
Novi Sad J. Math. Vol. 53, No. 2, 2023, 223-239
https://doi.org/10.30755/NSJOM.13375

A note on Ricci and Yamabe solitons on almost
Kenmotsu manifolds

H. Öztürk1 and S. K. Yadav23

Abstract. The object of the present paper is to study almost Ken-
motsu manifolds admitting Ricci and Yamabe solitons with conformal
Reeb foliation. We found that there exist no non-zero parallel 2-form in
such a manifold with conformal Reeb foliation. We also study the torque
and concurrent vector fields on almost Kenmotsu manifolds. Next we
prove certain condition for a vector field to be Killing. Finally, we con-
struct an example to verify some results.

AMS Mathematics Subject Classification (2010): 53C15; 53C25

Key words and phrases: almost Kenmotsu manifold; Reeb foliation; con-
tact transformation; Ricci soliton; Yamabe soliton

1. Introduction

The notion of Yamabe flow was introduced by Hamilton at the same time
as the Ricci flow, as a tool for constructing metrics of constant scalar curvature
in a given conformal class of Riemannian metrics on (Mn, g)(n ≥ 3) [13]. A
time-dependent metric g(·, t) on a Riemannian or pseudo Riemannian manifold
M is said to evolve by the Yamabe flow if the metric g satisfies

(1.1)
∂g(t)

∂t
= −κ̆g(t), g(0) = g0,

on M, where κ̆ is the scalar curvature corresponds to g.
A Yamabe soliton is a special soliton of the Yamabe flow that moves by

one parameter family of diffeomorphisms ϕt generated by a fixed vector field
V on M [8]. Ye has found that a point-wise elliptic gradient estimate for the
Yamabe flow on a locally conformally flat compact Riemannian manifold [29].

The significance of Yamabe flow lies in the fact that it is a natural geometric
deformation to metric of constant scalar curvature. One notes that Yamabe
flow corresponds to the fast diffusion case of the porous medium equation (the
plasma equation) in mathematical physics. In dimension n=2, the Yamabe
flow is equivalent to the Ricci flow (defined by ∂

∂tg(t)=-2ᾰ(t), where ᾰ stands
for the Ricci tensor). Just as Ricci soliton is a special solution of the Ricci flow,
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a Yamabe soliton is a special solution of the Yamabe flow that moves by one
parameter family of diffeomorphism ϕt generated by a fixed vector field V on
M , and homotheries, i.e., g(; t) = ς(t)ϕ∗(t)g0.

A Riemannian manifold (M, g) is said to be an almost Yamabe soliton

(M, g, V, λ̆) if there exists a vector field V on M which satisfies [1]:

(1.2)
1

2
(LV g) = (κ̆− λ̆)g,

where LV denotes the Lie-derivative of the metric g along the vector field V,
κ̆ stands for the scalar curvature, while λ̆ is a smooth function. Moreover,
we say that an almost Yamabe soliton is expanding, steady, or shrinking, if
λ̆ < 0, λ̆ = 0 or λ̆ > 0, respectively. An almost Yamabe soliton is said to be the
Yamabe soliton if λ̆ is a constant in Definition (1.2). It is obvious that Einstein
manifolds are almost Yamabe solitons. Given a Yamabe soliton, if V=Df holds
for a smooth function f on M , the equation (1.2) becomes Hess f=(r̆ − λ̆)g,
where Hess f denotes the Hessian of f and D denotes the gradient operator
of g onMn. In this case f is called the potential function of the Yamabe soliton
and f is said to be a gradient Yamabe soliton.

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A
solution to the Ricci flow is called a Ricci soliton if it moves only by a one
parameter group of diffeomorphisms and scaling. To be precise, a Ricci soliton
on a Riemannian manifold (M, g) is a triple (g, V, β̆) satisfying [13]

(1.3) (LV g)(X,Y ) + 2R̆ic(X,Y ) + 2β̆g(X,Y ) = 0,

where R̆ic is a Ricci tensor and LV is the Lie-derivative along the vector field
V on M and β̆ ∈ ℜ. The Ricci soliton is said to be shrinking, steady and
expanding when β̆ is negative, zero and positive, respectively. Yamabe solitons
coincide with Ricci solitons (defined by (1.3)) in dimension n=2. But for higher
dimensions, Ricci solions and Yamabe solitons have different nature.

Moreover, from (1.2) it is clear that for a Yamabe soliton the vector field
V is a conformal vector field, that is,

(1.4) LV g = 2ω̆g,

where ω̆ is called the conformal coefficient, that is, ω̆=(κ̆− λ̆). In particular, if
ω̆=0, is equivalent to V being Killing.

