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Non-algebraic crossing limit cycle for discontinuous
piecewise differential systems formed by a linear system
without equilibrium points and quadratic isochronous

centers at the origin

Sabah Benadouane12, Ahmed Bendjeddou3, Aziza Berbache4

Abstract. The aim of this paper is devoted to study the maximum
number of crossing limit cycles for discontinuous piecewise differential
systems separated by one straight line y = 0 and formed by a linear
system without equilibrium points and quadratic isochronous centers.
Under some suitable conditions, we prove that this class has at most one
non algebraic crossing limit cycle explicitly given, and to illustrate our
results we present an example.
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1. Introduction

A limit cycle is a periodic orbit of a differential system in R2, isolated in
the set of all periodic orbits of that system. The existence and number of limit
cycles of planar polynomial differential systems is one of the open questions
proposed by D. Hilbert at the International Congress of Mathematicians in
Paris (1900). These problems are known as the ”second part of Hilbert’s 16th
problem”, see for example [8, 10].

The study of piecewise linear differential systems goes back to to Andronov,
Vitt and Khaikin [1], and today these systems are still of interest to many spe-
cialists. These piecewise differential systems are also called Filippov systems,
for more details see [7]. They have several applications in the modeling of pro-
cesses which appear in electronics, mechanics, economics, etc..., see for example
the books of M. di Bernardo [5] and Simpson [17], the survey of Makarenkov
and Lamb [13], and the references cited in these last three works.

In the planar discontinuous piecewise linear differential systems the limit
cycles are of two kinds, the crossing and sliding ones. The crossing limit cycles
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Bordj Bou Arréridj, e-mail: azizaberbache@hotmail.fr, ORCID iD: orcid.org/0009-0006-7705-
6805

https://doi.org/10.30755/NSJOM.13397
mailto:sabah.benadouane@univ-setif.dz
mailto:bendjeddou@univ-setif.dz
https://orcid.org/0009-0002-6275-6957
mailto:azizaberbache@hotmail.fr
https://orcid.org/0009-0006-7705-6805
https://orcid.org/0009-0006-7705-6805


68 Sabah Benadouane, Ahmed Bendjeddou, Aziza Berbache

only contain isolated points of the lines of discontinuity. The sliding limit cycles
contain some segment of the lines of discontinuity that separate the different
linear differential systems (see for more details [15]).

Limit cycles of discontinuous piecewise linear differential systems have been
studied by many authors (see for instance [6, 9, 2, 3]).

One of the interesting classes of planar differential systems is a quadratic
differential system because they are the simplest ones after the linear systems
and they have been studied intensively, there are many papers have been pub-
lished on those systems, see the books of Ye Yanquian and al [18], Reyn [16] and
the references quoted therein. Up to now it is known that there are quadratic
systems having algebraic limit cycles of degrees 2, 4, 5 or 6, see [4, 11] and their
references, but there are no quadratic systems that have non algebraic limit
cycles. We say that a limit cycle is algebraic if it is contained in an algebraic
curve of the plane, otherwise it is called non-algebraic.

In this paper we will study the crossing limit cycles of discontinuous piece-
wise differential systems separated by a straight line Σ = {(x, y) ∈ R2 : y = 0},
and formed by linear differential system without equilibrium points and a
quadratic isochronous center. In a real planar polynomial differential system
we recall that a center is isochronous center if there exists a neighborhood such
that all periodic orbits in this neighborhood have the same period.

The quadratic polynomial differential systems with an isochronous center
were classified into four classes by Loud [12]. Using the notation of [14] namely
S1, S2, S3, and S4, we consider the four classes of quadratic isochronous centers
and their first integrals as follows

S1) ẋ = −y + x2, ẏ = x+ yx, with the first integral

(1.1) H1 (x, y) =
x2 + y2

(1 + y)
2 .

S2) ẋ = −y + 1
4x

2, ẏ = x+ xy, with the first integral

(1.2) H2 (x, y) =

(
x2 + 4y + 8

)2
1 + y

.

