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On almost pseudo M-Projectively symmetric Riemannian
manifold
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Abstract. In this paper, we have studied an almost pseudo M-
projectively symmetric Riemannian manifold and obtained some inter-
esting and fruitful results on it.
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1. Introduction

Let (Mn, g) be a Riemannian manifold of dimension n with the Riemannian
metric g and ∇ be the Levi-Civita connection with respect to the metric g. In
1971, Pokhariyal and Mishra [8] introduced and studied a new curvature tensor
of type (1,3) in an n-dimensional Riemannian manifold known as M-projective
curvature tensor (M) and defined by

M(X,Y, Z) = K(X,Y, Z)− 1

2(n− 1)
[Ric(Y, Z)X − Ric(X,Z)Y

+ g(Y,Z)R(X)− g(X,Z)R(Y )],(1.1)

where K denotes the Riemannian curvature tensor of type (1,3), Ric denotes
Ricci tensor of type (0,2) and R denotes Ricci tensor of type (1,1), and defined
by

(1.2) Ric(X,Y ) = g(R(X), Y ).

Consequently (1.1) gives

M̃(X,Y, Z, V ) = K̃(X,Y, Z, V )− 1

2(n− 1)
[Ric(Y,Z)g(X,V )

− Ric(X,Z)g(Y, V ) + Ric(X,V )g(Y, Z)

− Ric(Y, V )g(X,Z)],(1.3)
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where K̃ and M̃ denote the Riemannian curvature tensor of type (0,4) and
M-projective curvature tensor of type (0,4), respectively, and are defined by

(1.4) K̃(X,Y, Z, V ) = g(K(X,Y, Z), V ),

and

(1.5) M̃(X,Y, Z, V ) = g(M(X,Y, Z), V ).

From (1.3), we have

(1.6)


M̃(X,Y, Z, V ) = −M̃(Y,X,Z, V ),

M̃(X,Y, Z, V ) = −M̃(X,Y, V, Z),

M̃(X,Y, Z, V ) = M̃(Z, V,X, Y )

and

(1.7) M̃(X,Y, Z, V ) + M̃(Y,Z,X, V ) + M̃(Z,X, Y, V ) = 0.

If {ei} is an orthonormal basis of the tangent space at each point of the manifold
and i running from 1 to n, then, from (1.3), we have

(1.8)

n∑
i=1

M̃(X,Y, ei, ei) = 0 =

n∑
i=1

M̃(ei, ei, Z, V )

and

n∑
i=1

M̃(ei, Y, Z, ei) =

n∑
i=1

M̃(Y, ei, ei, Z)

=
n

2(n− 1)
[Ric(Y, Z)− r

n
g(Y, Z)],(1.9)

where r =
∑n

i=1 Ric(ei, ei) is the scalar curvature.
It is known that in Riemannian manifold the curvature tensor K satisfies

the following

(1.10) (divK)(X,Y, Z) = (∇XRic)(Y, Z)− (∇Y Ric)(X,Z),

where (divK)(X,Y, Z) =
∑n

i=1 g((∇eiK)(X,Y, Z), ei) and ‘div’ denotes the
divergence.

A non-flat Riemannian manifold (Mn, g), (n > 2), is called a pseudo sym-
metric manifold [2] if its curvature tensor K̃ satisfies the following condition:

(∇UK̃)(X,Y, Z, V ) = 2α(U)K̃(X,Y, Z, V ) + α(X)K̃(U, Y, Z, V )

+ α(Y )K̃(X,U,Z, V ) + α(Z)K̃(X,Y, U, V )

+ α(V )K̃(X,Y, Z, U),(1.11)
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for all differentiable vector fields X,Y, Z, U, V and α is called the associated
1-form, and is defined by

(1.12) g(X,P ) = α(X).

Such a manifold is denoted by (PS)n. If α = 0 in (1.11), then the pseudo
symmetric manifold becomes a locally symmetric manifold.