Before going to our main work, we recall definition which will be used later
on.

Definition 1.1. [20] A vector field X on an almost contact Riemannian man-
ifold M is said to be an infinitesimal transformation if there exists a smooth
function ῠ on M such that

(1.5) (LXη)(Y ) = ῠη(Y ),

for every smooth vector field X and Y. If ῠ=0, then X is called a strict in-
finitesimal transformation.
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Definition 1.2. [22] On a Riemannian, or pseudo-Riemannian manifold (M, g),
a nowhere zero vector field τ̆ is called a torqued vector field if it satisfies

(1.6) ∇X τ̆ = φX + ᾰ(X)τ̆ , ᾰ(τ̆) = 0,

where the function φ is called the torqued function and 1-form ᾰ is called the
torqued form of τ̆ .

Definition 1.3. [27] A vector field ρ̆ on a Riemannian, or pseudo-Riemannian
manifold (M, g), is called concurrent, if it satisfies

(1.7) ∇X ρ̆ = ϕX + ψ(X)ρ̆,

the 1-form ψ vanishes identically and ϕ=1.

Definition 1.4. [28] A pseudo-Riemannian manifold (M, g), is called an almost
quasi-Einstein manifold if

(1.8) Ric = pg + q(ϑ⊗ ν + ν ⊗ ϑ),

where p, q are smooth functions and ϑ, ν are 1 -forms.

During the last two decades, the geometry of Yamabe flow has been the
focus of attention of many mathematicians. In particular, Barbosa et al. [1],
Brendle [4], Cho et al. [7], Chow [8], Yang and Zhang [26]. According to Hsu
[14], the metric of any compact gradient Yamabe soliton is a metric of constant
curvature. Yamabe solitons on a three-dimensional Sasakian manifold were
studied by Sharma [22]. A complete classification of Yamabe solitons of non-
reductive homogeneous 4-spaces was given by Calvaruso et al.[5]. Wang [24]
proved that a three-dimensional Kenmotsu manifolds with a Yamabe soliton
is of constant sectional curvature -1 and the soliton is expanding with λ̆=-6.
Yamabe solitons on tree-dimensional N(k)-paracontact metric manifold were
studied by and Young and Mandal [23] and many more.

The above works motivate us to study almost Kenmotsu manifolds admit-
ting Ricci and Yamabe solitons with conformal Reeb foliation. The outline of
the article is as follows: Section 2 is devoted to the basic concept of almost Ken-
motsu manifolds with conformal Reeb foliation. In Section 3, we investigate
the second order parallel tensor field on such a manifold. Next, we consider the
infinitesimal contact transformation in Section 4. In Section 5, we investigate
the application of torqued and concurrent vector field on such a manifold. In
Section 6, we deduce the certain condition for a vector field to be Killing in
such a manifold. Finally, a non-trivial example is given to validate our some
results.

2. Almost Kenmotsu manifolds

Geometry of Kenmotsu manifolds was publicized by Kenmotsu [16], such
manifolds are known not only as a special case of almost contact metric mani-
folds [2], but also as analogues of Hermitian manifolds. They were investigated
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by many authors in the last four decades. Recently, G. Pitis published a book
in which many interesting results on such manifolds were collected [20]. Later
on they were generalized to almost Kenmotsu manifolds by Janssens and Van-
hecke [15]. Since then some authors started to study almost Kenmotsu mani-
folds under various conditions and many fundamental formulas were obtained
([10],[11],[17],[18]).

On a (2n + 1)-dimensional smooth differentiable manifold M2n+1, if there
exist a triplet (ϕ, ξ, η) satisfying

(2.1) ϕ2 = −id+ η ⊗ ξ, η(ξ) = 1,

where id denotes the identity mapping, ϕ a (1, 1)-type tensor field, ξ a global
vector field and η a 1-form, then the triplet is called an almost contact structure
and M2n+1 is called an almost contact manifold. If in addition there exists a
Riemannian metric g on an almost contact manifold M2n+1(ϕ, ξ, η, g) which is
compatible with the almost contact structure, i.e.,

(2.2) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X and Y ∈ χ(M), then M2n+1 is called an almost contact
metric manifold, where χ(M), denotes the Lie algebra of all differentiable vector
fields on M2n+1.

