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Fixed point on complex partial b-metric spaces with
application to a system of Urysohn type integral

equations
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Abstract. Sufficient conditions for existence of common fixed point on
complex partial b-metric spaces are obtained. Our results generalize and
extend several well-known results. In the end we explore applications of
our key results to solve a system of Urysohn type integral equations.
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1. Introduction

Backhtin [3] and Czerwik [5], presented the concept of b-metric spaces and
provided a framework to extend the results already known in the classical set-
ting of metric spaces. Azam, Fisher, and Khan [2] gave the notion of complex
valued metric spaces and proved some common fixed point theorems under the
contraction condition. Rao, Swamy, and Prasad [10] introduced the definition
of complex valued b-metric space, and a scheme to extend the results in this
setting, as well as proving the common fixed point theorem under contraction
conditions. Dhivya and Marudai [7] introduced the concept of complex par-
tial metric space and suggested a plan to extend the results to this setting, as
well as obtained common fixed point theorems under the rational contraction
condition. Afterward several other researchers have introduced and studied
intriguing concepts in metric spaces and their applications [[1], [4], [6], [8],[11]].
Recently Gunaseelan [9] further extended and introduced the concept of com-
plex partial b-metric space and proved the existence of fixed point of contractive
mappings. In this paper, we prove some common fixed point theorems on com-
plex partial b-metric spaces under rational type weakly increasing mappings
with application to solve a system of Urysohn type integral equations.
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2. Preliminaries

Let C be the set of complex numbers and ω1, ω2, ω3 ∈ C. Define a partial
order ⪯ on C as follows:
ω1 ⪯ ω2 if and only if R(ω1) ≤ R(ω2), I(ω1) ≤ I(ω2).
Consequently, one can infer that ω1 ⪯ ω2 if one of the following conditions is
satisfied:
(i) R(ω1) = R(ω2), I(ω1) < I(ω2),
(ii)R(ω1) < R(ω2), I(ω1) = I(ω2),
(iii)R(ω1) < R(ω2), I(ω1) < I(ω2),
(iv)R(ω1) = R(ω2), I(ω1) = I(ω2).
In particular, we write ω1 ⋨ ω2 if ω1 ̸= ω2 and one of (i), (ii) and (iii) is
satisfied and we write ω1 ≺ ω2 if (iii) is satisfied. Notice that
(a) If 0 ⪯ ω1 ⋨ ω2, then |ω1| < |ω2|,
(b) If ω1 ⪯ ω2 and ω2 ≺ ω3 then ω1 ≺ ω3,
(c) If η, γ ∈ R and η ≤ γ then ηω1 ⪯ γω1 for all 0 ⪯ ω1 ∈ C.

Definition 2.1. [10] Let Υ be a non-void set and let s ≥ 1 be a given real
number. A function δ : Υ×Υ → C is called a complex valued b-metric on Υ if
for all Z, σ, β ∈ Υ the following conditions are satisfied:
(i) 0 ⪯ δ(Z, σ) and δ(Z, σ) = 0 if and only if Z = σ;
(ii) δ(Z, σ) = δ(σ,Z);
(iii) δ(Z, σ) ⪯ s[δ(Z, β) + δ(β, σ)].

The pair (Υ, δ) is called a complex valued b-metric space.
Here C+(= {(β, σ)|β, σ ∈ R+}) and R+(= {β ∈ R|β ≥ 0}) denote the set
of non negative complex numbers, and the set of non negative real numbers,
respectively.

Definition 2.2. [7] A complex partial metric on a non-void set Υ is a function
℘cb : Υ×Υ → C+ such that for all Z, σ, β ∈ Υ:
(i) 0 ⪯ ℘cb(Z,Z) ⪯ ℘cb(Z, σ)(small self-distances)
(ii) ℘cb(Z, σ) = ℘cb(σ,Z)(symmetry)
(iii) ℘cb(Z,Z) = ℘cb(Z, σ) = ℘cb(σ, σ) if and only if Z = σ(equality)
(iv) ℘cb(Z, σ) ⪯ ℘cb(Z, β) + ℘cb(β, σ)− ℘cb(β, β)(triangularity).
A complex partial metric space is a pair (Υ, ℘cb) such that Υ is a non-void set
and ℘cb is the complex partial metric on Υ.