A non-flat Riemannian manifold (Mn, g), (n > 2), whose M-projective cur-
vature tensor M̃ satisfies the following condition:

(∇UM̃)(X,Y, Z, V ) = 2α(U)M̃(X,Y, Z, V ) + α(X)M̃(U, Y, Z, V )

+ α(Y )M̃(X,U,Z, V ) + α(Z)M̃(X,Y, U, V )

+ α(V )M̃(X,Y, Z, U).(1.13)

is called a pseudo M-projectively symmetric manifold and is denoted by (PMPS)n.
De and Ghazi [3] introduced the notion of almost pseudo symmetric mani-

folds. A Riemannian manifold (Mn, g), (n > 2), is said to be an almost pseudo
symmetric manifold if its curvature tensor K̃ of type (0,4) satisfies the following
condition:

(∇UK̃)(X,Y, Z, V ) = [α(U) + β(U)]K̃(X,Y, Z, V ) + α(X)K̃(U, Y, Z, V )

+ α(Y )K̃(X,U,Z, V ) + α(Z)K̃(X,Y, U, V )

+ α(V )K̃(X,Y, Z, U),(1.14)

where α and β are non-zero 1-forms defined by g(X,P ) = α(X), g(X,Q) =
β(X). Such a manifold is denoted by (APS)n. Here the vector fields P and
Q are called the basic vector fields of the manifold corresponding to the asso-
ciated 1-forms α and β, respectively. If the basic vector fields P and Q are
orthonormal, then

(1.15) α(P ) = 1, β(Q) = 1 and g(P,Q) = 0.

If α = β in (1.14) , then the (APS)n reduces to a (PS)n.
A Riemannian manifold is said to be almost pseudo M-projectively sym-

metric manifold (Mn, g), if the following condition is satisfied

(∇UM̃)(X,Y, Z, V ) = [α(U) + β(U)]M̃(X,Y, Z, V ) + α(X)M̃(U, Y, Z, V )

+ α(Y )M̃(X,U,Z, V ) + α(Z)M̃(X,Y, U, V )

+ α(V )M̃(X,Y, Z, U),(1.16)

where α and β are as stated earlier. Such a manifold is denoted by (APMPS)n.
A Riemannian manifold is said to be an Einstein manifold if [7]

(1.17) Ric(X,Y ) =
r

n
g(X,Y ).

A non-flat Riemannian manifold is said to be a quasi-Einstein manifold if [4]

(1.18) Ric(X,Y ) = ag(X,Y ) + bα(X)α(Y ),
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where a and b are scalar functions.
The Ricci tensor of type (0,2) is said to be of Codazzi type of Ricci tensor

if it satisfies the condition ([1], p.- 355)

(1.19) (∇XRic)(Y, Z) = (∇ZRic)(Y,X).

From (1.19), it follows that

(1.20) dr(X) = 0.

The above results will be used in next sections.

2. (APMPS)n, (n > 2) with constant scalar curvature

Taking covariant derivative of (1.3) with respect to U and using (1.16), we
have

(∇UK̃)(X,Y, Z, V ) =
1

2(n− 1)
[(∇URic)(Y,Z)g(X,V )− (∇URic)(X,Z)g(Y, V )

+ (∇URic)(X,V )g(Y,Z)− (∇URic)(Y, V )g(X,Z)]

+ [α(U) + β(U)]M̃(X,Y, Z, V ) + α(X)M̃(U, Y, Z, V )

+ α(Y )M̃(X,U,Z, V ) + α(Z)M̃(X,Y, U, V )

+ α(V )M̃(X,Y, Z, U).(2.1)

Contracting (2.1) over U and V and then using (1.8) and (1.9), we get

(divK)(X,Y, Z) =
1

2(n− 1)
[(∇XRic)(Y,Z)− (∇Y Ric)(X,Z)

+
1

2
g(Y,Z)dr(X)− 1

2
g(X,Z)dr(Y )]

+ 2α(M(X,Y, Z)) + β(M(X,Y, Z))

