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A note on (k, µ)′-almost Kenmotsu manifolds

Uday Chand De1, Arpan Sardar23

Abstract. In this paper, we classify (k, µ)′-almost Kenmotsu manifolds
admits some special vector fields such as concircular and torse-forming.
Furthermore, we characterize (k, µ)′-almost Kenmotsu manifolds with an
η-Ricci soliton whose potential vector field is projective and affine con-
formal. Beside these we study gradient η-Ricci soliton on (k, µ)′-almost
Kenmotsu manifolds. Finally, the existence of an η-Ricci soliton on a
3-dimensional (k, µ)′-almost Kenmotsu manifold is ensured by a proper
example.
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1. Introduction

On a Riemannian manifold (N, g) a Ricci soliton is given by

(1.1) £Xg + 2Ric+ 2λg = 0,

£ being the Lie-derivative, λ a constant, Ric denotes the Ricci tensor and the
vector field X is called the potential vector field. Ricci solitons are the special
solutions of the Ricci flow equation

(1.2)
∂

∂t
g = −2Ric,

which was introduced by Hamilton [16].
To extend the notion of Ricci soliton Cho and Kimura [8] initiated to in-

troduce η-Ricci solitons. η-Ricci solitons on a Riemannian manifold (N, g)
satisfies

(1.3) £Xg + 2Ric+ 2λg + 2ψη ⊗ η = 0,

where ψ is a constant. ψ = 0 implies the η-Ricci soliton becomes a Ricci soliton
and for ψ ̸= 0 the η-Ricci soliton is said to be proper. η-Ricci solitons have
been studied by several authors such as Blaga ([1], [2], [4]), De and De [9],

1Department of Pure Mathematics, University of Calcutta, 35, B. C. Road, Kol- 700019,
West Bengal, India, e-mail: uc de@yahoo.com, ORCID iD: orcid.org/0000-0002-8990-4609

2Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India,
e-mail: arpansardar51@gmail.com, ORCID iD: orcid.org/0000-0001-6602-9357

3Corresponding author

https://doi.org/10.30755/NSJOM.12930
mailto:uc_de@yahoo.com
https://orcid.org/0000-0002-8990-4609
mailto:arpansardar51@gmail.com
https://orcid.org/0000-0001-6602-9357


42 U.C. De, A. Sardar

De and Haseeb [10], Haseeb and De [17], De and Sardar [24], De et. al. [19],
Sarkar and Sardar ([26], [25]), Caliskan and Saglamer [6] and many others.

If the vector field X is a gradient of a smooth function f : N → R (called
the potential function), then the soliton is said to be a gradient η-Ricci soliton
and the above equation (1.3) becomes

(1.4) Hessf +Ric+ λg + ψη ⊗ η = 0,

where Hess f is the Hessian of f . For λ < 0, λ = 0 or λ > 0 indicate respectively
the soliton is shrinking, steady or expanding. Gradient η-Ricci solitons have
been investigated by several authors such as ([3], [29], [30]) and many others.

In a Riemannian manifold (N, g) a vector field X is called torse-forming
[32] if

(1.5) ∇UX = fU + ω(U)X,

where f is a smooth function, ω is a 1-form and ∇ is the Levi-Civita connection
of g. X is called concircular [15] if ω = 0 and X is called recurrent [27] if f = 0.

Also a vector field X is said to be an affine conformal [14] if

(1.6) (£X∇)(U, V ) = (Uρ)V + (V ρ)U − g(U, V )Dρ,

or projective [33] if

(1.7) (£X∇)(U, V ) = p(U)V − p(V )U,

£ being the Lie-derivative, p an exact 1-form and ρ being a smooth function
on N . The vector field X is called affine if ρ is constant in (1.6) and p = 0 in
(1.7).

If X is projective, then from (1.7) we get

(1.8) ∇U∇VX −∇∇UVX = R(U,X)V + p(U)V + p(V )U.

Torse-forming vector field, concircular vector field, affine conformal vector
field and projective vector field have been studied by several authors such as
([7], [11], [18], [29], [28], [32], [34]) and many others.

Inspired by the foregoing studies we are interested to characterize the above
vector fields on (k, µ)′-akm.