Definition 2.3. [9] A complex partial b-metric on a non-void set Υ is a function
δcb : Υ×Υ → C+ such that for all Z, σ, β ∈ Υ:
(i) 0 ⪯ δcb(Z,Z) ⪯ δcb(Z, σ)(small self-distances)
(ii) δcb(Z, σ) = δcb(σ,Z)(symmetry)
(iii) δcb(Z,Z) = δcb(Z, σ) = δcb(σ, σ) iff Z = σ(equality)
(iv) ∃ a real number s ≥ 1 and s is independent of Z, σ, β such that δcb(Z, σ) ⪯
s[δcb(Z, β) + δcb(β, σ)− δcb(β, β)(triangularity).
A complex partial b-metric space is a pair (Υ, δcb) such that Υ is a non-void
set and δcb is the complex partial b-metric on Υ. The number s is called the
coefficient of (Υ, δcb).
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Example 2.4. [9] Let Υ = R+ and δcb : Υ×Υ → C+ be defined by δcb(Z, σ) =
[max{Z, σ}]3 + |Z − σ|3 + i{[max{Z, σ}]3 + |Z − σ|3} for all Z, σ ∈ Υ. Then
(Υ, δcb) is a complex partial b-metric space with coefficient s = 23, but it is
neither a complex valued b-metric nor a complex partial metric.

Now, we define Cauchy sequence and convergent sequence in complex partial
b-metric spaces.

Definition 2.5. [9] Let (Υ, δcb) be a complex partial b-metric space with co-
efficient s. Then:

(i) The sequence {Zn} in Υ converges to Z ∈ Υ, if limn→+∞ δcb(Zn,Z) =
δcb(Z,Z).

(ii) The sequence {Zn} is said to be Cauchy sequence in (Υ, δcb) if
limn,m→+∞ δcb(Zn,Zm) exists and is finite.

(iii) The space (Υ, δcb) is said to be a complete complex partial b-metric space
if for every Cauchy sequence {Zn} in Υ there exists Z ∈ Υ such that
limn,m→+∞ δcb(Zn,Zm) = limn→+∞ δcb(Zn,Z) = δcb(Z,Z).

(iv) A mapping R : Υ → Υ is said to be continuous at Z0 ∈ Υ if for every
ϵ > 0, there exists t > 0 such that R(Bδcb(Z0, t)) ⊂ Bδcb(R(Z0, ϵ)).

Definition 2.6. Let (Υ, δcb) be a complex partial b-metric space with co-
efficient s ≥ 1. Let (Υ,⪯) be a partially ordered set and for all elements
comparable to each other. A pair (⊔,⊓) of self-maps of Υ is said to be weakly
increasing if ⊔Z ⪯ ⊓ ⊔ Z and ⊓Z ⪯ ⊔ ⊓ Z for all Z ∈ Υ. If ⊔ = ⊓, then
we have ⊔Z ⪯ ⊔2Z for all Z ∈ Υ and in this case, we say that ⊔ is weakly
increasing mapping.

Definition 2.7. Let (Υ, δcb) be a complex partial b-metric space with coeffi-
cient s ≥ 1. A point Z ∈ Υ is said to be common fixed point for the pair of
self mappings (⊔,⊓) on Υ is such that Z = ⊔Z = ⊓Z.

Theorem 2.8. [9] Let (Υ, δcb) be a complete complex partial b-metric space
with coefficient s ≥ 1 and ⊔ : Υ → Υ be a mapping satisfying:

δcb(⊔Z,⊔σ) ⪯ ⋏[δcb(Z,⊔Z) + δcb(σ,⊔σ)]

for all Z, σ ∈ Υ, where ⋏ ∈ [0, 1
s ]. Then ⊔ has a unique fixed point Z∗ ∈ Υ

and δcb(Z∗,Z∗) = 0.

3. Main Results

In this section we prove some common fixed point theorems on complex
partial b-metric space for rational type weakly increasing mappings.
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Theorem 3.1. Let (Υ, δcb) be a complete complex partial b-metric space with
the coefficient s ≥ 1 and ⊓,⊔ : Υ → Υ be two weakly increasing mappings such
that

δcb(⊔Z,⊓σ) ⪯ ⋎δcb(Z,⊔Z)δcb(σ,⊓σ)
δcb(Z, σ)

+⋏δcb(Z, σ)

for all Z, σ ∈ Υ, δcb(Z, σ) ̸= 0 with ⋎ ≥ 0,⋎ + ⋏ < 1 or δcb(⊔Z,⊓σ) = 0 if
δcb(Z, σ) = 0. If ⊔ or ⊓ is continuous then the pair (⊔,⊓) has a common fixed
point β ∈ Υ and δcb(β, β) = 0.