+
n

2(n− 1)
α(X)[Ric(Y,Z)− r

n
g(Y,Z)]

− n

2(n− 1)
α(Y )[Ric(X,Z)− r

n
g(X,Z)].(2.2)

In view of (1.10) the relation (2.2) gives

(2n− 3)

2(n− 1)
[(∇XRic)(Y, Z)− (∇Y Ric)(X,Z)]

=
1

4(n− 1)
[g(Y,Z)dr(X)− g(X,Z)dr(Y )]

+ 2α(M(X,Y, Z)) + β(M,X, Y, Z)

+
n

2(n− 1)
α(X)[Ric(Y,Z)− r

n
g(Y,Z)]

− n

2(n− 1)
α(Y ){Ric(X,Z)− r

n
g(X,Z)}].(2.3)
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Taking Y = Z = ei in (2.3), we get

(2.4)
(2n− 3)

2(n− 1)

(dr(X)

2

)
=

(n− 1
2 )

4(n− 1)
dr(X)− n

2(n− 1)
[α(R(X))− r

n
α(X)].

As the scalar curvature r is constant, then the relation (2.4) reduces to

α(R(X)) =
r

n
α(X).

Consequently in view of (1.12), the above relation gives

Ric(X, ρ) =
r

n
g(X, ρ).

This leads to the following:

Theorem 2.1. In an almost pseudo M-projectively symmetric Riemannian
manifold of constant scalar curvature, r

n is an eigenvalue of Ricci tensor Ric
corresponding to the eigenvector ρ.

3. (APMPS)n, (n > 2) with Codazzi type of Ricci tensor

We suppose that 2α(M(X,Y, Z)) + β(M(X,Y, Z)) = 0, then by virtue of
(1.19) and (1.20) the relation (2.3) reduces to

n

2(n− 1)
α(X)[Ric(Y,Z)− r

n
g(Y,Z)]

− n

2(n− 1)
α(Y )[Ric(X,Z)− r

n
g(X,Z)] = 0.(3.1)

Putting X = P in (3.1), we get

(3.2) t[Ric(Y,Z)− r

n
g(Y,Z)] = Ric(Y,Z)− r

n
α(Y )α(Z),

where t=α(P ) is a non-zero scalar.
From (3.2) we have

(3.3) Ric(Y,Z) =
rt

n(t− 1)
g(Y, Z)− r

n(t− 1)
α(Y )α(Z).

This can be written as

(3.4) Ric(Y,Z) = ag(Y,Z) + bα(Y )α(Z); a =
rt

n(t− 1)
and b = − r

n(t− 1)

which is a quasi-Einstein manifold. Thus, we have the following result:

Theorem 3.1. Consider an almost pseudo M-projectively symmetric mani-
fold whose Ricci tensor is of Codazzi type. The manifold is a quasi-Einstein
manifold, provided 2α(M(X,Y, Z)) + β(M(X,Y, Z)) = 0.
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Let us suppose that the M-projective curvature tensor M(X,Y, Z, V ) satis-
fies Bianchi’s second identity, that is,

(3.5) (∇UM̃)(X,Y, Z, V ) + (∇XM̃)(U, Y, Z, V ) + (∇Y M̃)(X,U,Z, V ) = 0.

Taking cyclic sum of (1.16) over U, X, Y and then using (3.5), we get

[α(U) + β(U)]M̃(X,Y, Z, V ) + α(X)M̃(U, Y, Z, V )

+ α(Y )M̃(X,U,Z, V ) + α(Z)M̃(X,Y, U, V ) + α(V )M̃(X,Y, Z, U)

+ [α(X) + β(X)]M̃(Y,U, Z, V ) + α(U)M̃(Y,X,Z, V )

+ α(X)M̃(U, Y, Z, V ) + α(Z)M̃(Y,U,X, V ) + α(V )M̃(Y,U, Z,X)

+ [α(Y ) + β(Y )]M̃(U,X,Z, V ) + α(Y )M̃(X,U,Z, V )