We organize the paper as follows:
After preliminaries in Section 2, we consider some vector fileds on (k, µ)′-
almost Kenmotsu manifolds. In the next section we study η-Ricci solitons
on (k, µ)′-almost Kenmotsu manifolds whose potential vector field is projective
and affine conformal. Section 5 deals with the study of gradient η-Ricci solitons
on (k, µ)′-almost Kenmotsu manifolds. Finally, we construct an example of a
3-dimensional (k, µ)′-almost Kenmotsu manifold admitting η-Ricci soliton.
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2. Preliminaries

An (2m+1)-dimensional Riemannian manifold (N, g) is said to be an almost
contact metric manifold [5] if it admits a (1, 1)-type tensor field ϕ, a vector field
ξ and a 1-form η satisfying

(2.1) ϕ2U = −U + η(U)ξ, η(ξ) = 1,

(2.2) g(ϕU, ϕV ) = g(U, V )− η(U)η(V )

for any vector fields U, V . The vector field ξ is called the Reeb or characteristic
vector field.

Let us consider the Riemannian product N2m+1 × R of an almost contact
manifold and R. Then we define on the product an almost complex structure
J by

J(U, σ
d

dt
) = (ϕU − σξ, η(U)

d

dt
),

where U denotes a vector field tangent to N2m+1, t is the coordinate of R
and σ is a C∞-function on N2m+1 × R. From Blair [5], the normality of an
almost contact structure is expressed by the vanishing of the tensor Nϕ =
[ϕ, ϕ] + 2dη⊗ ξ, where [ϕ, ϕ] is the Nijenhuis tensor of ϕ. An almost Kenmotsu
manifold (in short, akm) is an almost contact metric manifold if dη = 0 and
dΦ = 2η ∧ Φ, Φ(U, V ) = g(U, ϕV ). A Kenmotsu manifold is a normal akm. In
an akm the relation

(2.3) (∇Uϕ)V = g(ϕU, V )ξ − η(V )ϕU

holds. Also the following formulas hold in akm ([13], [12]):

(2.4) hξ = h′ξ = 0, tr(h) = tr(h′) = 0, hϕ+ ϕh = 0,

(2.5) ∇Uξ = U − η(U)ξ + h′U,

where h = 1
2£ξϕ and h′ = h ◦ ϕ.

In an akm if the characteristic vector field ξ belongs to (k, µ)′-nullity dis-
tribution, that is,

(2.6) R(U, V )ξ = k(η(V )U − η(U)V ) + µ(η(V )h′U − η(U)h′V ),

k and µ are constants, suck akm is called a (k, µ)′-akm [13]. In a (k, µ)′-akm
(N, g) we have [13]

(2.7) h′2U = −(k + 1)U + (k + 1)η(U)ξ

and µ = −2. Equation (2.7) reflects that h′ = 0 if and only if k = −1 and
h′ ̸= 0 everywhere if and only if k < −1. It follows from (2.6) that

(2.8) R(ξ, U)V = k(g(U, V )ξ − η(V )U)− 2(g(h′U, V )ξ − η(V )h′U)

for any U, V ∈ χ(N).
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Proposition 2.1. ([31]) In a (k, µ)′-akm, the Ricci operator Q is given by

(2.9) QU = −2mU + 2m(k + 1)η(U)ξ − 2mh′U

for k < −1, where Q is defined by Ric(U, V ) = g(QU, V ) and the scalar curva-
ture r = 2m(k − 2m).

Proposition 2.2. ([23]) In a (k, µ)′-akm, the relation

(2.10) (∇Uh
′)V = −g(h′U + h′2U, V )ξ− η(V )(h′U + h′2U)− (µ+2)η(U)h′V

holds.

Proposition 2.3. ([12]) An almost Kenmotsu manifold (N2m+1, ϕ, ξ, η, g) is
a Kenmotsu manifold if and only if h = 0.

Proposition 2.4. ([12]) Let (N2m+1, ϕ, ξ, η, g) be an akm and assume that
h = 0. Then, N2m+1 is locally a warped product N ′×f M

2m, where M2m is an
almost Kähler manifold, N ′ is an open interval with coordinate t, and f = cet

for some positive constant c.

Definition 2.5. An almost Kenmotsu manifold N2m+1 is said to be an η-
Einstein manifold if its Ricci tensor Ric is of the form

Ric(U, V ) = a1g(U, V ) + b1η(U)η(V ),

where a1, b1 are scalars of which b1 ̸= 0.

