X) + X(h(X,X)) - 2h(V_XX,X)$$

$$-m_2\{X(h_1^k(X,X)) - 2h_1^k(X,X)\} - m_2X(X(k)X(k)) - X(g(X,X)l^{\diamond})$$

$$+2m_2\nabla_X^1X(k)X(k) + 2g(\nabla_X^1X,X)l^{\diamond} + 2g(X,X)S(\nabla l,X).$$

for $X \in \mathcal{L}(M_1)$. Then, we find

$$0 = (\nabla_X S)(X, X)$$

$$= (\nabla_X^1 S^1)(X, X) + (\nabla_X^1 h^l)(X, X)$$

$$-m_2(\nabla_X^1 h_1^k)(X, X) - 2m_2 X(X(k))X(k) - (\nabla_X^1 g)(X, X)l^{\diamond}$$

$$+2m_2 \nabla_X^1 X(k)X(k) + 2g(X, X)S(\nabla l, X).$$

If we use (2.4) and (3.4), we have

(3.6)
$$0 = (\nabla_X S)(X, X)$$
$$= (\nabla_X^1 h^l)(X, X) - m_2(\nabla_X^1 h_1^k)(X, X)$$
$$-2m_2 X(k) h_1^k(X, X) + 2g(X, X) S(\nabla l, X).$$

So, (3.2) follows from (3.6).

b) (M_2, g_2) is an Einstein-like manifold of class \mathcal{A} if and only if

(3.8)
$$(\nabla_U^2 S^2)(U, U) = 0$$

for any vector field U on M_2 . On the other hand, from (2.3) and (2.9), we have $(\nabla_U S)(U, U)$

$$= U(S(U,U)) - 2S(\nabla_U U, U)$$

$$= U(S^2(U,U) + h^k(U,U) + (1 - m_2)h_2^k(U,U) + m_2U(k)U(k) - g(U,U)k^{\diamond})$$

$$- m_1U(h_2^l(U,U) + U(l)U(l) - U(l)U(k) - U(k)U(l))$$

$$- 2S(\nabla_U^2 U + 2U(k)U - g(U,U)\nabla k, U)$$

$$= U(S^2(U,U)) - 2S^2(\nabla_U^2 U, U) + U(h^k(U,U)) - 2h^k(\nabla_U^2 U, U)$$

$$+ (1 - m_2)\{U(h_2^k(U,U)) - 2h_2^k(\nabla_U^2 U, U)\}$$

$$- m_1\{U(h_2^l(U,U)) - 2h_2^l(\nabla_U^2 U, U)\} + m_2\{U(U(k)U(k)) - 2\nabla_U^2 U(k)U(k)\}$$

$$- U(g(U,U))k^{\diamond} + 2g(\nabla_U^2 U, U)k^{\diamond} - g(U, U)U(k^{\diamond})$$

$$- m_1\{U(U(l)U(l)) - 2U(U(l)U(k))\}$$

$$- m_1\{-2\nabla_U^2 U(l)U(l) + 2\nabla_U^2 U(l)U(k) + 2\nabla_U^2 U(k)U(l)\}$$

$$- 4U(k)S(U,U) + 2g(U,U)S(\nabla k, U)$$

for $U \in \mathcal{L}(M_2)$. Then, we find

$$0 = (\nabla_{U}S)(U,U)$$

$$= (\nabla_{U}^{2}S^{2})(U,U) + (\nabla_{U}^{2}h^{k})(U,U)$$

$$+ (1 - m_{2})(\nabla_{U}^{2}h_{2}^{k})(U,U) - m_{1}(\nabla_{U}^{2}h_{2}^{l})(U,U)$$

$$+ 2m_{2}h_{2}^{k}(U,U)U(k) - (\nabla_{U}^{2}g)(U,U)k^{\diamond} - g(U,U)U(k^{\diamond})$$

$$- m_{1}\{2U(U(l))U(l) - 2U(U(l))U(k) - 2U(U(k))U(l)\}$$

$$- m_{1}\{-2\nabla_{U}^{2}U(l)U(l) + 2\nabla_{U}^{2}U(l)U(k) + 2\nabla_{U}^{2}U(k)U(l)\}$$

$$- 4U(k)S(U,U) + 2g(U,U)S(\nabla k,U).$$

If we use (2.4) and (3.8), we have

$$0 = (\nabla_{U}^{2}h^{k})(U,U) + (1 - m_{2})(\nabla_{U}^{2}h_{2}^{k})(U,U) - m_{1}(\nabla_{U}^{2}h_{2}^{l})(U,U) + 2m_{2}h_{2}^{k}(U,U)U(k) - 2U(f_{1})f_{1}g_{2}(U,U)k^{\diamond} - g(U,U)U(k^{\diamond}) - 2m_{1}\{h_{2}^{l}(U,U)U(l) - h_{2}^{l}(U,U)U(k) - h_{2}^{k}(U,U)U(l)\} - 4U(k)S(U,U) + 2g(U,U)S(\nabla k,U).$$

So, (3.3) follows from (3.10).

For a singly warped product, one can obtain the following result.