Let us consider the Riemannian product M2n+1 × ℜ of an almost contact
manifold and ℜ. We define on the product an almost complex structure J by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

where X denotes the vector field tangent to M2n+1, t is the coordinate of ℜ
and f is a C∞-function on M2n+1 × ℜ. If the almost complex structure J
is integrable, i.e., the Nijenhuis tensor of J vanishes, then the almost contact
structure is said to be normal. By Blair [2], the normality of an almost contact
structure is equivalent to [ϕ, ϕ]=-2dη ⊗ ξ, where [ϕ, ϕ] denotes the Nijenhuis
tensor of ϕ. The fundamental 2-form Ω of an almost contact metric M2n+1 is
defined by Ω(X,Y )=g(X,ϕY ) for any vector fields X,Y ∈ χ(M). An almost
Kenmotsu manifold is defined as an almost contact metric manifold such that
η is closed and dΩ=2η ∧ Ω.
On an almost Kenmotsu manifoldM2n+1, we consider a (1, 1)-type tensor field
h= 1

2Lξϕ, h
′
=h ◦ ϕ and l=R(·, ξ)ξ, where R is the curvature tensor of g and l

is the Lie derivative operator. Thus, h, h
′
and l are symmetric and satisfy the

following relations ([10],[11]):

(2.3) hξ = lξ = 0, tr(h) = tr(h′) = 0, hϕ+ ϕh = 0,

(2.4) ∇ξ = h′ + id− η ⊗ ξ, ϕ lϕ− l = 2(h2 − ϕ2),

(2.5) ∇ξh = −ϕ− 2h− ϕh2 − ϕl,
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(2.6) tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n− trh2,

(2.7) R(X,Y )ξ = η(X)(Y + h′Y )− η(Y )(X + h′X)) + (∇Xh
′)Y − (∇Y h

′)X,

for any X,Y ∈ χ(M), where ∇ denotes the Levi-Civita connection of g, S the
Ricci tensor, Q the Ricci operator with respect to g and tr the trace operator.
The (1, 1)-type symmetric tensor field h′=h ◦ ϕ is anticommuting with ϕ and
h′ξ=0. Also it is clear that ([3], [19], [25]):

(2.8) h = 0 ⇔ h′ = 0, h′2 = (k + 1)ϕ2 ⇔ h2 = (k + 1)ϕ2.

In the recent years the authors Pastore and Saltarelli [19], Gosh and Majhi
[12] studied almost Kenmotsu manifolds with conformal Reeb foliation. In [19],
they proved that an almost Kenmotsu manifold satisfying R(X, ξ) ·R = 0, for
any vector filed X, is a Kenmotsu manifold of constant curvature −1. It is
well known in the contact case the vanishing of the tensor h= 1

2Lξϕ means that
the Reeb vector field is Killing. According to Pastore and Saltarelli [19] for an
almost Kenmotsu manifolds h=0 means the Reeb foliation is conformal (in fact
homothetic).
We recall the following propositions and Lemma which will be used later on

Proposition 2.1. [19] Let M2n+1(ϕ, ξ, η, g) be an almost Kenmotsu manifold
with conformal Reeb foliation. Then for any vector fields X and Y, one has

(2.9) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.10) R(X, ξ)ξ = ϕ2X,

(2.11) R(ξ,X)Y = −g(X,Y )ξ + η(Y )X,

(2.12) Ric(X, ξ) = −2nη(X).

Proposition 2.2. [27] In an n-dimensional Riemannian, or pseudo Rieman-
nian, manifold (Mn, g) endowed with a conformal vector field V , we have

(LVRic)(X,Y ) = −(n− 1)(∇XDω̆, Y ) + (∆ω̆)g(X,Y ),

(LV κ̆) = −2ω̆κ̆+ 2(n− 1)∆ω̆,

for any vector fields X and Y, where D denotes the gradient operator and ∆
=-divD denotes the Laplacan operator of g.

Lemma 2.3. [6] If (g, V, β̆) is a Ricci soliton of a Riemannian manifold then
we have

1

2
∥LV g∥2 = V ( ˘scal) + 2div (β̆V −QV )

where ˘scal is the scalar curvature.
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3. Second order parallel tensor fields

We consider a parallel symmetric (0, 2)-tensor field T̆ on an almost Ken-
motsu manifold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation. Then from
∇T̆=0, we get

(3.1) T̆ (R(X,Y )Z, V ) + T̆ (Z,R(X,Y )V ) = 0,

where X, Y , Z and V are arbitrary vector fields on M2n+1.
Since T̆ is symmetric, when we fix X=Z=V=ξ in (3.1), we have

(3.2) T̆ (ξ,R(ξ, Y )ξ) = 0.

Take a non-empty connected open subset U of M2n+1. Using (2.11) in (3.2),
we obtain

(3.3) T̆ (ξ, Y )− η(Y )T̆ (ξ, ξ) = 0.