In [20], the author proved that an η-Einstein Kenmotsu manifold is an
Einstein manifold, provided b1 = constant (or, a1 = constant). Also, Pastore
and Saltarelli [23] proved that η-Einstein (k, µ)-akm is an Einstein manifold
if any one of the associated scalars is constant. Again, Mandal and De [21]
studied the above result in (k, µ)′-akm. They explain the following:

Proposition 2.6. An η-Einstein (k, µ)′-almost Kenmotsu manifold becomes an
Einstein manifold, provided one of the associated scalars a1 or b1, is constant.

3. Some special vector fields on (k, µ)′-almost Kenmotsu
manifolds

We assume that the vector field X is concircular in (k, µ)′-akm. Then
equation (1.5) infers

(3.1) ∇UX = fU

for any U ∈ χ(N).
The above equation implies

(3.2) R(U, V )X = (Uf)V − (V f)U.
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Taking inner product of (3.2) with the vector filed W , we get

(3.3) g(R(U, V )X,W ) = (Uf)g(V,W )− (V f)g(U,W ).

Contracting U and W in (3.3), we obtain

(3.4) Ric(V,X) = −2m(V f).

Putting U =W = ξ in (3.3), we acquire

(3.5) k[g(V,X)− η(V )η(X)] + µg(h′V,X) = (ξf)η(V )− (V f).

Proposition 2.1 readily gives

(3.6) Ric(U, ξ) = 2mkη(U).

Substituting V by ξ in (3.4) and using (3.6) entails that

(3.7) ξf = −kη(X).

Using (3.7) in (3.5), we infer

(3.8) (V f) + kg(V,X) + µg(h′V,X) = 0,

which implies

(3.9) Df + kX + µh′X = 0.

Using (3.1) from the above equation we acquire

(3.10) ∇UDf = −kfU − µ((∇Uh
′)X).

It is well known that

(3.11) g(∇UDf, V ) = g(U,∇VDf).

In view of (3.10) and (3.11), we get

(3.12) µ[g((∇Uh
′)X,V )− g((∇V h

′)X,U)] = 0

Utilizing (2.10) in (3.12) gives

µ[g(h′U,X)η(V ) + g(h′2U,X)η(V )− g(h′V,X)η(U)(3.13)

−g(h′2V,X)η(U) + (µ+ 2){g(h′X,V )η(U)− g(h′X,U)η(V )}] = 0.

Putting V = ξ in the foregoing equation entails that

(3.14) µ[g(h′U, V ) + g(h′2U,X)− (µ+ 2)g(h′X,U)] = 0.

Replacing U by ϕU in (3.14) and using (2.1), we provide

(3.15) µ[(µ+ 1)g(hX,U)− (k + 1)g(X,ϕU)] = 0.
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Interchanging X and U in (3.15) and using (3.15), we infer

(3.16) µ(k + 1)g(X,ϕU) = 0,

which implies k = −1, since in a (k, µ)′-akm, µ = −2 [13]. Hence from (2.7), we
get h = 0. Therefore, from Proposition 2.3 and 2.4, we conclude the following:
Theorem 3.1. If a (k, µ)′-almost Kenmotsu manifold is endowed with a con-
circular vector field, then N2m+1 becomes a Kenmotsu manifold and N2m+1 is
locally a warped product N ′×fM

2m, where M2m is an almost Kähler manifold,
N ′ is an open interval with coordinate t, and f = cet for some positive constant
c.

Theorem 3.2. A non-Kenmotsu (k, µ)′-almost Kenmotsu manifold does not
admit any concircular vector field.

Let us assume that the vector field X is torse-forming in a (k, µ)′-akm and
ω = η in (1.5). Then we have

(3.17) ∇UX = fU + η(U)X.

From the above equation (3.17), we get

(3.18) ∇V ∇UX = (V f)U + f∇V U + η(U)∇VX + (∇V η(U))X.

Interchanging U and V in (3.18) gives

(3.19) ∇U∇VX = (Uf)V + f∇UV + η(V )∇UX + (∇Uη(V ))X.

From (3.17), (3.18) and (3.19), we obtain

(3.20) R(U, V )X = (Uf)V − (V f)U + η(V )fU − η(U)fV.

Contracting U in the foregoing equation, we get

(3.21) Ric(V,X) = −2m(V f) + 2mfη(V ).

