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Mixed C−cosine families of bounded linear operators on
non-Archimedean Banach spaces
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Abstract
In this paper, we introduce and check some properties of H−C−cosine

and mixed C−cosine families of bounded linear operators on non-Archimedean
Banach spaces. We show some results for H − C−cosine and mixed
C−cosine families of bounded linear operators on non-Archimedean Ba-
nach spaces. In contrast with the classical setting, the parameter of a
given mixed C−cosine family of bounded linear operators belongs to a
clopen ball Ωr of the ground field K. Examples are given to support our
work.
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1 Introduction and Preliminaries

Throughout this paper, X is a non-Archimedean (n.a) Banach space over a (n.a)
non trivially complete valued field K with valuation | · |, B(X) denotes the set
of all bounded linear operators on X, Qp is the field of p-adic numbers (p ≥ 2
being a prime) equipped with p-adic valuation |.|p, Zp denotes the ring of p-adic
integers is the unit ball of Qp. For more details and related issues, we refer to
[7], [8] and [9]. We denote the completion of algebraic closure of Qp under the
p-adic absolute value | · |p by Cp (see [7], p.45). Remember that a free Banach
space X is a non-Archimedean Banach space for which there exists a family
(ei)i∈N in X\{0} such that every element x ∈ X can be written in the form of a

convergent sum x =
∑
i∈N

xiei, xi ∈ K and ∥x∥ = sup
i∈N

|xi|∥ei∥. The family (ei)i∈N

is called an orthogonal basis. In a free Banach space X, each bounded linear
operator A on X can be written in a unique fashion as a pointwise convergent
series, that is, there exists an infinite matrix (ai,j)(i,j)∈N×N with coefficients in
K such that

A =
∑
i,j∈N

ai,je
′

j ⊗ ei, and ∀j ∈ N, lim
i→∞

|ai,j |∥ei∥ = 0,
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where (∀j ∈ N) e
′

j (x) = xj

(
e
′

j is the linear form associated with ej

)
.

Moreover, for each j ∈ N, Aej =
∑
i∈N

aijei and its norm is defined by

∥ A ∥= sup
i,j

|aij |∥ei∥
∥ej∥

.

For more details see [4] and [5]. Now, as in [6], take r > 0, Ωr is the open ball
of K centred at 0 with radius r > 0, that is Ωr = {k ∈ K : |k| < r}. In the
non-Archimedean context, the family {C(t), t ∈ Ωr}, C : Ωr → B(X) is called
cosine family of bounded linear operators on X if

for all t, s ∈ Ωr, C(s+ t) + C(s− t) = 2C(s)C(t)

and C(0) = I, where I is the identity operator on X. For more details, we refer
to [1], [3] and [6]. Suppose that K = Qp and A is a bounded linear operator on

a free Banach space X satisfying ∥A∥ < r = p
−1
p−1 , then the function defined by

for all t ∈ Ω −1
p−1

, f(t) =

( ∞∑
n=0

t2n

(2n)!
An

)
u0 for a fixed u0 ∈ X is the solution

to homogeneous p-adic second order differential equation given by

d2u(t)

dt2
= Au(t), u(0) = u0.

The aim of this work is to introduce the mixed C−cosine family of bounded
linear operators on non-Archimedean Banach space and study some of its
properties. We begin with the following definitions.

Definition 1.1 ([6], Definition 1.12). Let r > 0 be a chosen real number such
that (T (t))t∈Ωr

are well defined. A one-parameter family (T (t))t∈Ωr
of bounded

linear operators from X into X is a group if

(i) T (0) = I, where I is the unit operator of X;

(ii) For all t, s ∈ Ωr, T (t+ s) = T (t)T (s).

The group (T (t))t∈Ωr
will be called of class C0 or strongly continuous if the

following condition holds:

� For each x ∈ X, lim
t→0

∥T (t)x− x∥ = 0.

A group of bounded linear operators (T (t))t∈Ωr
is uniformly continuous if

and only if lim
t→0

∥T (t)− I∥ = 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

T (t)x− x

t
exists},

and

for each x ∈ D(A), Ax = lim
t→0

T (t)x− x

t

is called the infinitesimal generator of the group (T (t))t∈Ωr
.
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Definition 1.2 ([2], Definition 2.3). Let r > 0 be a real number. A family
(S(t))t∈Ωr

of bounded linear operators is said to be an H − C0−group or a
generalized C0−group of bounded linear operators on X if

(i) S(0) = I; where I is the identity operator of X.