Proof. Let Z0 be an arbitrary point in Υ and define a sequence as follows:

Z2k+1 = ⊔Z2k

Z2k+2 = ⊓Z2k+1, k = 0, 1, 2, . . . .

Since ⊔ and ⊓ are weakly increasing,

Z1 = ⊔Z0 ⪯ ⊓ ⊔ Z0 = ⊓Z1 = Z2

Z2 = ⊓Z1 ⪯ ⊔ ⊓ Z1 = ⊔Z2 = Z3.

Continuing this way, we have Z1 ⪯ Z2 ⪯ . . . ⪯ Zn ⪯ Zn+1 . . ..
Assume that δcb(Z2k,Z2k+1) > 0 for all k ∈ N. If not, then Z2k = Z2k+1 for
some k. Then for all those k, Z2k = Z2k+1 = ⊔Z2k and the proof is completed.
Assume that δcb(Z2k,Z2k+1) > 0 for k = 0, 1, 2, . . . . As Z2k and Z2k+1 are
comparable, so we have

δcb(Z2k+1,Z2k+2) = δcb(⊔Z2k,⊓Z2k+1)

⪯ ⋎
δcb(Z2k,⊔Z2k)δcb(Z2k+1,⊓Z2k+1)

δcb(Z2k,Z2k+1)
+⋏δcb(Z2k,Z2k+1)

⪯ ⋎δcb(Z2k+1,⊓Z2k+2) +⋏δcb(Z2k,Z2k+1)

δcb(Z2k+1,Z2k+2) ⪯
⋏

1−⋎
δcb(Z2k,Z2k+1).

Now with η =
⋏

1−⋎
, we have

δcb(Z2k+1,Z2k+2) ⪯ hδcb(Z2k,Z2k+1) ⪯ . . . ⪯ h2k+1δcb(Z0,Z1).

For n > m, we get

δcb(Zm,Zn) ⪯ sδcb(Zm,Zm+1) + s2δcb(Zm+1,Zm+2) + · · ·+ snδcb(Zn−1,Zn)

− δcb(Zm+1,Zm+1)− δcb(Zm+2,Zm+2)− δcb(Zm+3,Zm+3)

− · · · − δcb(Zn−1,Zn−1)

⪯ (sηm + s2ηm+1 + · · ·+ snηn−1)δcb(Z0,Z1)

= sηm(1 + sη + · · ·+ sn−1ηn−m−1)δcb(Z0,Z1)

⪯ sηm

1− sη
δcb(Z0,Z1).
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Consequently,

|δcb(Zm,Zn)| ≤
(sη)m

1− η
|δcb(Z1,Z0)| → 0

as m,n → +∞ which implies that limm,n→+∞ δcb(Zm,Zn) = 0 such that Zn

is a Cauchy sequence in Υ. Since (Υ, δcb) is complete, there exists β ∈ Υ such
that Zn → β and

δcb(β, β) = lim
m,n→+∞

δcb(β,Zn) = lim
m,n→+∞

δcb(Zn,Zn) = 0.

Without loss of generality, suppose that ⊓ is continuous in (Υ, δcb). Therefore
⊓Z2n+1 → ⊓β in (Υ, δcb). That is

δcb(⊓β,⊓β) = lim
n→+∞

δcb(⊓β,⊓Z2n+1) = lim
n→+∞

δcb(⊓Z2n+1,⊓Z2n+1).

But

δcb(⊓β,⊓β) = lim
n→+∞

δcb(⊓Z2n+1,⊓Z2n+1) = lim
n→+∞

δcb(Z2n+2,Z2n+2) = 0.

Next we will prove β is a fixed point of ⊓.

δcb(⊓β, β) ⪯ s{δcb(⊓β,⊓Z2n+1) + δcb(⊓Z2n+1, β)} − δcb(⊓Z2n+1,⊓Z2n+1).

As n → +∞, we obtain |δcb(⊓β, β)| ≤ 0. Thus, δcb(⊓β, β) = 0. Hence
δcb(β, β) = δcb(β,⊓β) = δcb(⊓β,⊓β) = 0 and so ⊓β = β. Therefore ⊔β =
⊓β = β and δcb(β, β) = 0.

In the absence of the continuity condition for the mapping ⊓, we get the
following theorem.