Differentiating (3.3) covariantly along U and using (2.4), it yields

(3.4) T̆ (U, Y ) = T̆ (ξ, ξ)g(U, Y ).

This implies that T̆ and g are parallel tensor fields, with ε̆=T̆ (ξ, ξ) is a constant
on U. With the help of parallelity property of T̆ and g, it is obvious that T̆=ε g
on M2n+1.
This leads to the following result:

Theorem 3.1. A parallel symmetric (0, 2)-tensor field T̆ in an almost Ken-
motsu manifold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation is a constant
multiple of the associated metric tensor.

Using Theorem 3.1, we can state the following:

Corollary 3.2. If the Ricci tensor field of an almost Kenmotsu manifold
(M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation is parallel, then it is an Ein-
stein manifold.

Corollary 3.3. Let (g, V, β̆) be a Ricci soliton on almost Kenmotsu mani-
fold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation be parallel. Then V is

solenoidal if and only if it is expanding or shrinking as β̆ < 0 or β̆ > 0, respec-
tively.

We suppose that T̆ is a parallel 2-form on M2n+1, that is, T̆ (X,Y )=-
T̆ (Y,X) and ∇T̆=0. Then it follows that

(3.5) T(ξ, ξ) = 0.

Taking covariant derivative of (3.5) and using (2.4), we obtain T̆ (X,Y )=0.
This implies that T̆=0 on U , where U is a non-empty open subset of M2n+1.
On the other hand T̆ is parallel on U . Thus we can state the following:

Theorem 3.4. In an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with con-
formal Reeb foliation, there exists no non-zero parallel 2-form.
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4. Infinitesimal contact transformation

In this section we study transformations which transform an almost Ken-
motsu structure (ϕ, ξ, η, g) with conformal Reeb foliation into another almost
Kenmotsu structure (ϕ̄, ξ̄, η̄, ḡ). We denote this transformation by placing ‘bar’
on the geometric object which are transformed by the transformation ψ [21].

Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold with conformal
Reeb foliation, the infinitesimal contact transformation leaves the (0, 2)-tensor
field T̆ invariant. Then

(4.1) (LV T̆ )(X,Y ) = 0,

Putting Y=ξ in (4.1), we get

(4.2) (LV T̆ )(X, ξ) = 0.

On the other hand, we have

(LV T̆ )(X, ξ) = LV (T̆ (X, ξ))− T̆ (LVX, ξ)− T̆ (X,LV ξ)

Using (1.5),(3.3) and (4.2), the above equation reduces to

(4.3) T̆ (X,LV ξ) = −ῠT̆ (ξ, ξ) η(X),

Replacing X=ξ in (4.3), we have

(4.4) η(LV ξ) = ῠ.

Again from (1.5), we obtain

(4.5) (LV η)ξ = ῠ,

which implies that

(4.6) LV (η(ξ))− η(LV ξ) = ῠ.

In view of (4.5) and (4.6), we get ῠ=0. Hence we can state the following:

Theorem 4.1. In an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with con-
formal Reeb foliation, the infinitesimal contact transformation which leaves the
(0, 2)-tensor field T̆ invariant is an infinitesimal strict contact transformation.

Corollary 4.2. In an almost Kenmotsu manifold M2n+1(ϕ, ξ, η, g) with con-
formal Reeb foliation bearing Ricci soliton, the infinitesimal contact transfor-
mation which leaves the Ricci tensor field invariant is an infinitesimal strict
contact transformation, or the soliton is always shrinking.

Using Proposition 2.2 and the definition of the infinitesimal contact trans-
formation, we have the following corollary.
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Corollary 4.3. In an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with con-
formal Reeb foliation, the infinitesimal contact transformation which leaves the
Ricci tensor field is invariant then the conformal vector field V satisfies

2n(∇XDκ̆, Y )− (∆κ̆)g(X,Y ) = 0

ω̆κ̆ = 2n∆κ̆,

for any vector fields X and Y, where D denotes the gradient operator and ∆=-
divD denotes the Laplace operator of g.

5. Application of torqued and concurrent vector fields

In this section we discuss the application of torque and concurrent vector
fields, that is, the potential vector field V is a torqued vector field τ̆ . Then

(Lτ̆g)(X,Y ) = g(∇X τ̆ , Y ) + g(X,∇Y τ̆),

= ᾰ(X)g(τ̆ , Y ) + ᾰ(Y )g(X, τ̆).(5.1)

for any vector fields X,Y tangent to M.
In view of (1.3) and (5.1), we get

(5.2) R̆ic = −β̆ g − 1

2
{ ᾰ⊗ γ + γ ⊗ ᾰ } ,

where the dual of the 1-form τ̆ is denoted by γ. Thus the manifold is almost
quasi-Einstein manifold. So we state the following result.