(ii) there is a C0−group (T (t))t∈Ωr
of bounded linear operators and D ∈ B(X)

such that for all t, s ∈ Ωr,

S(s+ t) = H
(
S(s), S(t)

)
= S(s)S(t) +D

(
S(s)− T (s)

)(
S(t)− T (t)

)
;

(iii) for each x ∈ X,S(·)x : Ωr −→ S(t)x is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

S(t)x− x

t
exists}

and

for each x ∈ D(A), Ax = lim
t→0

S(t)x− x

t
,

is called the infinitesimal generator of the H − C0−group (S(t))t∈Ωr
.

From Definition 1.2, when D = αI for α ∈ K, we have the following
definition.

Definition 1.3 ([2], Definition 2.5). Let r > 0 be a real number. A family
(S(t))t∈Ωr

is said to be a mixed C0−group of bounded linear operators on X if

(i) S(0) = I;

(ii) there is a C0−group (T (t))t∈Ωr
of bounded linear operators and α ∈ K

such that for all s, t ∈ Ωr,

S(s+ t) = H
(
S(s), S(t)

)
= S(s)S(t) + α

(
S(s)− T (s)

)(
S(t)− T (t)

)
;

(iii) for each x ∈ X, S(·)x : Ωr −→ S(t)x is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

S(t)x− x

t
exists}

and

for each x ∈ D(A), Ax = lim
t→0

S(t)x− x

t
,

is called the infinitesimal generator of the mixed C0−group (S(t))t∈Ωr
.
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Set A1 = (1 +D)A−DA0, where A0 is the infinitesimal generator of the
C−group {T (t)}t∈Ωr

and A is the infinitesimal generator of the H − C−group
{S(t)}t∈Ωr

. Similarly, the proof of Theorem 2.10 of [2], we have.

Theorem 1.4. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr

be an H − C−group family of bounded linear operators on X with
for all s ∈ Ωr, DS(s) = S(s)D and T (s)D = DT (s). Set for all t ∈ Ωr, T1(t) =
(I +D)S(t)−DT (t), we have

(i) {T1(t)}t∈Ωr is a C−group of bounded linear operators whose infinitesimal
generator is an extension of A1.

(ii) If I +D is invertible, then for all x ∈ X, and t ∈ Ωr,

S(t)x = (1 +D)−1T1(t)x+D(I +D)−1T (t)x.

From Example 2.7 of [2], we conclude the following example.

Example 1.5. Let r = p
−1
p−1 , suppose that X is a non-Archimedean Banach

space over Qp, let A0, A ∈ B(X) such that AA0 = A0A and ∥A0∥ < r. Set

for all t ∈ Ωr, S(t) = etA0 + t(A−A0)e
tA0 .

Then one can see that with D = −I, {S(t)}t∈Ωr
is a mixed C0−group, where

for all t ∈ Ωr, T (t) = etA. In this case for all t, s ∈ Ωr, S(s)S(t) = S(t)S(s).

We have the following definition.

Definition 1.6 ([6], Definition 2.24). Let r > 0 be a real number. A function
C : Ωr −→ B(X) is called a C0 or strongly continuous operator cosine function
on X if

(i) C(0) = I,

(ii) For every t, s ∈ Ωr, C(t+ s) + C(t− s) = 2C(t)C(s),

(iii) For each x ∈ X, t −→ C(t)x is continuous on Ωr.

A cosine family of bounded linear operators (C(t))t∈Ωr
is uniformly continuous

if lim
t→0

∥C(t)− I∥ = 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

2
C(t)x− x

t2
exists}

and

for each x ∈ D(A), Ax = lim
t→0

2
C(t)x− x

t2

is called the infinitesimal generator of the cosine family (C(t))t∈Ωr
.

We begin with the following lemmas.
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Lemma 1.7 ([6], Lemma 2.26). Let (C(t))t∈Ωr
be a strongly continuous cosine

family on X, then for each t ∈ Ωr, C(2t) = 2C(t)2 − I.

Remark 1.8. Let K = Qp. By Lemma 1.7, if p ̸= 2, we have for all

t ∈ Ωr, C( t2 )
2 = C(t)+I

2 .

Lemma 1.9 ([6], Lemma 2.27). Let (C(t))t∈Ωr
be a strongly continuous cosine

family on X, then:

(i) For every t ∈ Ωr, C(−t) = C(t),

(ii) For each t, s ∈ Ωr, C(t)C(s) = C(s)C(t).

We have the following theorem.