Theorem 3.2. Let (Υ, δcb) be a complete complex partial b-metric space with
the coefficient s ≥ 1 and ⊓,⊔ : Υ → Υ be two weakly increasing mappings such
that

δcb(⊔Z,⊓σ) ⪯ ⋎δcb(Z,⊔Z)δcb(σ,⊓σ)
δcb(Z, σ)

+⋏δcb(Z, σ)

for all Z, σ ∈ Υ, δcb(Z, σ) ̸= 0 with ⋎ ≥ 0,⋏ ≥ 0,⋎+⋏ < 1 or δcb(⊔Z,⊓σ) = 0
if δcb(Z, σ) = 0. Suppose Υ satisfies the condition that, for every increasing
sequence {Zn} with Zn → β in Υ, we necessarily have β = supZn, then the
pair (⊔,⊓) has a common fixed point β ∈ Υ and δcb(β, β) = 0.

Proof. We know that Zn ⪯ β for all n ∈ N. Following the proof of Theorem
3.1, it is enough to prove that β is a fixed point of ⊔. Suppose β is not a fixed
point, then we have δcb(β,⊔β) = ω > 0 for some ω ∈ C, we obtain

ω ⪯ s[δcb(β,Z2n+2) + δcb(Z2n+2,⊔β)]− δcb(Z2n+2,Z2n+2)

= s[δcb(β,Z2n+2) + δcb(⊓Z2n+1,⊔β)]− δcb(Z2n+2,Z2n+2)

⪯ s[δcb(β,Z2n+2) +⋎
δcb(Z2n+1,⊓Z2n+1)δcb(β,⊔β)

δcb(Z2n+1, β)

+⋏δcb(Z2n+1, β)]− δcb(Z2n+2,Z2n+2).
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Suppose δcb(β, β) = 0, taking limit as n → +∞, we have ω ⪯ 0, which is a
contradiction. Therefore β is a fixed point of ⊔.
For δcb(β, β) ̸= 0, taking limit as n → +∞, we have ω ⪯ ⋎δcb(β,⊔β) +
⋏δcb(β, β) and so, |ω| ≤ (⋎ + ⋏)|ω|, since ⋎ + ⋏ < 1, we get a contradiction,
which implies that β = ⊔β. Therefore, by Theorem 3.1, we get ⊔β = ⊓β = β
and δcb(β, β) = 0.

Theorem 3.3. In addition to Theorem 3.2, suppose that the set of common
fixed points of ⊔ and ⊓ is totally ordered if and only if ⊔ and ⊓ have a unique
common fixed point.

Proof. Suppose now that the common fixed points of ⊔ and ⊓ are totally or-
dered. We have to prove that common fixed points of ⊔ and ⊓ are unique.
Assume that on the contrary β and q are distinct common fixed points of ⊔
and ⊓. By supposition, we replace µ by β and σ by q in Theorem 3.1, we obtain
for δcb(β, q) ̸= 0,

δcb(β, q) = δcb(⊔β,⊓q)

⪯ ⋎
δcb(β,⊔β)δcb(q,⊓q)

δcb(β, q)
+⋏δcb(β, q)

⪯ ⋏δcb(β, q),

which is a contradiction. Hence β = q. Conversely, if ⊔ and ⊓ have only
one common fixed point then the set of common fixed point of ⊔ and ⊓ being
singleton is totally ordered.

Corollary 3.4. Let (Υ, δcb) be a complete complex partial b-metric space with
the coefficient s ≥ 1 and ⊓ : Υ → Υ be a weakly increasing mapping such that

δcb(⊓Z,⊓σ) ⪯ ⋎δcb(Z,⊓Z)δcb(σ,⊓σ)
δcb(Z, σ)

+⋏δcb(Z, σ)

for all Z, σ ∈ Υ, δcb(Z, σ) ̸= 0 with ⋎ ≥ 0,⋏ ≥ 0,⋎+⋏ < 1 or δcb(⊔Z,⊓σ) = 0
if δcb(Z, σ) = 0. Suppose ⊓ is continuous or for every increasing sequence {Zn}
with Zn → β in Υ, we necessarily have β = supZn, then ⊓ has a fixed point
β ∈ Υ and δcb(β, β) = 0. Moreover, the set of fixed points of ⊓ is totally ordered
if and only if ⊓ has a unique fixed point.