Theorem 5.1. If the potential vector field V of a Ricci soliton (g, V, β̆) is a
torque vector field τ̆ in an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with
conformal Reeb foliation then the manifold is an almost quasi-Einstein mani-
fold.

Again let (g, V, β̆) be a Ricci soliton on (M2n+1, ϕ, ξ, η, g), with torque vec-
tor field τ̆ . Let Ă be any vertical vector field. Then from (5.2), we obtain

(5.3) R̆ic(τ̆ , Ă) = −1

2

{
ᾰ(τ̆)g(τ̆ , Ă) + ᾰ(Ă)g(τ̆ , τ̆)

}
.

Since ᾰ(τ̆) = 0, we have

(5.4) R̆ic(τ̆ , Ă) = −1

2
ᾰ(Ă)g(τ̆ , τ̆).

Also from (2.12), we obtain

(5.5) R̆ic(τ̆ , Ă) = −2ng(τ̆ , Ă).

In view of (5.4) and (5.5), τ̆ is nowhere zero and therefore g(τ̆ , τ̆) ̸= 0, which
gives ᾰ(Ă)=0. Any vector field Ă orthogonal to τ̆ means ᾰ=0. Hence, the

potential field τ̆ is a concircular vector field. Conversely, let (g, V, β̆) be a Ricci
soliton with concircular vector field τ̆ . Then one can easily prove that the
manifold is Einstein. Thus we can state the following result.
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Theorem 5.2. An almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with confor-

mal Reeb foliation bearing Ricci soliton (g, ξ, β̆) with torqued potential vector
field τ̆ is an Einstein manifold if and only if τ̆ is a concircular vector field.

It is well known that ∇g=0 and β̆ given by (1.3) is constant, so ∇(β̆)g=0.
Which means, Lξg+2R̆ic is parallel. Next, Lξg+2R̆ic=Φ is a constant multiple
of the metric tensor g, that is,

(Lξg + 2R̆ic)(X,Y ) = Φ(X,Y ) = Φ(ξ, ξ)g(X,Y ),

where Φ(ξ, ξ) is given by

(5.6) (Lξg + 2R̆ic)(ξ, ξ) = Φ(ξ, ξ) = −4n.

In view of (5.6), equation (1.3) takes the form

(5.7) (Lξg) + 2R̆ic+ 2β̆g = (−4n+ 2β̆)g.

This implies that β̆=2n. Then we have the following:

Theorem 5.3. If the symmetric tensor Lξg+2R̆ic=Φ is parallel in an almost
Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation, then the

soliton (g, V, β̆) is always expanding

Also from (1.2) and (5.1), we have

(5.8) 2(κ̆− λ̆)g(X,Y ) = {ᾰ(X)g(τ̆ , Y ) + ᾰ(Y )g(X, τ̆)}.

Since ᾰ(τ̆)=0 and τ̆ is a torqued vector field, then g(τ̆ , τ̆) ̸= 0. This implies

that λ̆=κ̆. Using (1.2) we get LV g=0, thus V is a Killing vector field. Since λ̆
is constant, so κ̆ is also constant. Thus we can state the following:

Theorem 5.4. If the potential vector field V of a Yamabe soliton (g, V, λ̆) is
a torque vector field τ̆ in an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with
conformal Reeb foliation then the manifold is a space of constant curvature, or
the flow vector field V is Killing.

Corollary 5.5. If the metric of an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g)
with conformal Reeb foliation is a Yamabe soliton, then it is of constant cur-
vature, or the flow vector field ξ is Killing.

Corollary 5.6. Let (g, V, λ̆) be a Yamabe soliton in an almost Kenmotsu man-
ifold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation, then V is solenoidal if
and only if the manifold is a space of constant curvature.

Also, from (1.2), we get LV g=0, thus V is Killing. Differentiating covari-
antly along an arbitrary vector field X, we have ∇X LV g=0. Now, we consider
the identity [27]:

(5.9) (∇X LV g)(U,W ) = g((LV ∇)(X,Y ),W ) + g((LV ∇)(X,W ), Y ),
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which is equivalent to

(LV ∇X g−∇XLV g−∇[V,X]g)(U,W ) = −g((LV ∇)(X,Y ),W )−g(((LV ∇)(X,W ), Y ).

This implies that

(5.10) g((LV ∇)(W,X), U) + g((LV ∇)(W,U), X) = 0.