Theorem 1.10 ([6], Theorem 2.32). Let (C(t))t∈Ωr
be a strongly continuous

cosine family satisfying : there is M > 0 such that for each t ∈ Ωr holds
∥C(t)∥ ≤ M, and let A be its infinitesimal generator. Then, for every x ∈ D(A),
AC(s)x = C(s)Ax and C(s)x ∈ D(A) for each s ∈ Ωr.

Recall that C+
p = {a ∈ Cp : |1− a| < 1}. For each a ∈ C+

p where p ̸= 2, the
element

(1.1)
√
a = a

1
2 =

∑
n∈N

( 1
2

n

)
(a− 1)n

is the unique positive square root of a. For more details see [8], section 49, page
143.

Example 1.11 ([6], Example 2.28). Let K = Cp with p ̸= 2. Consider the ball

Ωr of Cp with r = p
−1
p−1 . Let X be a free n.a. Banach space over Cp and (ei)i∈N

be the canonical base of X. Define for each q ∈ Ωr and for x =
∑
i∈N

xiei the

family of linear operators C(q)x =
∑
i∈N

xi cosh(
√
µiq)ei, where (µi)i∈N ⊂ C+

p is

a sequence of positive elements of Cp. It is routine to check that the family
(C(q))q∈Ωr is well defined.

Proposition 1.12 ([6], Proposition 2.29). The family (C(q))q∈Ωr
of linear

operators given above is a cosine family of bounded linear operators, whose
infinitesimal generator is the bounded diagonal operator A defined by

Ax =
∑
i∈N

√
µixiei for each x =

∑
i∈N

xiei ∈ X.

Recall that k is the residue class field of K. Througout this paper, we
assume that K is a complete non-Archimedean valued field of characteristic

zero
(
char(K) = 0

)
with char(k) = p

(
p is a prime integer number

)
. We have

the following example.
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Example 1.13 ([3], Example 2.1). Let X be a non-Archimedean Banach space

over K, let A ∈ B(X) such that ∥A∥ < r
(
= p

−1
p−1

)
; it is easy to check that

for all t ∈ Ωr, C(t) =
∑
n∈N

t2n

(2n)!
An is a strongly continuous cosine family of

bounded operators of infinitesimal generator A on X.

We have the following lemma.

Lemma 1.14 ([3], Lemma 2.2). Let X be a non-Archimedean Banach space
over K, let (C(t))t∈Ωr

be a strongly continuous cosine family on X. Then for
each t ∈ Ωr and n ∈ N∗ there exist n+ 1 constants a0, · · · , an in K such that
C(nt) = a0I + a1C(t) + · · ·+ anC(t)n.

Theorem 1.15 ([3], Theorem 2.4). Let X be a non-Archimedean Banach

space over K, let A ∈ B(X) such that ∥A∥ < r
(
r = p

−1
p−1

)
. Then, A is the

infinitesimal generator of a uniformly continuous cosine family of bounded
operators (C(t))t∈Ωr

.

We have the following proposition.

Proposition 1.16 ([3], Proposition 2.6). Let X be a non-Archimedean Banach
space over K, let (T (t))t∈Ωr

be a uniformly continuous group of bounded linear

operators on X. Set for all t ∈ Ωr, C(t) = T (t)+T (−t)
2 , (C(t))t∈Ωr

is a uniformly
continuous cosine family of bounded linear operators on X.

We have the following proposition.

Proposition 1.17 ([3], Proposition 2.28). There exists a Banach space X
over Qp and strongly continuous cosine family (C(t))t∈Qp

of bounded linear
operators on X satisfying: there exists M > 0 such that for all z ∈ X, t ∈ Qp,
∥C(t)z∥ ≤ (1 + |t|2pM)∥z∥.

Definition 1.18 ([1], Definition 2.1). Let r > 0 and C ∈ B(X) be invertible.
A one parameter family (C(t))t∈Ωr of bounded linear operators from X into X
is called a C−cosine family if

(i) C(0) = C;

(ii) For every t, s ∈ Ωr, C
(
C(t+ s) + C(t− s)

)
= 2C(t)C(s);

(iii) For each x ∈ X, Ωr −→ C(t)x is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

2
C(t)x− Cx

t2
exists},

and

for each x ∈ D(A), Ax = C−1 lim
t→0

2
C(t)x− Cx

t2
,

is called the infinitesimal generator of (C(t))t∈Ωr
.
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We have the following remark.

Remark 1.19 ([1], Remark 2.1). Generally in Definition 1.18, if C ∈ B(X) is
just injective (not invertible), we have

D(A) = {x ∈ X : lim
t→0

2
C(t)x− Cx

t2
exists in the range of C}.