Corollary 3.2. Let M be an Einstein-like singly warped product of class A. Then

a) (M_1, g_1) is an Einstein-like manifold of class A if and only if

(3.11)
$$(\nabla_X^1 h^l)(X, X) = 0,$$

b) (M_2, g_2) is an Einstein-like manifold of class A if and only if

(3.12)
$$(\nabla_U^2 h_2^l)(U, U) + 2h_2^l(U, U)U(l) = 0$$

for $X \in \mathcal{L}(M_1)$ and $U \in \mathcal{L}(M_2)$.

Class \mathcal{B} . If the Ricci tensor of a Riemannian manifold (\bar{M}, \bar{g}) is a Codazzi tensor, i.e.,

$$(3.13) \qquad (\bar{\nabla}_{\bar{X}}S)(\bar{Y},\bar{Z}) = (\bar{\nabla}_{\bar{Y}}S)(\bar{X},\bar{Z}),$$

for any vector fields $\bar{X}, \bar{Y}, \bar{Z}$ on \bar{M} , then (\bar{M}, \bar{g}) is called an *Einstein-like manifold of Class* \mathcal{B} . This condition is equivalent to one of the following conditions:

- i) The Riemann tensor of (\bar{M}, \bar{g}) is harmonic, or
- ii) The Weyl conformal tensor of (\bar{M}, \bar{g}) is harmonic and the scalar curvature of (\bar{M}, \bar{g}) is constant.

The factor manifolds are Einstein-like of Class ${\mathcal B}$ according to the following result.

Theorem 3.3. Let M be an Einstein-like warped-twisted product of class \mathcal{B} . Then

a) (M_1, g_1) is an Einstein-like manifold of class \mathcal{B} if and only if

$$(\nabla_X^1 h^l)(Y, Z) - (\nabla_Y^1 h^l)(X, Z)$$

$$= m_2\{(\nabla_X^1 h_1^k)(Y, Z) - (\nabla_Y^1 h_1^k)(X, Z)\}$$

$$+ m_2\{h_1^k(X, Z)Y(k) - h_1^k(Y, Z)X(k)\}$$

$$-g(X, Z)S(Y, \nabla l) + g(Y, Z)S(X, \nabla l),$$
(3.14)

b) (M_2, g_2) is an Einstein-like manifold of class \mathcal{B} if and only if

$$(\nabla_{U}^{2}h^{k})(V,W) - (\nabla_{V}^{2}h^{k})(U,W)$$

$$+(1 - m_{2})\{(\nabla_{U}^{2}h_{2}^{k})(V,W) - (\nabla_{V}^{2}h_{2}^{k})(U,W)\}$$

$$= m_{1}\{(\nabla_{U}^{2}h_{2}^{l})(V,W) - (\nabla_{V}^{2}h_{2}^{l})(U,W)\}$$

$$+\{2U(f_{1})f_{1}g_{2}(V,W) - 2V(f_{1})f_{1}g_{2}(U,W)\}k^{\diamond}$$

$$+g(V,W)U(k^{\diamond}) - g(U,W)V(k^{\diamond})$$

$$-m_{2}\{h_{2}^{k}(U,W)V(k) - h_{2}^{k}(V,W)U(k)\}$$

$$+m_{1}\{h_{2}^{l}(U,W)V(l) - h_{2}^{k}(U,W)V(l)\}$$

$$+m_{1}\{-h_{2}^{l}(U,W)V(k) - h_{2}^{l}(V,W)U(k)\}$$

$$+m_{1}\{h_{2}^{k}(V,W)U(l) + h_{2}^{l}(V,W)U(k)\}$$

$$-U(k)S(V,W) + V(k)S(U,W)$$

$$+g(U,W)S(V,\nabla k) - g(V,W)S(U,\nabla k)$$

for $X, Y, Z \in \mathcal{L}(M_1)$ and $U, V, W \in \mathcal{L}(M_2)$, where $k^{\diamond} = \triangle k + ||\nabla k||^2$.

Proof. Let M be an Einstein-like warped-twisted product of class \mathcal{B} .

 $\mathbf{a})(M_1,g_1)$ is an Einstein-like manifold of class \mathcal{B} if and only if

(3.16)
$$(\nabla_X^1 S^1)(Y, Z) = (\nabla_Y^1 S^1)(X, Z),$$

for any vector fields X, Y, Z on M_1 . On the other hand, from (2.1) and (2.7), we have

$$\begin{aligned} &(\nabla_X S)(Y,Z) \\ &= X(S(Y,Z)) - S(\nabla_X Y,Z) - S(Y,\nabla_X Z) \\ &= X(S(Y,Z)) - S(\nabla_X^1 Y - g(X,Y)\nabla l,Z) - S(Y,\nabla_X^1 Z - g(X,Z)\nabla l) \\ &= X(S^1(Y,Z)) + X(h^l(Y,Z)) - m_2\{X(h_1^k(Y,Z)) + X(Y(k)Z(k))\} \\ &- X(g(Y,Z))l^{\diamond} \\ &- \{S^1(\nabla_X^1 Y,Z) + h^l(\nabla_X^1 Y,Z) - m_2\{h_1^k(\nabla_X^1 Y,Z) + \nabla_X^1 Y(k)Z(k)\} \\ &- g(\nabla_X^1 Y,Z)l^{\diamond}\} \\ &- \{S^1(Y,\nabla_X^1 Z) + h^l(Y,\nabla_X^1 Z) - m_2\{h_1^k(Y,\nabla_X^1 Z) + \nabla_X^1 Z(k)Y(k)\} \\ &- g(Y,\nabla_X^1 Z)l^{\diamond}\} \\ &+ g(X,Y)S(\nabla l,Z) + g(X,Z)S(Y,\nabla l) \end{aligned}$$