With the help of (5.9), (5.10) and the skew-symmetric property of ϕ, we
get (LV ∇)(U,W )=0, which implies that (LV ∇)(ξ, ξ)=0. Also, by the geodesic
properties of ξ, we have

(LV ∇)(X,U) = −∇X∇UV −∇∇XUV +R(V,X)U,

which yields ∇ξ∇ξ V +R(V, ξ)ξ = 0. Therefore V is Jacobi along the direction
of ξ. Thus, it leads to the following:

Theorem 5.7. If the potential vector field V of a Yamabe soliton (g, V, λ̆) is
a torque vector field τ̆ in an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with
conformal Reeb foliation then the flow vector field is Jacobi along the direction
of ξ.

Let V be a pointwise collinear vector field with the structure vector field ξ,
that is, V=cξ, where c is a smooth function on (M2n+1, ϕ, ξ, η, g). Then from
(1.2), we obtain

(5.11) g(∇XV, Y ) + g(X,∇Y V ) = 0,

for any vector fields X,Y ∈ χ(M).
Putting V=cξ in (5.11) and using (2.4), we have

(5.12) X(c)η(Y ) + 2cg(X,Y )− 2cη(X)η(Y ) + Y (c)η(X) = 0,

For fix Y=ξ in (5.12), we get

(5.13) X(c) + ξ(c)η(X) = 0,

Again taking X=ξ in (5.13), it yields ξ(c)=0, using this fact in (5.13) we obtain
X(c)=0, this means d(c)=0, that is, c is constant.
Therefore we have the following:

Theorem 5.8. If an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with con-
formal Reeb foliation admits a Yamabe soliton and V is a pointwise collinear
vector field with the structure vector field ξ, then V is a constant multiple of ξ.

With the help of (5.12), we have f=0, for X and Y belonging to the contact
distribution. Thus we have following result.

Corollary 5.9. If an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with con-
formal Reeb foliation admits a Yamabe soliton for a vector field V and a con-
stant λ̆, then V does not have to be pointwise collinear with ξ.
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In particular, if we consider the potential vector field V which is a concurrent
vector field, then we have

(5.14) (LV g)(X,Y ) = 2g(X,Y ),

for any vector fields X,Y tangent to M .
In view of (1.2) and (5.14), we get λ̆=κ̆-1 which implies that Yamabe soliton

is expanding, steady, or shrinking, respectively, if κ̆ ≤ 0, κ̆=1 or κ̆ > 1. Thus
we state the following:

Theorem 5.10. If the potential vector field V of a Yamabe soliton (g, V, λ̆) is a
concurrent vector field in an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with
conformal Reeb foliation then the Yamabe soliton will be expanding, steady, or
shrinking, according to κ̆ ≤ 0, κ̆ = 1 or κ̆ > 1.

Corollary 5.11. If the potential vector field V is a concurrent vector field in
an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation

then it admits a Yamabe soliton of type
(
g, V, λ̆ = 1

2 − κ̆
)
.

Also from (1.3) and (5.14), we get R̆ic(X,Y )=-(1 + β̆)g(X,Y ), that is, the

manifold is Einstein. With the help of (2.11), we obtain β̆=(2n− 1). Thus we
have the result.

Theorem 5.12. If the potential vector field V of a Ricci soliton (g, V, β̆) is
a concurrent vector field in an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g)
with conformal Reeb foliation then the manifold is Einstein and it is always
expanding.

Corollary 5.13. If the potential vector field V of a Ricci soliton (g, V, β̆) is
a concurrent vector field in an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g)
with conformal Reeb foliation then it admits a Yamabe soliton which will be
expanding, steady, or shrinking, according to κ̆ ≤ 0, κ̆=1 or κ̆ > 1.

Also from (2.5), we have

(5.15) (Lξg)(X,Y ) = 2g(ϕX, ϕY ).

Using (1.3) with V=ξ we get

(5.16) R̆ic(X,Y ) = −(1 + β̆)g(X,Y ) + η(X)η(Y ).

(5.17) Q̆X = −(1 + β̆)X + η(X)ξ,

(5.18) Q̆ξ = −β̆ξ,

(5.19) ˘scal = −2n (1 + β̆).
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Using (5.18) and (5.19) in Lemma 2.3, we find

(5.20)
1

2
∥Lξg∥2 = −2nξ(β̆) + 4div (β̆ξ).

Since (Lξg)=2g(ϕX, ϕY ) and β̆=2n is constant followed by comparing (2.12)
with (5.18). Hence from (5.20) it is clear that ξ is Killing if the vector field

β̆ξ will be solenoidal. Moreover, R̆ic(X,Y ) ̸= 0. Thus we have the following
result.