Taking inner product on (3.20) with ξ and using (2.6) yields

k[g(V,X)η(U)− g(U,X)η(V )](3.22)

+µ[g(h′V,X)η(U)− g(h′U,X)η(V )]

= (Uf)η(V )− (V f)η(U).

Putting V = ξ in (3.22) gives

(3.23) k[η(U)η(X)− g(U,X)]− µg(h′U,X) = (Uf)− (ξf)η(U).

Substituting V by ξ in (3.21), we get

(3.24) ξf = −kη(X) + f.
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Using (3.24) in (3.23), we infer

(3.25) (Uf) + kg(U,X)− fη(U) + µg(h′X,U) = 0,

which implies

(3.26) Df + kX − fξ + µh′X = 0.

The above equation implies

(3.27) ∇UDf = −k∇UX + (Uf)ξ + f∇Uξ − µ((∇Uh
′)X).

Using (2.5), (3.17) and (3.25) in the above equation entails that

∇UDf = −k[fU + η(U)X]− [kg(U,X)− fη(U) + µg(h′X,U)]ξ(3.28)

+f [U − η(U)ξ + h′U ]− µ((∇Uh
′)X).

In view of (3.11) and (3.28), we provide

µ[g((∇Uh
′)X,V )− g((∇V h

′)X,U)(3.29)

+g(h′X,U)η(V )− g(h′X,V )η(U)] = 0.

Again, utilizing (2.10) in (3.29) gives

µ[(µ+ 1){g(h′U,X)η(V )− g(h′V,X)η(U)}(3.30)

+(k + 1){g(U,X)η(V )− g(V,X)η(U)}] = 0.

Setting V = ξ in (3.30), we get

(3.31) µ[(µ+ 1)g(h′U,X) + (k + 1){g(U,X)− η(U)η(X)}] = 0.

Replacing U by ϕU in (3.31) entails that

(3.32) µ[(µ+ 1){g(hU,X)− η(X)η(U)} − (k + 1)g(ϕU,X)] = 0.

Interchanging U and X in (3.32) and using (3.32), we acquire

(3.33) µ(k + 1)g(ϕU,X) = 0,

which implies k = −1, since in a (k, µ)′-akm, µ = −2 [13]. Hence from (2.7),
we get h = 0. Therefore, from Proposition 2.3 and 2.4 we have:

Theorem 3.3. If a (k, µ)′-almost Kenmotsu manifold admitting a torse-forming
vector field, then N2m+1 becomes a Kenmotsu manifold and N2m+1 is locally
a warped product N ′ ×f M

2m, where M2m is an almost Kähler manifold, N ′

is an open interval with coordinate t, and f = cet for some positive constant c,
provided ω = η.

Theorem 3.4. In a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold, the
torse-forming vector field does not exist, provided ω = η.
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4. η-Ricci solitons on (k, µ)′-almost Kenmotsu manifolds

Let us assume that a (k, µ)′-akm admit an η-Ricci soliton (g, ξ, λ, ψ). Then
from (1.3), we get

(4.1) (£ξg)(U, V ) + 2Ric(U, V ) + 2λg(U, V ) + 2ψη(U)η(V ) = 0.

From (2.5), we infer

(4.2) (£ξg)(U, V ) = 2[g(U, V )− η(U)η(V ) + g(h′U, V )].

Using (4.2) in (4.1), we obtain

(4.3) Ric(U, V ) = −(λ+ 1)g(U, V )− (ψ − 1)η(U)η(V )− g(h′U, V ).

Putting U = V = ξ and using (2.9) gives

(4.4) λ+ ψ = −2mk.

Thus we have the following theorem:
Theorem 4.1. If a (k, µ)′-almost Kenmotsu manifold admits an η-Ricci soli-
ton, then the Ricci tensor is of the form (4.3) and the constants λ and ψ are
related by λ+ ψ = −2mk.

Now, let (g,X, λ, ψ) be an η-Ricci soliton in a (k, µ)′-akm such that the
potential vector field X is pointwise collinear with ξ, that is, X = bξ, where b
is a function.

Then from (1.3), we get

bg(∇Uξ, V ) + bg(U,∇V ξ) + (Ub)η(V )(4.5)

+(V b)η(U) + 2Ric(U, V ) + 2λg(U, V ) + 2ψη(U)η(V ) = 0.