for $X, Y, Z \in \mathcal{L}(M_1)$. Then, we find

$$(\nabla_{X}S)(Y,Z) = X(S^{1}(Y,Z)) - S^{1}(\nabla_{X}^{1}Y,Z) - S^{1}(Y,\nabla_{X}^{1}Z) + X(h^{l}(Y,Z)) - h^{l}(\nabla_{X}^{1}Y,Z) - h^{l}(Y,\nabla_{X}^{1}Z) - m_{2}\{X(h_{1}^{k}(Y,Z)) - h_{1}^{k}(\nabla_{X}^{1}Y,Z) - h_{1}^{k}(Y,\nabla_{X}^{1}Z)\} - \{X(g(Y,Z))l^{\diamond} - g(\nabla_{X}^{1}Y,Z)l^{\diamond} - g(Y,\nabla_{X}^{1}Z)l^{\diamond}\}\} - m_{2}\{X(Y(k)Z(k)) - \nabla_{X}^{1}Y(k)Z(k) - \nabla_{X}^{1}Z(k)Y(k)\} + g(X,Y)S(\nabla l,Z) + g(X,Z)S(Y,\nabla l)$$

If we use (2.4), we have

$$(\nabla_{X}S)(Y,Z) = (\nabla_{X}^{1}S^{1})(Y,Z) + (\nabla_{X}^{1}h^{l})(Y,Z) - m_{2}(\nabla_{X}^{1}h_{1}^{k})(Y,Z) -m_{2}\{h_{1}^{k}(X,Y)Z(k) + h_{1}^{k}(X,Z)Y(k)\} +g(X,Y)S(\nabla l,Z) + g(X,Z)S(Y,\nabla l).$$

If we interchange X and Y in (3.17), we obtain

$$(\nabla_{Y}S)(X,Z) = (\nabla_{Y}^{1}S^{1})(X,Z) + (\nabla_{Y}^{1}h^{l})(X,Z) - m_{2}(\nabla_{Y}^{1}h_{1}^{k})(X,Z) -m_{2}\{h_{1}^{k}(Y,X)Z(k) + h_{1}^{k}(Y,Z)X(k)\} +g(Y,X)S(\nabla l,Z) + g(Y,Z)S(X,\nabla l).$$

Hence, from (3.13), (3.17), (3.18) and (3.16), we have

$$(3.19) 0 = (\nabla_X^1 h^l)(Y, Z) - (\nabla_Y^1 h^l)(X, Z) -m_2\{(\nabla_X^1 h_1^k)(Y, Z) - (\nabla_Y^1 h_1^k)(X, Z)\} -m_2\{h_1^k(X, Z)Y(k) - h_1^k(Y, Z)X(k)\} +g(X, Z)S(Y, \nabla l) - g(Y, Z)S(X, \nabla l).$$

So, (3.14) follows from (3.19).

b) (M_2, g_2) is an Einstein-like manifold of class $\mathcal B$ if and only if

(3.20)
$$(\nabla_U^2 S^2)(V, W) = (\nabla_V^2 S^2)(U, W),$$

for any vector fields U, V, W on M_2 . On the other hand, from (2.3) and (2.9), we have

$$\begin{aligned} &(\nabla_{U}S)(V,W) \\ &= U(S(V,W)) - S(\nabla_{U}V,W) - S(V,\nabla_{U}W) \\ &= U(S^{2}(V,W) + h^{k}(V,W) + (1-m_{2})h_{2}^{k}(V,W) + m_{2}V(k)W(k) \\ &- g(V,W)k^{\diamond}) \\ &- m_{1}U(h_{2}^{l}(V,W) + V(l)W(l) - V(l)W(k) - V(k)W(l)) \\ &- S(\nabla_{U}^{2}V + U(k)V + V(k)U - g(U,V)\nabla k,W) \\ &- S(V,\nabla_{U}^{2}W + U(k)W + W(k)U - g(U,W)\nabla k) \end{aligned}$$