S3) ẋ = −y + 1
2x

2 − 1
2y

2, ẏ = x+ yx, with the first integral

(1.3) H3 (x, y) =
x2 + y2

1 + y
.

S4) ẋ = −y + 2x2 − 1
2y

2, ẏ = x+ xy, with the first integral

(1.4) H4 (x, y) =
4x2 − 2 (y + 1)

2
+ 1

(1 + y)
2 .
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2. Preliminaries and Main results

In order to state precisely our results we introduce first some notations and
definitions. Consider the piecewise differential system

(2.1) (ẋ, ẏ) = F± (x, y) = (f± (x, y) , g± (x, y))

being bi-valued on the separation line y = 0. Following Filippov [7], a point
(x, 0) is a crossing point if g−(x, 0)g+(x, 0) > 0. If there exists a periodic
orbit of the discontinuous differential system (2.1) having exactly two crossing
points, then we call it a crossing periodic orbit. A crossing limit cycle is an
isolated periodic orbit in the set of all crossing periodic orbits of system (2.1).
In what follows for simplicity, we shall say limit cycle instead of crossing limit
cycle.

In the next lemma we present a linear differential system without equilib-
rium points and the explicit expression of its first integral. For a proof of the
following lemma see [3].

Lemma 2.1. A linear system without equilibrium points can be written as

(2.2) ẋ = ax+ by + c, ẏ = λax+ λby + d,

where a, b, c, λ and d are real constants such that d ̸= λc and λ ̸= 0. Moreover
this system is integrable and has the first integral
(2.3)

HL (x, y) =

{
bλ2x2 − 2bλxy − 2dx+ by2 + 2cy if a+ bλ = 0

((a+ bλ) (ax+ by) + ac+ bd) e
a+bλ
d−cλ (λx−y) if a+ bλ ̸= 0

.

The objective of this paper is to study the crossing limit cycles of the
planar discontinuous piecewise differential systems separated by the straight
line y = 0 having in y < 0 a linear differential system (2.2) and in the half–
plane y > 0 one of the previous quadratic isochronous differential systems
(Sj) , j = 1, 2, 3, 4, using their first integrals, we determine sufficient conditions
for a discontinuous piecewise differential systems to possess at most one explicit
non-algebraic limit cycle. Finally, we give an example, to illustrate our results.

Our main results is given by the following theorem

Theorem 2.2. A discontinuous piecewise polynomial differential system sepa-
rated by one straight line with two differential systems, such that one of them is
a quadratic isochronous center at the origin and the second is a linear system
without equilibrium points, neither real nor virtual, can have at most one limit
cycle. Moreover, this limit cycle, if it exists, is non algebraic.

Proof. Since the discontinuous piecewise differential system (2.2)− (Sj) has a
crossing limit cycle it must intersect the line y = 0 in exactly two points (x0, 0)
and (x1, 0) with x0 < 0 and x1 > 0. Since HL and Hj , j = 1, 2, 3, 4 are the
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first integrals of linear system and quadratic isochronous centers, respectively,
they must satisfy the following system

(2.4)

{
L (x0, x1) := HL(x0, 0)−HL(x1, 0) = 0,

Kj (x0, x1) := Hj(x0, 0)−Hj(x1, 0) = 0.

The second equations Kj (x0, x1) = 0, j = 1, 2, 3, 4 of system (2.4) are equiva-
lent to

K1 (x0, x1) = (x0 − x1) (x0 + x1) = 0,

K2 (x0, x1) = (x0 + x1) (x0 − x1)
(
x2
0 + x2

1 + 16
)
= 0,

K3 (x0, x1) = (x0 − x1) (x0 + x1) = 0,

K4 (x0, x1) = 4 (x0 − x1) (x0 + x1) = 0.