Using (2.5) in the above equation yields

2b[g(U, V )− η(U)η(V ) + g(h′U, V )] + (Ub)η(V ) + (V b)η(U)(4.6)

+2Ric(U, V ) + 2λg(U, V ) + 2ψη(U)η(V ) = 0.

Putting V = ξ in (4.6) entails

(4.7) (Ub) + (ξb)η(U) + 4nkη(U) + 2(λ+ ψ)η(U) = 0.

Again, putting U = ξ in (2.8), we get

(4.8) ξb = −(2mk + λ+ ψ).

Using (4.8) in (4.7), we obtain

(4.9) Ub = (2mk + λ+ ψ)η(U),

which implies that

(4.10) db = (2mk + λ+ ψ)η.
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Now, applying d on the foregoing equation, we infer

(4.11) (2mk + λ+ ψ)dη = 0.

Since dη ̸= 0, hence we get

(4.12) 2mk + λ+ ψ = 0.

Using (4.12) in (4.10), we obtain

db = 0,

which implies b is a constant.
Hence we conclude the following:

Theorem 4.2. If a (k, µ)′-almost Kenmotsu manifold admits an η-Ricci soli-
ton (g,X, λ, ψ) such that the potential vector field X is pointwise collinear with
ξ, then X is a constant multiple of ξ and the constants λ and ψ are related by
2mk + λ+ ψ = 0.

Let us assume that the potential vector field X is an affine conformal vector
field. Then from (1.6), we get

(4.13) (£X∇)(U, V ) = (Uρ)V + (V ρ)U − g(U, V )Dρ.

Equation (1.3) implies

(4.14) (£Xg)(V,W ) = −2Ric(V,W )− 2λg(V,W )− 2ψη(V )η(W )

for any V,W . It is well known that the following formula is satisfied [33]:

(£X∇Ug −∇U£Xg −∇[X,U ])(V,W ) = −g((£X∇)(U, V ),W )

−g((£X∇)(U,W ), V ).

In view of the parallelism of the Riemannian metric g, the above formula be-
comes

(4.15) (∇U£Xg)(V,W ) = g((£X∇)(U, V ),W ) + g((£X∇)(U,W ), V ).

From (4.14), we obtain

(∇U£Xg)(V,W ) = −2(∇URic)(V,W )(4.16)

−2ψ[{g(U, V )− η(U)η(V ) + g(h′U, V )}η(W )

+{g(U,W )− η(U)η(W ) + g(h′U,W )}η(V )].

Using (4.13) and (4.16) in (4.15), we get

(Uρ)g(V,W ) = −(∇URic)(V,W )(4.17)

−ψ[{g(U, V )− η(U)η(V ) + g(h′U, V )}η(W )

+{g(U,W )− η(U)η(W ) + g(h′U,W )}η(V )]
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Putting V =W = ξ in the foregoing equation, we infer

(4.18) Uρ = 0,

which implies ρ is a constant.
Hence we can state the following:

Theorem 4.3. If a (k, µ)′-almost Kenmotsu manifold admits an η-Ricci soli-
ton such that the potential vector field X is an affine conformal vector field,
then the potential vector field reduces to an affine vector field.

By applying the same process as given in the proof of Theorem 4.3 we also
state the following:

Theorem 4.4. If a (k, µ)′-almost Kenmotsu manifold admits an η-Ricci soli-
ton such that the potential vector field X is a projective vector field, then the
vector field reduces to an affine vector field.

5. Gradient η-Ricci solitons on (k, µ)′-almost Kenmotsu
manifolds

This section is devoted to studing gradient η-Ricci solitons on (k, µ)′-akm.
Now equation (1.4) implies

(5.1) ∇UDf = −QU − λU − ψη(U)ξ.

Using (5.1) and after some calculations, we obtain

R(U, V )Df = −[(∇UQ)V − (∇VQ)U ](5.2)

−ψ[η(V )U − η(U)V + η(V )h′U − η(U)h′V ].

Now from (2.9), we have

(∇UQ)V − (∇VQ)U = 2m(k + 1)[η(V )U − η(U)V + η(V )h′U(5.3)

−η(U)h′V ]− 2m[(∇Uh
′)V − (∇V h

′)U ].

Using Proposition 2.2 in the above equation entails that

(5.4) (∇UQ)V −(∇VQ)U = 2m(k+1)[η(V )U−η(U)V +η(V )h′U−η(U)h′V ].