for $U, V, W \in \mathcal{L}(M_2)$. Then, we find

$$\begin{split} &(\nabla_{U}S)(V,W) \\ &= U(S^{2}(V,W)) + U(h^{k}(V,W)) + (1-m_{2})U(h^{k}_{2}(V,W)) \\ &+ m_{2}U(V(k)W(k)) - U(g(V,W)k^{\diamond}) \\ &- m_{1}\{U(h^{l}_{2}(V,W)) + U(V(l)W(l)) \\ &- U(V(l)W(k)) - U(V(k)W(l))\} \\ &- \{S^{2}(\nabla^{2}_{U}V,W)) + h^{k}(\nabla^{2}_{U}V,W) + (1-m_{2})h^{k}_{2}(\nabla^{2}_{U}V,W) \\ &+ m_{2}\nabla^{2}_{U}V(k)W(k) - g(\nabla^{2}_{U}V,W)k^{\diamond}\} \\ &- \{-m_{1}\{h^{l}_{2}(\nabla^{2}_{U}V,W) + \nabla^{2}_{U}V(l)W(l) \\ &- \nabla^{2}_{U}V(l)W(k) - \nabla^{2}_{U}V(k)W(l)\}\} \\ &- \{S^{2}(V,\nabla^{2}_{U}W)) + h^{k}(V,\nabla^{2}_{U}W) + (1-m_{2})h^{k}_{2}(V,\nabla^{2}_{U}W) \\ &+ m_{2}\nabla^{2}_{U}W(k)V(k) - g(V,\nabla^{2}_{U}W)k^{\diamond}\} \\ &- \{-m_{1}\{h^{l}_{2}(V,\nabla^{2}_{U}W) + \nabla^{2}_{U}W(l)V(l) \\ &- \nabla^{2}_{U}W(k)V(l) - \nabla^{2}_{U}W(l)V(k)\}\} \\ &- \{-W(k)S(V,W) - V(k)S(U,W) - W(k)S(V,U) \end{split}$$

If we arrange this equation, we have

$$\begin{split} (\nabla_{U}S)(V,W) &= U(S^{2}(V,W)) - S^{2}(\nabla_{U}^{2}V,W)) - S^{2}(V,\nabla_{U}^{2}W)) \\ &+ U(h^{k}(V,W)) - h^{k}(\nabla_{U}^{2}V,W) - h^{k}(V,\nabla_{U}^{2}W) \\ &+ (1-m_{2})\{U(h_{2}^{k}(V,W)) - h_{2}^{k}(\nabla_{U}^{2}V,W) - h_{2}^{k}(V,\nabla_{U}^{2}W)\} \\ &- m_{1}\{U(h_{2}^{l}(V,W)) - h_{2}^{l}(\nabla_{U}^{2}V,W) - h_{2}^{l}(V,\nabla_{U}^{2}W)\} \\ &- \{U(g(V,W))k^{\diamond} - g(\nabla_{U}^{2}V,W)k^{\diamond} - g(V,\nabla_{U}^{2}W)k^{\diamond}\} \\ &- g(V,W)U(k^{\diamond}) \\ &+ m_{2}\{U(V(k))W(k) + U(W(k))V(k) - \nabla_{U}^{2}V(k)W(k) \\ &- \nabla_{U}^{2}W(k)V(k)\} \\ &- m_{1}\{U(V(l)W(l)) - U(V(l)W(k)) - U(V(k)W(l))\} \\ &- m_{1}\{-\nabla_{U}^{2}V(l)W(l) + \nabla_{U}^{2}V(l)W(k) + \nabla_{U}^{2}V(k)W(l)\} \\ &- m_{1}\{-\nabla_{U}^{2}W(l)V(l) + \nabla_{U}^{2}W(k)V(l) + \nabla_{U}^{2}W(l)V(k)\} \\ &- 2U(k)S(V,W) - V(k)S(U,W) - W(k)S(V,U) \\ &+ g(U,V)S(\nabla k,W) + g(U,W)S(V,\nabla k). \end{split}$$

If we use (2.4), we have

$$(\nabla_{U}S)(V,W)$$

$$= (\nabla_{U}^{2}S^{2})(V,W) + (\nabla_{U}^{2}h^{k})(V,W) + (1-m_{2})(\nabla_{U}^{2}h_{2}^{k})(V,W)$$

$$-m_{1}(\nabla_{U}^{2}h_{2}^{l})(V,W)$$

$$-(\nabla_{U}^{2}g)(V,W)k^{\diamond} - g(V,W)U(k^{\diamond})$$

$$(3.21) + m_{2}\{h_{2}^{k}(U,V)W(k) + h_{2}^{k}(U,W)V(k)\}$$

$$-m_{1}\{h_{2}^{l}(U,V)W(l) + h_{2}^{l}(U,W)V(l) - h_{2}^{l}(U,V)W(k)\}$$

$$-m_{1}\{-h_{2}^{k}(U,W)V(l) - h_{2}^{k}(U,V)W(l) - h_{2}^{l}(U,W)V(k)\}$$

$$-2U(k)S(V,W) - V(k)S(U,W) - W(k)S(V,U)$$

$$+g(U,V)S(\nabla k,W) + g(U,W)S(V,\nabla k).$$

If we interchange U and V in (3.21), we obtain

$$(\nabla_{V}S)(U,W)$$

$$= (\nabla_{V}^{2}S^{2})(U,W) + (\nabla_{V}^{2}h^{k})(U,W) + (1-m_{2})(\nabla_{V}^{2}h_{2}^{k})(U,W)$$