From the equations Kj (x0, x1) = 0 the unique solution satisfying x1 ̸= x0, is
x1 = −x0. Now, it is easy to see that the existence of crossing periodic solutions
of discontinuous piecewise differential systems is equivalent to the existence of
the isolated values of x0 which satisfy

(2.5) L (x0) := HL(x0, 0)−HL(−x0, 0) = 0.

Here, we must separate the proof of Theorem 2.2 in two cases.
Case 1 : a+bλ = 0, in this case the equation L (x0) = 0 becomes −4dx0 =

0. Then the system (2.4) has no solution satisfying x1 ̸= x0. Consequently the
discontinuous piecewise differential systems formed by a linear system (2.2) and
one of quadratic isochronous centers (Sj) , j = 1, 2, 3, 4 has no limit cycles.

Case 2 : a+ bλ ̸= 0, in this case the equation (2.5) becomes

((a+ bλ) ax0 + ac+ bd) e
a+bλ
d−cλλx0 − ((a+ bλ) (−ax0) + ac+ bd) e−

a+bλ
d−cλλx0 = 0,

equivalent to

(2.6) ((a+ bλ) (ax0) + ac+ bd) e
a+bλ
d−cλ (2λx0)−((a+ bλ) (−ax0) + ac+ bd) = 0.

We put
(2.7)

f (x) := ((a+ bλ) (ax) + ac+ bd) e
a+bλ
d−cλ (2λx)−((a+ bλ) (−ax) + ac+ bd) (x ∈ R) .

Finding the solutions of equation (2.6) is equivalent to finding the roots of
equation f (x) = 0. Since f is a differentiable function in R, then we use the
first two derivatives of the function f .

f ′ (x) =
a+ bλ

d− cλ
(2axλ (a+ bλ) + caλ+ da+ 2bdλ) e

a+bλ
d−cλ (2λx) + a (a+ bλ)

and

f
′′
(x) = 4λ

(a+ bλ)
3

(d− cλ)
2 (d+ axλ) e

a+bλ
d−cλ (2λx)
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It is easy to see that f ′ and f
′′
are continuous functions. We remark that

f
′′
(x) = 0 has at most one zero, thus the equation f ′ (x) = 0 has at most

two zeros and the equation f (x) = 0 has at most three zeros. We note that
f(0) = 0, and so there remain two more zeros of f(x), but if we have x0 is a
solution of f(x) = 0 then −x0 is also a solution of f(x) = 0. Moreover, we can
choose the appropriate parameters in such a way that f(x) = 0 has exactly one
real negative root x0, and x1 = −x0 that can provide at most one limit cycle
for the discontinuous piecewise differential systems (2.2) − (Sj) , j = 1, 2, 3, 4
given by Γ = ΓL ∪ Γj , j = 1, 2, 3, 4 where

ΓL =

{
((a+ bλ) (ax+ by) + ac+ bd) e

a+bλ
d−cλ (λx−y)

= ((a+ bλ) (ax0) + ac+ bd) e
a+bλ
d−cλ (λx0), y < 0

}

and

Γ1 =

{
x2 + y2

(1 + y)
2 = x2

0, y > 0

}
,Γ2 =

{(
x2 + 4y + 8

)2
1 + y

=
(
x2
0 + 8

)2
, y > 0

}
,

Γ3 =

{
x2 + y2

1 + y
= x2

0, y > 0

}
,Γ4 =

{
4x2 − 2 (y + 1)

2
+ 1

(1 + y)
2 = 4x2

0 − 1, y > 0

}
.

For which

((a+ bλ) ax0 + ac+ bd) e
a+bλ
d−cλ (2λx0) − (− (a+ bλ) ax0 + ac+ bd) = 0 holds.

The next proposition shows that there are discontinuous piecewise differen-
tial systems (2.2) − (Sj) separated by the straight line y = 0 and formed by
linear system without equilibria and one of the quadratic isochronous centers
(Sj) , j = 1, 2, 3, 4; with one crossing non algebraic limit cycle.