+ α(U)M̃(Y,X,Z, V ) + α(Z)M̃(U,X, Y, V ) + α(V )M̃(U,X,Z, Y ) = 0.(3.6)

In view of (1.6) and (1.7) the relation (3.6) gives

[β(U)− α(U)]M̃(X,Y, Z, V ) + [β(X)− α(X)]M̃(Y, U, Z, V )

+[β(Y )− α(Y )]M̃(U,X,Z, V ) = 0(3.7)

which implies

η(U)M̃(X,Y, Z, V ) + η(X)M̃(Y, U, Z, V )

+η(Y )M̃(U,X,Z, V ) = 0,(3.8)

where η(U) = β(U)− α(U) = g(U, ρ).
Contracting (3.8) over U and V and using (1.9), we get

η(M(X,Y, Z))− n

2(n− 1)
η(X){Ric(Y, Z)− r

n
g(Y, Z)}

+
n

2(n− 1)
η(Y ){Ric(X,Z)− r

n
g(X,Z)} = 0.(3.9)

Using (1.17) in (3.9), we have

(3.10) η(M(X,Y, Z)) = 0.

Now putting U = ρ in (3.8) and using (3.10), we get

(3.11) η(ρ)M(X,Y, Z) = 0.

Hence, either the manifold is M-projectively flat, or η(ρ) = 0. But an M-
projectively flat manifold is of constant curvature. Then ρ is a null vector field
or the manifold is of constant curvature.

Thus we can state the following theorem:

Theorem 3.2. In an Einstein (APMPS)n, (n > 2), if the M-projective cur-
vature tensor satisfies Bianchi’s second identity, then the manifold is either
a manifold of constant curvature, or the vector field ρ defined by g(U, ρ) =
β(U)− α(U) is a null vector field.
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4. Ricci symmetric (APMPS)n, (n > 2)

Contracting (2.1) over X and V and using (1.9), we get

(∇URic)(Y,Z)

=
1

2(n− 1)
[(n− 1)(∇URic)(Y,Z) + g(Y,Z)dr(U)

−(∇URic)(Y,Z)] +
n

2(n− 1)
[α(U) + β(U)][Ric(Y,Z)− r

n
g(Y,Z)]

+α(M(U, Y, Z)) +
n

2(n− 1)
α(Y )[Ric(U,Z)− r

n
g(U,Z)]

+
n

2(n− 1)
α(Z)[Ric(Y, U)− r

n
g(Y, U)] + α(M(U,Z, Y )).(4.1)

If the manifold is Ricci symmetric then

(4.2) (∇URic)(Y, Z) = 0 ∀ U, Y, Z

which on contraction over Y and Z gives

(4.3) dr(U) = 0.

Using (4.2) and (4.3) in (4.1), we have

n

2(n− 1)
[α(U) + β(U)][Ric(Y, Z)− r

n
g(Y,Z)]

+ α(M(U, Y, Z)) +
n

2(n− 1)
α(Y )[Ric(U,Z)− r

n
g(U,Z)]

+
n

2(n− 1)
α(Z)[Ric(Y,U)− r

n
g(Y,U)] + α(M(U,Z, Y )) = 0.(4.4)

Taking Y = Z = ei in (4.4), we get

(4.5) α(R(U)) =
r

n
α(U).

Putting Z = P in (4.4) and using (1.15), (4.5) we get

Ric(Y, U) =
r

n
g(Y, U).

Hence the manifold is an Einstein manifold.
This leads to the following theorem:

Theorem 4.1. A Ricci symmetric (APMPS)n, (n > 2), is an Einstein man-
ifold provided the basic vector fields are orthonormal vector fields.

Taking covariant derivative of (1.3) with respect to U and using the condi-
tion of Ricci symmetric manifold, we get

(∇UM̃)(X,Y, Z, V ) = (∇UK̃)(X,Y, Z, V ).