$$-m_{1}(\nabla_{V}^{2}h_{2}^{l})(U,W)$$

$$-(\nabla_{V}^{2}g)(U,W)k^{\diamond} - g(U,W)V(k^{\diamond})$$

$$(3.22) + m_{2}\{h_{2}^{k}(V,U)W(k) + h_{2}^{k}(V,W)U(k)\}$$

$$-m_{1}\{h_{2}^{l}(V,U)W(l) + h_{2}^{l}(V,W)U(l) - h_{2}^{l}(V,U)W(k)\}$$

$$-m_{1}\{-h_{2}^{k}(V,W)U(l) - h_{2}^{k}(V,U)W(l) - h_{2}^{l}(V,W)U(k)\}$$

$$-2V(k)S(U,W) - U(k)S(V,W) - W(k)S(U,V)$$

$$+g(V,U)S(\nabla k,W) + g(V,W)S(U,\nabla k).$$

Hence, from (3.13), (3.21), (3.22) and (3.20), we obtain

$$0 = (\nabla_{U}^{2}h^{k})(V, W) - (\nabla_{V}^{2}h^{k})(U, W) + (1 - m_{2})\{(\nabla_{U}^{2}h_{2}^{k})(V, W) - (\nabla_{V}^{2}h_{2}^{k})(U, W)\} - m_{1}\{(\nabla_{U}^{2}h_{2}^{l})(V, W) - (\nabla_{V}^{2}h_{2}^{l})(U, W)\} - 2U(f_{1})f_{1}g_{2}(V, W)k^{\diamond} + 2V(f_{1})f_{1}g_{2}(U, W)k^{\diamond} - g(V, W)U(k^{\diamond}) + g(U, W)V(k^{\diamond}) + m_{2}\{h_{2}^{k}(U, W)V(k) - h_{2}^{k}(V, W)U(k)\} - m_{1}\{h_{2}^{l}(U, V)W(l) + h_{2}^{l}(U, W)V(l) - h_{2}^{l}(U, V)W(k)\} - m_{1}\{-h_{2}^{k}(U, W)V(l) - h_{2}^{k}(U, V)W(l) - h_{2}^{l}(U, W)V(k)\} + m_{1}\{-h_{2}^{k}(V, W)U(l) - h_{2}^{k}(V, U)W(l) - h_{2}^{l}(V, W)U(k)\} - 2U(k)S(V, W) - V(k)S(U, W) - W(k)S(V, U) + 2V(k)S(U, W) + U(k)S(V, W) + W(k)S(U, V) - g(V, U)S(\nabla k, W) - g(V, W)S(U, \nabla k).$$

So, (3.15) follows from the above equation.

For a singly warped product, one can obtain the following result.

Corollary 3.4. Let M be an Einstein-like singly warped product of class \mathcal{B} . Then

a) (M_1, g_1) is an Einstein-like manifold of class \mathcal{B} if and only if

(3.23)
$$(\nabla_X^1 h^l)(Y, Z) - (\nabla_Y^1 h^l)(X, Z) = 0$$

b) (M_2, g_2) is an Einstein-like manifold of class \mathcal{B} if and only if

$$(3.24) \quad (\nabla_U^2 h_2^l)(V, W) - (\nabla_V^2 h_2^l)(U, W) = -h_2^l(U, W)V(l) + h_2^l(V, W)U(l)$$

for $X, Y, Z \in \mathcal{L}(M_1)$ and $U, V, W \in \mathcal{L}(M_2)$.

Class \mathcal{P} . If a Riemannian manifold (\bar{M}, \bar{g}) has a parallel Ricci tensor, i.e.,

$$(3.25) \qquad (\bar{\nabla}_{\bar{X}}S)(\bar{Y},\bar{Z}) = 0$$

for any vector fields $\bar{X}, \bar{Y}, \bar{Z}$ on \bar{M} , then (\bar{M}, \bar{g}) are called *Einstein-like manifolds of Class* \mathcal{P} . In this case, (\bar{M}, \bar{g}) are also called *Ricci symmetric* manifolds.

Theorem 3.5. Let M be an Einstein-like warped-twisted product of class \mathcal{P} . Then

a) (M_1, g_1) is an Einstein-like manifold of class \mathcal{P} if and only if

$$(\nabla_X^1 h^l)(Y, Z) = m_2(\nabla_X^1 h_1^k)(Y, Z)$$

$$+ m_2\{h_1^k(X, Y)Z(k) + h_1^k(X, Z)\}Y(k)$$

$$-g(X, Y)S(\nabla l, Z) - g(X, Z)S(Y, \nabla l),$$

$$(3.26)$$

b) (M_2,g_2) is an Einstein-like manifold of class $\mathcal P$ if and only if

$$\begin{split} (\nabla_U^2 h^k)(V,W) + (1-m_2)(\nabla_U^2 h_2^k)(V,W) \\ &= m_1(\nabla_U^2 h_2^l)(V,W) + 2U(f_1)f_1g_2(V,W)k^\diamond \\ &+ g(V,W)U(k^\diamond) - m_2\{h_2^k(U,V)W(k) + h_2^k(U,W)V(k)\} \\ &+ m_1\{h_2^l(U,V)W(l) + h_2^l(U,W)V(l) - h_2^l(U,V)W(k)\} \\ &+ m_1\{-h_2^k(U,W)V(l) - h_2^k(U,V)W(l) - h_2^l(U,W)V(k)\} \\ &+ 2U(k)S(V,W) + V(k)S(U,W) + W(k)S(V,U) \\ &- g(U,V)S(\nabla k,W) - g(U,W)S(V,\nabla k) \end{split}$$

(3.27)

for $X, Y, Z \in \mathcal{L}(M_1)$ and $U, V, W \in \mathcal{L}(M_2)$, where $k^{\diamond} = \triangle k + \|\nabla k\|^2$.