Using (5.4) in (5.2), we infer

(5.5) R(U, V )Df = −[2m(k+1)+ψ][η(V )U − η(U)V + η(V )h′U − η(U)h′V ].

Contracting (5.5), we get

(5.6) Ric(V,Df) = −2m[2m(k + 1) + ψ].

Equation (2.9) can be written as

(5.7) Ric(U, V ) = −2mg(U, V ) + 2m(k + 1)η(U)η(V )− 2mg(h′U, V ).
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Replacing U by Df in (5.7), we get

(5.8) V f = [2m(k + 1) + ψ]η(V ) + (k + 1)(ξf)η(V )− (h′V f).

Putting V = ξ in the above equation gives

(5.9) −k(ξf) = 2m(k + 1) + ψ.

Taking inner product of (5.5) with ξ, we obtain

(5.10) k[η(V )(Uf)− η(U)(V f)] + µ[η(V )(h′Uf)− η(U)(h′V f)] = 0.

Putting U = ξ in the foregoing equation, we get

(5.11) kη(V )(ξf)− k(V f)− µ(h′V f) = 0.

In view of (5.8) and (5.11) and using (5.9), we infer

(5.12) (k − µ)[k(V f) + {2m(k + 1) + ψ}η(V )] = 0.

It follows that either k = µ or,

(5.13) k(V f) + {2m(k + 1) + ψ}η(V ) = 0.

If we take 2m(k + 1) + ψ = 0, then from (5.12) we get V f = 0, since k ̸= µ
in general. Hence f is constant and so from (5.1) we get it is an η-Einstein
manifold. Hence from Proposition 2.5, we can state the following:

Theorem 5.1. If the metric of a (k, µ)′-almost Kenmotsu manifold is a gradi-
ent η-Ricci soliton, then it is an Einstein manifold, provided 2m(k+1)+ψ = 0.

6. Example

We consider the 3-dimensional manifold N3 = {(x, y, z) ∈ R3}, where
(x, y, z) are the standard coordinates in R3. Let ξ, e2, e3 be three vector fields
in R3 which satisfies [13]

[ξ, e2] = −e2 − e3, [ξ, e3] = −e2 − e3, [e2, e3] = 0.

Let g be the Riemannian metric defined by

g(ξ, ξ) = g(e2, e2) = g(e3, e3) = 1 and g(ξ, e2) = g(ξ, e3) = g(e2, e3) = 0.

Let η be the 1-form defined by η(W ) = g(W, ξ), for any W ∈ χ(N3).
Let ϕ be the (1,1)-tensor field defined by

ϕξ = 0, ϕe2 = e3, ϕe3 = −e2.

Then using the linearity of ϕ and g, we have

η(ξ) = 1,
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ϕ2U = −U + η(U)ξ,

g(ϕU, ϕV ) = g(U, V )− η(U)η(V )

for any U, V ∈ χ(N3). Thus the structure (ϕ, ξ, η, g) is an almost contact
structure.

Moreover, h′ξ = 0, h′e2 = e3 and h′e3 = e2.
In [22] the authors obtained the expression of the curvature tensor and the

Ricci tensor as follows:

R(ξ, e2)ξ = 2(e2 + e3), R(ξ, e2)e2 = −2ξ, R(ξ, e2)e3 = −2ξ,

R(e2, e3)ξ = R(e2, e3)e2 = R(e2, e3)e3 = 0,

R(ξ, e3)ξ = 2(e2 + e3), R(ξ, e3)e2 = −2ξ, R(ξ, e3)e3 = −2ξ.

With help of the expressions of the curvature tensor, we conclude that the
characteristic vector field ξ belongs to the (k, µ)′-nullity distribution with k =
−2 and µ = −2.

Using the expression of the curvature tensor, we find the values of the Ricci
tensor as follows:

Ric(ξ, ξ) = −4, Ric(e2, e2) = Ric(e3, e3) = −2.

From (4.3) we obtainRic(ξ, ξ) = −(λ+ψ), Ric(e2, e2) = −(λ+1) and Ric(e3, e3) =
−(λ+ 1).

Therefore ψ = 3 and λ = 1. The data (g, ξ, λ, ψ) defines an η-Ricci soliton
on (k, µ)′-akm.
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