We start with the following statements.

Lemma 1.20 ([1], Lemma 2.1). Let X be a non-Archimedean Banach space
over K, let (C(t))t∈Ωr

be a C−cosine family on X, then for each t ∈ Ωr,

CC(2t) = 2C(t)2 − C2.

Remark 1.21 ([1], Remark 2.2). Suppose that K = Qp. From Lemma 1.20, if

p ̸= 2, we have for all t ∈ Ωr, C( t2 )
2 = CC(t)+C2

2 .

Lemma 1.22 ([1], Lemma 2.2). Let (C(t))t∈Ωr
be a C−cosine family on X,

then:

(i) For every t ∈ Ωr, C(−t) = C(t),

(ii) For each t, s ∈ Ωr, C(t)C(s) = C(s)C(t).

Proposition 1.23 ([1], Proposition 2.1). Let X be a non-Archimedean Banach
space over K, let (C(t))t∈Ωr

be a C1−cosine family with infinitesimal generator
A and C2 ∈ B(X) be invertible such that for all t ∈ Ωr, C2C(t) = C(t)C2, then
(C2C(t))t∈Ωr is a C1C2−cosine family on X.

We have the following theorem.

Theorem 1.24 ([1], Theorem 2.1). Let X be a non-Archimedean Banach space

over K, let A ∈ B(X) such that ∥A∥ < r = p
−1
p−1 . Then A is the infinitesimal

generator of a uniformly C−cosine family of bounded linear operators (C(t))t∈Ωr
.

We have the following theorem.

Theorem 1.25 ([1], Theorem 2.2). Let (C(t))t∈Ωr
be a C−cosine family

satisfying: there exists M > 0 such that for each t ∈ Ωr, ∥C(t)∥ ≤ M, and let A
be its infinitesimal generator. Then, for every x ∈ D(A), t ∈ Ωr, C(t)x ∈ D(A),
and AC(t)x = C(t)Ax.

Definition 1.26 ([1], Definition 2.5). Let r > 0 be a real number. A family
(S(t))t∈Ωr of bounded linear operators is said to satisfy p-adic H−generalized
cosine family of bounded linear operators on X if

for all t, s ∈ Ωr, S(s+ t) + S(s− t) = H
(
S(s), S(t)

)
,

where H : B(X)×B(X) → B(X) is a function.

Remark 1.27 ([1], Remark 2.5). If H
(
S(s), S(t)

)
= 2S(s)S(t), with S(0) = I,

(S(t))t∈Ωr
is a cosine family of bounded linear operators on X.
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We have the following definition.

Definition 1.28 ([1], Definition 2.6). Let r > 0 be a real number. A family
(S(t))t∈Ωr of bounded linear operators is said to be an H − C0−cosine family
or a generalized C0−cosine family of bounded linear operators on X if

(1) S(0) = I; where I is the identity operator of X.

(2) For all t, s ∈ Ωr,

S(s+ t) + S(s− t) = H
(
S(s), S(t)

)
= 2S(s)S(t) + 2D

(
S(s)− C(s)

)(
S(t)− C(t)

)
,

where (C(t))t∈Ωr
is a C0−cosine family of bounded linear operators with

the infinitesimal generator A0 and D ∈ B(X).

(3) For each x ∈ X, S(·)x : Ωr −→ X is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : 2 lim
t→0

S(t)x− x

t2
exists}

and

for each x ∈ D(A), Ax = 2 lim
t→0

S(t)x− x

t2
,

is called the infinitesimal generator of the H − C0−cosine family (S(t))t∈Ωr
.

2 Main results

We introduce the following definition.

Definition 2.1. Let r > 0 be a real number and C ∈ B(X) be invertible.
A family (S(t))t∈Ωr

of bounded linear operators is said to satisfy a p-adic
H − C−cosine Cauchy equation of bounded linear operators on X if

for all t, s ∈ Ωr,
(
S(s+ t) + S(s− t)

)
C = H

(
S(s), S(t)

)
,

where H : B(X)×B(X) → B(X) is a function.

Remark 2.2. If H
(
S(s), S(t)

)
= 2S(s)S(t) with S(0) = C, (S(t))t∈Ωr

satisfies

the first and second conditions of C−cosine family of bounded linear operators
on X.