Proposition 2.3. Assume λd ̸= 0 and let a = − d
3λ , b = − 1

3dλ2

(
9λ2 − d2

)
, c =

1
dλ

(
3λ2 + d2

)
, the linear differential system (2.2) becomes

(2.8) ẋ =
(
− d

3λ

)
x− (9λ2−d2)

3dλ2 y +
(3λ2+d2)

dλ , ẏ = − 1
3dx− (9λ2−d2)

3dλ y + d.

Then the discontinuous piecewise polynomial differential systems (2.8)−(Sj) , j =
1, 2, 3, 4 when λ ̸= 0 and d < 0, has one explicit non-algebraic crossing limit
cycle given by

Γ = ΓL ∪ Γj , j = 1, 2, 3, 4
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where

ΓL =

{
−
((
−d2λ

)
x+

(
d2 − 9λ2

)
y + 4d2λ

)
d2λ

e−
1
λ (y−xλ) = −0.147 02, y < 0

}

Γ1 =

{
x2 + y2

(1 + y)
2 = 15. 978, y > 0

}

Γ2 =

{(
x2 + 4y + 8

)2
1 + y

= 574. 96, y > 0

}

Γ3 =

{
x2 + y2

1 + y
= 15. 978, y > 0

}
Γ4 =

{
4x2 − 2 (y + 1)

2
+ 1

(1 + y)
2 = 62. 914, y > 0

}
Proof. The linear system (2.8) has no equilibria, neither real nor virtual, and
it has the first integral given by

HL (x, y) = − 1

d2λ

((
−d2λ

)
x+ y

(
d2 − 9λ2

)
+ 4d2λ

)
e−

1
λ (y−xλ)

For studying the existence of crossing limit cycle for discontinuous differen-
tial systems (2.8) − (Sj) we determine the solutions of (2.7). In this case the
function f in (2.7) can be written as follows

f (x) := x+ 4 + (x− 4) e2x (x ∈ R) .

The negative root of this function is approximately x0 = −3. 997 3. From
this value of x0, we get the value of x1 = 3. 997 3, that can provide one crossing
limit cycle passing through the crossing points (−3. 997 , 0) and (3. 997 3, 0) ,
and given by the following expressions Γ = ΓL ∪ Γj , j = 1, 2, 3, 4, where ΓL

and Γj , j = 1, 2, 3, 4 are defined in the previous proposition. This completes
the proof of Proposition 2.3.

Remark 2.4. The assumption d < 0 in Proposition 2.3 is a necessary condition
for the existence of crossing limit cycles of system because the crossing region of
these systems is given by − 1

3dx (x− 3) > 0 then this last inequality implies that
the crossing region is an open interval (0, 3) of the line y = 0 if d > 0 and is an
open interval (−∞, 0)∪ (3,∞) of the line y = 0 if d < 0. Since the intersection
points x0 = −3. 997 3 and x1 = 3. 997 3 are located in (−∞, 0)∪(3,∞) we must
choose that d < 0.

Example 2.5. If we take d = −1 and λ = 2; system (2.8) reads as follows

(2.9) ẋ = 1
6x+ 35

12y −
13
2 , ẏ = 1

3x+ 35
6 y − 1. y < 0

Then the discontinuous differential systems formed by this linear system in the
half-plan y < 0 and one of the quadratic isochronous systems (Sj) , j = 1, 2, 3, 4
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in y > 0 has a unique non-algebraic crossing limit cycle which intersects the
line y = 0 at two points x0 = −3. 997 3, x1 = 3. 997 3 and given by Γ = ΓL∪Γj ,
j = 1, 2, 3, 4, where

ΓL =
{
(2x+ 35y − 8) ex−

1
2y = −0.294 04, y < 0

}
and Γj , j = 1, 2, 3, 4 are defined in Proposition 2.3. See the following figures.

Figure 1: Γ = ΓL ∪ Γ1. Figure 2: Γ = ΓL ∪ Γ2.

Figure 3: Γ = ΓL ∪ Γ3. Figure 4: Γ = ΓL ∪ Γ4.
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