Theorem 5.14. If an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with con-
formal Reeb foliation admits contact Ricci soliton, M2n+1 is neither locally
isometric to the product of a line, nor a Calabi-Yau manifold.

6. The sufficient condition for a vector field to be Killing

In this section we deduce the condition, for a vector field is to be Killing in
an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation
under Yamabe soliton. Then from (1.4), we have

(6.1) (LV g)(X,Y ) = 2ω̆g(X,Y )

In view of (2.4) we get ∇ξξ=0. So the integral curves are geodesic.
Now, taking X=Y=ξ, (6.1), it follows that

(LV g)(ξ, ξ) = 2ω̆.

On the other hand, we have

(LV g)(ξ, ξ) = 2g(∇ξV, ξ), and 2∇ξ(g(V, ξ)) = 2g(∇ξV, ξ),

Then from above we get

(6.2) 2ω̆ = (LV g)(ξ, ξ) = 2g(∇ξV, ξ) = 2g(∇ξV, ξ).

If V is orthogonal to ξ, then ω̆=0. Therefore λ̆=κ̆ and hence (LV g)(X,Y )=0;
that is, V is a Killing vector field. This leads to the following:

Theorem 6.1. If the potential vector field V of a Yamabe soliton (g, V, λ̆) on
an almost Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation
is orthogonal to ξ the manifold is a space of constant curvature, or the flow
vector field V is Killing.

In addition, it is well known that in a Riemannian manifold

(6.3) g(R(X,Y )Z,U) + g(R(X,Y )U,Z) = 0,

for all vector fields X, Y , Z, U .
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Let the vector field V on M2n+1 with conformal Reeb foliation such that
LVR=0, then from (6.3), we obtain

(6.4) (LV g)(R(X,Y )Z,U) + (LV g)(R(X,Y )U,Z) = 0,

Putting X=Z=U=ξ, in (6.4), using (2.10), we get

(6.5) (LV g)(X, ξ) = η(X)(LV g)(ξ, ξ).

Again taking X=Z=ξ, in (6.4), we have

(6.6) (LV g) = (LV g)(ξ, ξ)g.

From (2.12), we have Ric(ξ, ξ)=-2n, then LVR=0. It implies LVRic=0, thus
we get Ric(LV ξ, ξ)=0, but Ric(ξ, ξ)=-2n, then LV ξ=0. Since g(LV ξ, ξ)=0.
Therefore (LV g)(ξ, ξ)=0. So, in view of (6.2) we get ω̆=0, that is, the vector
field V is Killing vector field. In this way it leads the following result.

Theorem 6.2. If a vector field V on an almost Kenmotsu manifold
(M2n+1, ϕ, ξ, η, g) with conformal Reeb foliation is conformal to a Yamabe soli-
ton, leaves the curvature tensor R invariant, the manifold is a space of constant
curvature, or the flow vector field V is Killing.

7. An Example

We recall some basic theorems as follows. After that, we verify our results
by taking an example.

Theorem 7.1. [11] Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold.
Suppose that the characteristic vector field ξ belongs to the (k, µ)-nullity dis-
tribution. Then k=-1;h=0, and M2n+1 is locally a warped product of an open
interval and an almost Kähler manifold.

Keeping in mind Theorem 7.1, Deshmukh et al. [9], prove that

Theorem 7.2. [9] Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold with
ξ belonging to the ((k, µ)-nullity distribution. Then M2n+1 is Ricci semisym-
metric if and only if the manifold is an Einstein manifold.

Also, Ghos et al. [12] mentioned that

Theorem 7.3. [12] Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold
with conformal Reeb foliation then the manifold is Ricci semisymmetric if and
only if the manifold is an Einstein one

We consider the three-dimensional manifoldM = {(x, y, z) ∈ ℜ3 : (x, y, z) ̸=
0}, where (x, y, z) are standard coordinates of ℜ3. The vector fields

e1 = e−z

(
∂

∂x
+

∂

∂y

)
, e2 = e−z

(
∂

∂ y
− ∂

∂ x

)
, e3 =

∂

∂ z
,
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are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g (e1, e3) = g (e1, e2) = g (e2, e3) = 0,

g (e1, e1) = g (e2, e2) = g (e3, e3) = 1.

Let η be the 1-form such that η(X) = g(X, e3), for any X ∈ Γ(TM).
Let ϕ be the (1, 1)-tensor field defined by

ϕ (e1) = e2, ϕ (e2) = −e1, ϕ (e3) = 0.