Proof. Let M be an Einstein-like warped-twisted product of class \mathcal{P} .

a) (M_1, g_1) is an Einstein-like manifold of class \mathcal{P} if and only if

$$(3.28) (\nabla_X^1 S^1)(Y, Z) = 0$$

for any vector fields X, Y, Z on M_1 . On the other hand, from (3.17), we have

$$(\nabla_X S)(Y,Z) = (\nabla_X^1 S^1)(Y,Z) + (\nabla_X^1 h^l)(Y,Z) - m_2(\nabla_X^1 h_1^k)(Y,Z)$$

$$(3.29) - m_2\{h_1^k(X,Y)Z(k) + h_1^k(X,Z)Y(k)\}$$

$$+g(X,Y)S(\nabla l,Z) + g(X,Z)S(Y,\nabla l)$$

for $X, Y, Z \in \mathcal{L}(M_1)$. Thus, using (3.25) and (3.28) in (3.29), we obtain (3.26).

b) (M_2, g_2) is an Einstein-like manifold of class \mathcal{P} if and only if

(3.30)
$$(\nabla_U^2 S^2)(V, W) = 0$$

for any vector fields U, V, W on M_2 . On the other hand, from (3.21), we have

$$(\nabla_{U}S)(V,W)$$

$$= (\nabla_{U}^{2}S^{2})(V,W) + (\nabla_{U}^{2}h^{k})(V,W)$$

$$+ (1 - m_{2})(\nabla_{U}^{2}h_{2}^{k})(V,W) - m_{1}(\nabla_{U}^{2}h_{2}^{l})(V,W)$$

$$-2U(f_{1})f_{1}g_{2}(V,W)k^{\diamond} - g(V,W)U(k^{\diamond})$$

$$+ m_{2}\{h_{2}^{k}(U,V)W(k) + h_{2}^{k}(U,W)V(k)\}$$

$$- m_{1}\{h_{2}^{l}(U,V)W(l) + h_{2}^{l}(U,W)V(l) - h_{2}^{l}(U,V)W(k)\}$$

$$- m_{1}\{-h_{2}^{k}(U,W)V(l) - h_{2}^{k}(U,V)W(l) - h_{2}^{l}(U,W)V(k)\}$$

$$- 2U(k)S(V,W) - V(k)S(U,W) - W(k)S(V,U)$$

$$+ g(U,V)S(\nabla k,W) + g(U,W)S(V,\nabla k)$$

for $U, V, W \in \mathcal{L}(M_2)$. Thus, using (3.25) and (3.30) in (3.31), we obtain (3.27).

For a singly warped product, one can obtain the following result.

Corollary 3.6. Let M be an Einstein-like singly warped product of class \mathcal{P} . Then

a) (M_1, g_1) is an Einstein-like manifold of class \mathcal{P} if and only if

(3.32)
$$(\nabla_X^1 h^l)(Y, Z) = 0,$$

b) (M_2, g_2) is an Einstein-like manifold of class \mathcal{P} if and only if

(3.33)
$$(\nabla_U^2 h_2^l)(V, W) = -h_2^l(U, V)W(l) - h_2^l(U, W)V(l)$$

for $X, Y, Z \in \mathcal{L}(M_1)$ and $U, V, W \in \mathcal{L}(M_2)$.

Class $\mathcal{I} \oplus \mathcal{A}$. Let (\bar{M}, \bar{g}) be a Riemannian manifold of dimension m and a tensor \mathcal{T} is defined by

$$\mathcal{T} = S - \frac{2\tau}{m+2}\bar{g}.$$

If the tensor \mathcal{T} is Killing, then (\bar{M}, \bar{g}) are called *Einstein-like manifolds of class* $\mathcal{I} \oplus \mathcal{A}$. This condition is equivalent to

$$(3.34) 0 = (\bar{\nabla}_{\bar{X}} \mathcal{T})(\bar{X}, \bar{X})$$

for any vector field \bar{X} on \bar{M} . The inheritance property of Class $\mathcal{I} \oplus \mathcal{A}$ is given by the following result.

Theorem 3.7. Let M be an Einstein-like warped-twisted product of class $\mathcal{I} \oplus \mathcal{A}$. Then

a) (M_1, g_1) is an Einstein-like manifold of class $\mathcal{I} \oplus \mathcal{A}$ if and only if

$$(\nabla_X^1 h^l)(X, X) = m_2(\nabla_X^1 h_1^k)(X, X) + 2m_2 X(k) h_1^k(X, X) - 2g(X, X) S(\nabla l, X) + \frac{2}{m+2} \{ \nabla_X \tau g(X, X) - \frac{m+2}{m_1+2} \nabla_X^1 \tau^1 g_1(X, X) \},$$
(3.35)

b) (M_2, g_2) is an Einstein-like manifold of class $\mathcal{I} \oplus \mathcal{A}$ if and only if

$$\begin{split} &(\nabla_{U}^{2}h^{k})(U,U) + (1-m_{2})(\nabla_{U}^{2}h_{2}^{k})(U,U) \\ &= m_{1}(\nabla_{U}^{2}h_{2}^{l})(U,U) - 2m_{2}h_{2}^{k}(U,U)U(k) \\ &+ 2U(f_{1})f_{1}g_{2}(U,U)k^{\diamond} + g(U,U)U(k^{\diamond}) \\ &+ m_{1}\{2h_{2}^{l}(U,U)U(l) - 2h_{2}^{l}(U,U)U(k) - 2h_{2}^{k}(U,U)U(l)\} \\ &+ 4U(k)S(U,U) - 2g(U,U)S(\nabla k,U) \\ &+ \frac{2}{m+2}\{(\nabla_{U}\tau)g(U,U) - \frac{m+2}{m_{2}+2}\nabla_{U}^{2}\tau^{2}g_{2}(U,U)\} \end{split}$$