Corollary 3.5. Let (Υ, δcb) be a complete complex partial b-metric space with
the coefficient s ≥ 1 and ⊓ : Υ → Υ be a weakly increasing mapping such that

δcb(⊓nZ,⊓nσ) ⪯ ⋎δcb(Z,⊓nZ)δcb(σ,⊓nσ)

δcb(Z, σ)
+⋏δcb(Z, σ)

for all Z, σ ∈ Υ, δcb(Z, σ) ̸= 0 with ⋎ ≥ 0,⋏ ≥ 0,⋎+⋏ < 1 or δcb(⊔Z,⊓σ) = 0
if δcb(Z, σ) = 0. Then ⊓ has a unique fixed point.
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Proof. By Corollary 3.4, we obtain β ∈ Υ such that ⊓nβ = β. Suppose
δcb(⊓β, β) = 0, the proof is finished. If δcb(⊓β, β) ̸= 0, we have

δcb(⊓β, β) = δcb(⊓ ⊓n β,⊓nβ) = δcb(⊓n ⊓ β,⊓nβ)

⪯ ⋎
δcb(⊓β,⊓nβ)δcb(β,⊓nβ)

δcb(⊓β, β)
+⋏δcb(β,⊓β)

⪯ (⋎+⋏)δcb(β,⊓β),

which is a contradiction. Therefore ⊓β = β.

Example 3.6. Let Υ = {1, 2, 3, 4} be endowed with the order Z ⪯ σ if and
only if σ ≤ Z. Then ⪯ is a partial order in Υ. Define the complex partial
b-metric space δcb : Υ×Υ → C+ as follows:

(Z, σ) δcb(Z, σ)
(1,1), (2,2) 0
(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,3) e2iy

(1,4),(4,1),(2,4),(4,2),(3,4),(4,3),(4,4) 9e2iy

It is easy to verify that (Υ, δcb) is a complete complex partial b-metric space
with the coefficient s ≥ 1 for y ∈ [0, π

2 ]. Define ⊔,⊓ : Υ → Υ by ⊔Z = 1,

⊓(Z) =

{
1 if Z ∈ {1, 2, 3}
2 ifZ = 4.

Then, ⊔ and ⊓ are weakly increasing with respect to ⪯ and continuous. Now
for ⋎ = ⋏ = 1

9 , we consider the following cases:

(a) If Z = 1 and σ ∈ Υ−{4}, then ⊔(Z) = ⊓(σ) = 1 and δcb(⊔(Z),⊓(σ)) = 0
and the conditions of Theorem 3.1 are satisfied.

(b) If Z = 1, σ = 4, then ⊔Z = 1, ⊓σ = 2,

δcb(⊔Z,⊓σ) = e2iy ⪯ 9⋏ ei2y

= ⋎
(0)9e2iy

9e2iy
+⋏9e2iy

= ⋎
δcb(Z,⊔Z)δcb(σ,⊓σ)

δcb(Z, σ)
+⋏δcb(Z, σ).

(c) If Z = 2, σ = 4, then ⊔Z = 1, ⊓σ = 2,

δcb(⊔Z,⊓σ) = e2iy ⪯ (⋎+ 9⋏)ei2y

= ⋎
(e2iy)9e2iy

9e2iy
+⋏9e2iy

= ⋎
δcb(Z,⊔Z)δcb(σ,⊓σ)

δcb(Z, σ)
+⋏δcb(Z, σ).
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(d) If Z = 3, σ = 4, then ⊔Z = 1, ⊓σ = 2,

δcb(⊔Z,⊓σ) = e2iy ⪯ (⋎+ 9⋏)ei2y

= ⋎
(e2iy)9e2iy

9e2iy
+⋏9e2iy

= ⋎
δcb(Z,⊔Z)δcb(σ,⊓σ)

δcb(Z, σ)
+⋏δcb(Z, σ).

(e) If Z = 4, σ = 4, then ⊔Z = 1, ⊓σ = 2,

δcb(⊔Z,⊓σ) = e2iy ⪯ 9(⋎+⋏)ei2y

= ⋎
(9e2iy)9e2iy

9e2iy
+⋏9e2iy

= ⋎
δcb(Z,⊔Z)δcb(σ,⊓σ)

δcb(Z, σ)
+⋏δcb(Z, σ).

Moreover, for ⋎ = ⋏ = 1
9 , with ⋏+⋏ = 2

9 < 1, the conditions of Theorem
3.1 are satisfied. Therefore, 1 is the unique common fixed point of ⊔ and
⊓.