This leads to the following:



62 M. Ali, Q. Khan, and M. Vasiulla

Theorem 4.2. Every Ricci symmetric (APMPS)n, (n > 2), is an almost
pseudo symmetric manifold.

Taking covariant derivative of (1.3) with respect to U and then taking cyclic
sum with respect to U,X and Y , we get

(∇UM̃)(X,Y, Z, V ) + (∇XM̃)(Y,U, Z, V ) + (∇Y M̃)(U,X.Z, V )

=(∇UK̃)(X,Y, Z, V ) + (∇XK̃)(Y,U, Z, V ) + (∇Y K̃)(U,X.Z, V )

− 1

2(n− 1)
[(∇URic)(Y, Z)g(X,V ) + (∇Y Ric)(X,Z)g(U, V )

+ (∇XRic)(U,Z)g(Y, V )− (∇URic)(X,Z)g(Y, V )

− (∇XRic)(Y, Z)g(U, V )− (∇Y Ric)(U,Z)g(X,V )

+ (∇URic)(X,V )g(Y,Z) + (∇XRic)(Y, V )g(U,Z)

+ (∇Y Ric)(U, V )g(X,Z)− (∇URic)(Y, V )g(X,Z)

− (∇Y Ric)(X,V )g(U,Z)− (∇XRic)(U, V )g(Y, Z)](4.6)

which in view of Bianchi’s second identity, the above relation gives

(∇UM̃)(X,Y, Z, V ) + (∇XM̃)(Y, U, Z, V ) + (∇Y M̃)(U,X.Z, V )

− 1

2(n− 1)
[(∇URic)(Y,Z)g(X,V ) + (∇Y Ric)(X,Z)g(U, V )

+ (∇XRic)(U,Z)g(Y, V )− (∇URic)(X,Z)g(Y, V )

− (∇XRic)(Y,Z)g(U, V )− (∇Y Ric)(U,Z)g(X,V )

+ (∇URic)(X,V )g(Y,Z) + (∇XRic)(Y, V )g(U,Z)

+ (∇Y Ric)(U, V )g(X,Z)− (∇URic)(Y, V )g(X,Z)

− (∇Y Ric)(X,V )g(U,Z)− (∇XRic)(U, V )g(Y,Z)].(4.7)

If the manifold is a Ricci symmetric manifold [6], then the relation (4.7) reduces
to

(∇UM̃)(X,Y, Z, V ) + (∇XM̃)(Y, U, Z, V ) + (∇Y M̃)(U,X.Z, V ) = 0.

Hence we can state the following theorem:

Theorem 4.3. In a Ricci symmetric (APMPS)n, (n > 2), the M -projective
curvature tensor satisfies Bianchi’s second identity.

5. Existence of an (APMPS)n

We define a Riemannian metric g on the 4-dimensional real number space
R4 by the relation

(5.1) ds2 = gijdx
idxj = x1[(dx1)2 + (dx2)2 + (dx3)2]− (dx4)2,

where i, j = 1, 2, 3, 4. Then the non-vanishing components of covariant and
contravariant metric tensor are

(5.2) g11 = g22 = g33 = x1, g44 = −1
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and

(5.3) g11 = g22 = g33 =
1

x1
, g44 = −1

In the metric considered the only non-vanishing components of the Christoffel
symbols are (see [5])

{
1
11

}
=

{
2
12

}
=

{
3
13

}
=

1

2x1
,(5.4) {

1
22

}
=

{
1
33

}
= − 1

2x1
.(5.5)

The non-zero derivatives of equations (5.4) and (5.5) are as follows:

∂

∂x1

{
1
11

}
=

∂

∂x1

{
2
12

}
=

∂

∂x1

{
3
13

}
= − 1

2(x1)2
,(5.6)

∂

∂x1

{
1
22

}
=

∂

∂x1

{
1
33

}
=

1

2(x1)2
.(5.7)

The Riemannian curvature tensor is as follows:

(5.8) Rl
ijk =

∣∣∣∣∣∣∣∣
∂

∂xj
∂

∂xk{
l
ij

} {
l
ik

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=I

+

∣∣∣∣∣∣∣∣
{
m
ik

} {
m
ij

}
{

l
mk

} {
l

mj

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=II

The non-zero components of (I) in (5.8) are as follows:

K1
221 =

∂

∂x1

{
1
22

}
= − 1

2(x1)2
,

K1
331 =

∂

∂x1

{
1
33

}
= − 1

2(x1)2

and the non-zero components of (II) in (5.8) are:

K1
221 =

{
m
21

}{
1
m2

}
−
{
m
22

}{
1
m1

}
=

{
1
21

}{
1
12

}
−

{
1
22

}{
1
11

}
=

1

4(x1)2
,

K1
331 =

{
m
31

}{
1
m3

}
−
{
m
33

}{
1
m1

}
=

{
1
31

}{
1
13

}
−

{
1
33

}{
1
11

}
=

1

4(x1)2
,

K2
332 =

{
m
32

}{
2
m3

}
−
{
m
33

}{
2
m2

}
=

{
1
32

}{
2
13

}
−

{
1
33

}{
2
12

}
=

1

4(x1)2
.

Now using these components in (5.8), we get

K1
221 = K1

331 = − 1

4(x1)2
and K2

332 =
1

4(x1)2
.
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Thus the non-vanishing components of the Riemannian curvature tensor of type
(0,4), up to symmetry, are

K̃1221 = K̃1331 = − 1

2x1
, K̃2332 =

1

4x1
,

and the Ricci tensor of type (0,2)

Ric11 = gijK1ij1 = − 1

(x1)2
,

Ric22 = gijK2ij2 = − 1

4(x1)2
,

Ric33 = gijK3ij3 = − 1

4(x1)2
,

Ric44 = gijK4ij4 = 0.

The scalar curvature r is

r = g11Ric11 + g22Ric22 + g33Ric33 + g44Ric44 = − 3

2(x1)3
.

Now, the non-vanishing components of the M-projective curvature tensor are
as follows:

(5.9) M̃1221 = M̃1331 = − 7

24x1
, M̃2332 =

1

3x1
,

and their covariant derivatives

(5.10) M̃1221,1 = M̃1331,1 =
7

24(x1)2
, M̃2332,1 = − 1

3(x1)2
,

where ‘,’ denotes the covariant derivative with respect to the metric tensor.
Note that the associated 1-forms are as follows:

(5.11) αi(x) =

{
0, if i=1

x1, otherwise
, βi(x) =

{
− 1

x1 , if i=1

−x1, otherwise,

at any point x ∈ R4. To verify the relation (1.16), it is sufficient to check the
following equations:

(5.12) M̃1221,1 = [α1 + β1]M̃1221 +α1M̃1221 +α2M̃1121 +α2M̃1211 +α1M̃1221,

(5.13) M̃1331,1 = [α1 + β1]M̃1331 +α1M̃1331 +α3M̃1131 +α3M̃1311 +α1M̃1331,

and

(5.14) M̃2332,1 = [α1 + β1]M̃2332 +α2M̃1332 +α3M̃2132 +α3M̃2312 +α2M̃2331.
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Since for the other cases relation (1.16) holds trivially. By (5.9), (5.10) and
(5.11), we get

R.H.S. of (5.12) = [α1 + β1]M̃1221 + α1M̃1221 + α1M̃1221

= [3α1 + β1]M̃1221

= 3(0)
(
− 7

24x1

)
+

(
− 1

x1

)
×

(
− 7

24x1

)
=

7

24(x1)2

= M̃1221,1

= L.H.S. of (5.12)

By a similar argument it can be shown that (5.13) and (5.14) are also true. So
the manifold (R4, g) is an (APMPS)4.

In consequence of the above, one can say that

Theorem 5.1. There exist a manifold (R4, g) which is an almost pseudo M-
projectively symmetric Riemannian manifold with the above mentioned choice
of the 1-forms.
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