(3.36)

for $X \in \mathcal{L}(M_1)$ and $U \in \mathcal{L}(M_2)$, where $k^{\diamond} = \triangle k + ||\nabla k||^2$.

Proof. Let M be an Einstein-like warped-twisted product of class $\mathcal{I} \oplus \mathcal{A}$.

a) (M_1, g_1) is an Einstein-like manifold of class $\mathcal{I} \oplus \mathcal{A}$ if and only a tensor $\mathcal{T}^1 = S^1 - \frac{2\tau^1}{m_1+2}g_1$ is Killing, i.e.,

(3.37)
$$0 = (\nabla_X^1 \mathcal{T}^1)(X, X)$$

for any vector field X on M_1 . On the other hand, from (3.34), we have

$$0 = (\nabla_X \mathcal{T})(X, X)$$
$$= (\nabla_X S)(X, X) - \frac{2}{m+2} (\nabla_X (\tau g))(X, X)$$
$$= (\nabla_X S)(X, X) - \frac{2}{m+2} (\nabla_X \tau) g(X, X).$$

for all $X \in \mathcal{L}(M_1)$. Then, using (3.5), we find

$$0 = (\nabla_X^1 S^1)(X, X) + (\nabla_X^1 h^l)(X, X) - m_2(\nabla_X^1 h_1^k)(X, X) - 2m_2 X(k) h_1^k(X, X) - (\nabla_X^1 g)(X, X) l^{\diamond} + 2g(X, X) S(\nabla l, X) - \frac{2}{m+2} (\nabla_X \tau) g(X, X).$$
(3.38)

If we add and subtract $\nabla_X^1(\frac{2\tau^1}{m_1+2}g_1)(X,X)$ right side of the equation (3.38), we have

$$0 = (\nabla_X^1 S^1)(X, X) - \nabla_X^1 (\frac{2\tau^1}{m_1 + 2} g_1)(X, X)$$

$$+ (\nabla_X^1 h^l)(X, X) - m_2 (\nabla_X^1 h_1^k)(X, X) - 2m_2 X(k) h_1^k(X, X)$$

$$+ 2g(X, X) S(\nabla l, X) - \frac{2}{m + 2} (\nabla_X \tau) g(X, X)$$

$$(3.39) + \nabla_X^1 (\frac{2\tau^1}{m_1 + 2} g_1)(X, X).$$

So, using (3.39) and (3.37), we obtain (3.35).

b) (M_2, g_2) is an Einstein-like manifold of class $\mathcal{I} \oplus \mathcal{A}$ if and only a tensor $\mathcal{T}^2 = S^2 - \frac{2\tau^2}{m_2+2}g_2$ is Killing, i.e.,

$$(3.40) 0 = (\nabla_U^2 \mathcal{T}^2)(U, U)$$

for any vector field U on M_2 . On the other hand, we have

$$0 = (\nabla_U \mathcal{T})(U, U)$$

$$= (\nabla_U S)(U, U) - \frac{2}{m+2} (\nabla_U (\tau g))(U, U)$$

$$= (\nabla_U S)(U, U) - \frac{2}{m+2} (\nabla_U \tau) g(U, U).$$

for all $U \in \mathcal{L}(M_2)$, from (3.34). Then, using (3.9), we find

$$0 = (\nabla_{U}^{2}S^{2})(U,U) + (\nabla_{U}^{2}h^{k})(U,U) + (1 - m_{2})(\nabla_{U}^{2}h_{2}^{k})(U,U) - m_{1}(\nabla_{U}^{2}h_{2}^{l})(U,U) + 2m_{2}h_{2}^{k}(U,U)U(k) - (\nabla_{U}^{2}g)(U,U)k^{\diamond} - g(U,U)U(k^{\diamond}) - m_{1}\{2h_{2}^{l}(U,U)U(l) - 2h_{2}^{l}(U,U)U(k) - 2h_{2}^{k}(U,U)U(l)\} - 4U(k)S(U,U) + 2g(U,U)S(\nabla k,U) - \frac{2}{m+2}(\nabla_{U}\tau)g(U,U).$$

If we add and subtract $\nabla_U^2(\frac{2\tau^2}{m_2+2}g_2)(U,U)$ right side of the equation (3.41), we

П

have

$$0 = (\nabla_{U}^{2}S^{2})(U,U) - \nabla_{U}^{2}(\frac{2\tau^{2}}{m_{2}+2}g_{2})(U,U)$$

$$+2m_{2}h_{2}^{k}(U,U)U(k) - 2U(f_{1})f_{1}g_{2}(U,U)k^{\diamond} - g(U,U)U(k^{\diamond})$$

$$-m_{1}\{2h_{2}^{l}(U,U)U(l) - 2h_{2}^{l}(U,U)U(k) - 2h_{2}^{k}(U,U)U(l)\}$$

$$-4U(k)S(U,U) + 2g(U,U)S(\nabla k,U)$$

$$(3.42) - \frac{2}{m+2}(\nabla_{U}\tau)g(U,U)$$

$$+\nabla_{U}^{2}(\frac{2\tau^{2}}{m_{2}+2}g_{2})(U,U).$$

So, using (3.42) and (3.40), we obtain (3.36).