4. Application

Now we prove an existence theorem for the common solution of two Urysohn
type integral equations. Consider the following system of Urysohn type integral
equations.

(4.1)

{
Z(q) = b(q) +

∫ y

x
G1(q, s,Z(s))ds

Z(q) = b(q) +
∫ y

x
G2(q, s,Z(s))ds,

where

(R0) Z(q) is an unknown variable for each q ∈ [x, y], x > 0,

(R1) b(q) is the deterministic free term defined for q ∈ [x, y],

(R2) G1(q, s) and G2(q, s) are deterministic kernels defined for q, s ∈ [x, y].

Let Υ = (C[x, y],Rn), q > 0 and δcb : Υ×Υ → Rn defined by

δcb(Z, σ) = |Z − σ|2 + 2 + i(|Z − σ|2 + 2),

for all Z, σ ∈ Υ.
Obviously (C[x, y],Rn, δcb) is a complete complex partial b-metric space with
the constant s ≥ 1. Further let us consider a Urysohn type integral system as
(4.1) under the following conditions:

(1) b(q) ∈ Υ;
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(2) for all q, s ∈ [x, y], we have

G1(q, s, i(s)) ⪯ G2(s, k, b(s) +

∫ y

x

G1(s, k, i(k))dk)

and

G2(q, s, i(s)) ⪯ G1(q, s, b(q) +

∫ y

x

G2(q, s, i(s))ds);

(3) G1, G2 : [x, y]× [x, y]× Rn → Rn are continuous functions satisfying

|G1(q, s, i(s))−G2(q, s, j(s))| ⪯

√
|i− j|2
2(y − x)

− 2

y − x
.

We apply Theorem 3.1 to prove the existence of a unique solution of the system
(4.1).

Theorem 4.1. Let (C[x, y],Rn, ℘cb) be a complete complex partial b-metric
space, then the system (4.1) under the conditions (1)-(3) has a unique common
solution.

Proof. For Z ∈ Υ and q ∈ [x, y], we define the continuous mappings ⊔,⊓ : Υ →
Υ by

⊔Z(q) = b(q) +

∫ y

x

G1(q, s,Z(s))ds,

and

⊓Z(s) = b(q) +

∫ y

x

G2(q, s,Z(s))ds.

From the condition (2), the mappings ⊔ and ⊓ are weakly increasing with
respect to ⪯. Indeed, for all q ∈ [x, y], we have

⊔Z(q) = b(q) +

∫ y

x

G1(q, s,Z(s))ds

⪯ b(q) +

∫ y

x

G2(s, k, b(s) +

∫ y

x

G1(s, k, i(k))dk)

= b(q) +

∫ y

x

G2(q, s,⊔Z(s))ds

= ⊓(⊔Z(q)).

Therefore ⊔Z(q) ⪯ ⊓(⊔Z(q)). Similarly, one can easily see that ⊓Z(s) ⪯
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⊔(⊓Z(s)). Next we have

δcb(⊔Z(q),⊓σ(q)) = | ⊔ Z(q)− ⊓σ(q)|2 + 2 + i(| ⊔ Z(q)− ⊓σ(q)|2 + 2)

=

∫ y

x

|G1(q, s,Z(s))−G2(q, s, σ(s))|2dp+ 2

+ i

(∫ y

x

|G1(q, s,Z(s))−G2(q, s, σ(s))|2dp+ 2

)
⪯

∫ y

x

(
|i− j|2

2(y − x)
− 2

y − x

)
dp+ 2

+ i

(∫ y

x

(
|i− j|2

2(y − x)
− 2

y − x

)
dp+ 2

)
=

|i− j|2

2
+ i

(
|i− j|2

2

)
⪯ |i− j|2

2
+ 1 + i

(
|i− j|2

2
+ 1

)
= ⋏(|i− j|2 + 2 + i(|i− j|2 + 2))

= ⋏δcb(i, j),

for all Z, σ ∈ Υ. Hence, all the conditions of Theorem 3.1 are satisfied for
⋎+⋏(= 1

2 ) < 1 with ⋎ = 0. Therefore, the system of integral equations (4.1)
has a unique common solution.

5. Conclusion

In this paper, we proved some common fixed point theorems on complex
partial b-metric spaces for a pair of weakly increasing mapping satisfying ra-
tional type contraction conditoion. An illustrative example and application to
Urysohn type integral equations on complex partial b-metric space is given.
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