Using the linearity of ϕ and g, we have

η(e3) = 1, ϕ2(X) = −X + η(X)e3, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for any X,Y ∈ Γ(TM).
The ∇ be the Levi-Civita connection with respect to metric tensor g. Then

we get
[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.

Also,
(Lξϕ)(e1) = 0.

Thus he1=
1
2 (Lξϕ)(e1)=0. Similarly, we have he2=he3=0, which implies that

h′e1=h
′e2=h

′e3=0.
Using Koszul’s formula for the metric tensor g, we get the following ∇e2e3 = e2, ∇e3e3 = 0, ∇e2e2 = −e3,

∇e1e1 = −e3, ∇e3e2 = 0, ∇e1e3 = e1,
∇e1e2 = 0, ∇e3e1 = 0, ∇e3e1 = 0.

From the above relations, we have

∇Xξ = −ϕ2X + h′X,

for any X ∈ Γ(TM). Therefore, the structure (ϕ, η, ξ, g) is an almost contact
metric structure such that dη=0 and dΩ=2η ∧ Ω, so that M is an almost
Kenmotsu manifold with conformal Reeb foliation.

The components of the curvature tensor R as follows: R(e1, e2) e3 = 0, R(e1, e3) e2 = 0, R(e1, e3) e3 = −e1,
R(e2, e3) e1 = 0, R(e1, e2) e1 = e2, R(e1, e2) e2 = −e1,
R(e3, e1) e1 = −e3, R(e2, e3) e3 = −e2, R(e3, e2) e2 = −e3.

With the help of the expressions of the curvature tensor we conclude that the
characteristic vector field ξ belonging to the (−1)-nullity distribution, Thus
Theorem 7.1 is verified.

For the Ricci tensor Ric, we have

Ric(e1, e1) = −2 Ric(e2, e2) = −2 Ric(e3, e3) = −2.
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Also,

scal =

3∑
i=1

g(eiei)S(ei, ei) = −6

This implies that the manifold is Ricci semisymmetric.
Let {e1, e2, e3} be a basis of the tangent space at any point. For any vector

X,Y ∈ χ(M2n+1), we have

X = a1e1 + b1e2 + c1e3, Y = a2e1 + b2e2 + c2e3,

where ai, bi, ci ∈ ℜ\{0} such that a1a2 + b1b2 = 0, c1c2 ̸= 0 for all i = 1, 2, 3.
Thus

g(X,Y )=a1a2 + b1b2 + c1c2, and Ric(X,Y )=-2{a1a2 + b1b2 + c1c2 }.
Then we obtain Ric(X,Y )=−2g(X,Y), therefore we notice that M is an

Einstein manifold. Hence Theorem 7.2 and Theorem 7.3 are also hold.
Now, we consider Lξg + 2R̆ic is parallel, so we have

(Lξg + 2R̆ic)(ei, ei) = Φ(ei, ei) = Φ(e3, e3)g(X,Y ).

The value of Φ(e3, e3) is given by

Φ(e3, e3) = (Lξg + 2R̆ic)(e3, e3) = −4.

From (1.3), we obtain

(Lξg) + 2R̆ic+ 2β̆g = (−4 + 2β̆)g.

It implies that for β̆=2, the Ricci soliton is always expanding. Therefore The-
orem 5.3 holds.

Again, we also have

(Lξg)(X,Y ) = 2g(ϕX, ϕY )

= 2(a1a2 + b1b2).

In view of (1.2), we yield

(LV g)(X,Y ) = 2(κ̆− λ̆)g(X,Y )

= 2(κ̆− λ̆)(a1a2 + b1b2 + c1c2).

If we fix V=ξ, equation (1.2) holds only if a1a2+ b1b2 = 0, c1c2 ̸= 0. Then we

get λ̆=κ̆, this implies that the manifold is a space of constant curvature and
e3=ξ, is Killing, which satisfies Theorem 5.4

Finally, we suppose that the potential vector field V is a concurrent for
Yamabe soliton in such a manifold. Then we have

(LV g)(X,Y ) = 2g(X,Y )

= 2(a1a2 + b1b2 + c1c2).
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Again, from (1.2), it follows that

(LV g)(X,Y ) = 2(κ̆− λ̆)g(X,Y )

= 2(κ̆− λ̆)(a1a2 + b1b2 + c1c2).

According to above equation, we obtain λ̆ =κ̆ − 1. Thus Yamabe soliton is
expanding, steady, or shrinking, according to κ̆ ≤ 0, κ̆ = 1 or κ̆ > 1, therefore
Theorem 5.10 is satisfied.
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