Class $A \oplus \mathcal{B}$. Let (\bar{M}, \bar{g}) be a Riemannian manifold of dimension m. If (\bar{M}, \bar{g}) has a constant scalar curvature, then (\bar{M}, \bar{g}) are called *Einstein-like manifolds of class* $A \oplus \mathcal{B}$. Hence, from (2.10), one can prove the following theorem.

Theorem 3.8. Let M be an Einstein-like warped-twisted product of class $A \oplus B$. Then, (M_1, g_1) and (M_2, g_2) are Einstein-like manifolds of class $A \oplus B$ if and only if

$$c = \frac{c_1}{f_2^2} + \frac{c_2}{f_1^2} + \tilde{\Delta}_1(l) + \tilde{\Delta}_2(k) - \frac{m_2}{f_2^2} \Delta_1(k) - \frac{m_1}{f_1^2} \Delta_2(l) + \frac{(1 - m_2)}{f_1^2} \Delta_2(k) - m_2 g(P_1 \nabla k, P_1 \nabla k) - m_1 \Delta l - 2m_1 g(\nabla l, \nabla l) - m_2 \left\{ \Delta k + g(\nabla k, \nabla k) \right\} + m_2 g(P_2 \nabla k, P_2 \nabla k) + 2m_1 g(P_2 \nabla k, \nabla l)$$

where c, c_1 and c_2 are constant scalar curvature of $(M, g), (M_1, g_1)$ and (M_2, g_2) , respectively.

Acknowledgement

This work is supported by 1001-Scientific and Technological Research Projects Funding Program of The Scientific and Technological Research Council of Turkey (TUBITAK) project number 119F179.

References

- BISHOP, R. L., AND O'NEILL, B. Manifolds of negative curvature. Trans. Amer. Math. Soc. 145, 1 (1969), 1–49.
- [2] CHEN, B. Y. Geometry of Submanifolds and Its Applications. Science University of Tokyo, 1981.

- [3] Chen, B. Y. A simple characterization of generalized robertson-walker spacetimes. *Gen. Relativ. Gravit.* 46, 12 (2014), 1833–1833.
- [4] DOBARRO, F., AND ÜNAL, B. Curvature in special base conformal warped products. *Acta Appl. Math.* 104, 1 (2008), 1–46.
- [5] EHRLICH, P. E. Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds. SUNY, Stony Brook, New York, 1974.
- [6] EL-SAYIED, H. K., MANTICA, C. A., SHENAWY, S., AND NOHA, S. Gray's decomposition on doubly warped product manifolds and applications. *Filomat* 34, 11 (2020), 3767–3776.
- [7] Fernandez, M., Garcia Rio, E., Kupeli, D. N., and Ünal, B. A curvature condition for a twisted product to be a warped product. *Manuscripta Math.* 106 (2001), 213–217.
- [8] Gray, A. Einstein-like manifolds which are not einstein. Geom. Dedicata 7 (1978), 259–280.
- [9] Mantica, C. A., and Shenawy, S. Einstein-like warped product manifolds. Int. J. Geom. Methods Mod. Phys. 14, 11 (2017), 1750166.
- [10] O'Neill, B. Semi-Riemannian Geometry with Applications to Relativity, vol. 217. Academic Press, San Diego, 1983.
- [11] Ponge, R., and Reckziegwl, H. Twisted products in pseudo- riemannian geometry. *Geom. Decicata* 48 (1993), 15–25.
- [12] Schouten, J. A. Ricci Calculus. Springer-Verlag, Berlin, 1954.
- [13] Taştan, H. M., and Gerdan, S. Doubly twisted product semi-invariant submanifolds of a locally product riemannian manifold. *Mathematical Advances in Pure and Applied Sciences* 1, 1 (2018), 23–26.
- [14] Yano, K. Concircular geometry. i. concircular transformations. ii. integrability conditions of $\varrho_{\mu\nu} = \varphi g_{\mu\nu}$. iii. theory of curves. iv. theory of subspaces. *Proc. Imp. Acad. Tokyo 16*, 6 (1940), 195–200.
- [15] YANO, K. On torse forming direction in a riemannian space. Proc. Imp. Acad. Tokyo 20, 6 (1944), 340–345.
- [16] Yano, K., and Chen, B. Y. On the concurrent vector fields of immersed manifolds. Kodai Math. Sem. Rep. 23 (1971), 343–350.
- [17] YANO, K., AND KON, M. Structures on Manifolds. World Scientific, Singapore, 1984.

Received by the editors January 15, 2021 First published online January 14, 2022.