Definition 2.3. Let r > 0 be a real number and C ∈ B(X) be invertible. A
family (S(t))t∈Ωr

of bounded linear operators will be called an H − C−cosine
family or a generalized C−cosine family of bounded linear operators on X if
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(i) S(0) = C;

(ii) there is a C−cosine family (C(t))t∈Ωr of bounded linear operators and
D ∈ B(X) such that for all t, s ∈ Ωr,

C
(
S(s+ t) + S(s− t)

)
= H

(
S(s), S(t)

)
= 2S(s)S(t) + 2D(S(s)− C(s))(S(t)− C(t));

(iii) for each x ∈ X,S(·)x : Ωr −→ S(t)x is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

2
S(t)x− Cx

t2
exists}

and

for each x ∈ D(A), Ax = 2C−1 lim
t→0

S(t)x− Cx

t2
,

is called the infinitesimal generator of the H − C−cosine family (S(t))t∈Ωr
.

Remark 2.4. Let (S(t))t∈Ωr
be a generalized C−cosine family on X, if D = 0,

then (S(t))t∈Ωr
is a C−cosine family of bounded linear operators on X.

2.1 Question

Can you characterize the infinitesimal generator of an H − C−cosine family
of bounded linear operators on infinite dimensional non-Archimedean Banach
space ?

Definition 2.5. Let r > 0 be a real number and C ∈ B(X) be invertible.
A family (S(t))t∈Ωr

is said to be a mixed C−cosine family of bounded linear
operators on X if

(i) S(0) = C;

(ii) there is a C−cosine family (C(t))t∈Ωr of bounded linear operators with
infinitesimal generator A0 and α ∈ K such that for all s, t ∈ Ωr,

C(S(s+ t) + S(s− t)) = H
(
S(s), S(t)

)
= 2S(s)S(t) + 2α(S(s)− C(s))(S(t)− C(t));

(iii) for each x ∈ X, S(·)x : Ωr −→ S(t)x is continuous on Ωr.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

2
S(t)x− Cx

t2
exists}

and

for each x ∈ D(A), Ax = 2C−1 lim
t→0

S(t)x− Cx

t2
,

is called the infinitesimal generator of the mixed C−cosine family (S(t))t∈Ωr
.
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Remark 2.6. Let (S(t))t∈Ωr be a mixed C−cosine family on X, if α = 0, then
(S(t))t∈Ωr

is a C−cosine family of bounded linear operators on X.

We have the following example.

Example 2.7. Let r = p
−1
p−1 , suppose that X is a non-Archimedean Banach

space over Cp, A, C ∈ B(X) such that C is invertible, AC = CA and ∥A∥ < r.

Set for all t ∈ Ωr, S(t) = Cch(tA) + tACsh(tA), where ch(tA) =
∑
n∈N

t2n

(2n)!
A2n

and sh(tA) =
∑
n∈N

t2n+1

(2n+ 1)!
A2n+1. Then one can see that with D = −I,

{S(t)}t∈Ωr
is an H − C−cosine family, where for all t ∈ Ωr, C(t) = Cch(tA).

In this case for all t, s ∈ Ωr, S(s)S(t) = S(t)S(s).

We have the following lemma.

Lemma 2.8. Let X be a non-Archimedean Banach space over K, let {S(t)}t∈Ωr

be an H − C−cosine family on non-Archimedean Banach space X, then for all
t ∈ Ωr, S(−t) = S(t) and CS(t) = S(t)C.

Proof. By Definition 2.5 and s = 0, we have for all t ∈ Ωr, CS(−t) = CS(t).
Since C is invertible, we get for all t ∈ Ωr, S(−t) = S(t). It is easy to see that
t ∈ Ωr, CS(t) = S(t)C.

The following proposition gives a condition under which an H − C−cosine
family commutes.

Proposition 2.9. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr

be an H − C−cosine family on X. If I +D is injective and for all
t, s ∈ Ωr, C(s)S(t) = S(t)C(s), then for all t, s ∈ Ωr, S(s)S(t) = S(t)S(s).

Proof. Assume that I+D is injective and for all t, s ∈ Ωr, C(s)S(t) = S(t)C(s),
then for all t, s ∈ Ωr,

2S(s)S(t) + 2D
(
S(s)− C(s)

)(
S(t)− C(t)

)
= C

(
S(s+ t) + S(s− t)

)
= C

(
S(t+ s) + S(t− s)

)
= 2S(t)S(s) + 2D

(
S(t)− C(t)

)
×
(
S(s)− C(s)

)
.

Thus, (I +D)
(
S(t)S(s) − S(s)S(t)

)
= 0, then for all t, s ∈ Ωr, S(s)S(t) =

S(t)S(s).

From Proposition 2.9, we conclude the following proposition.

Proposition 2.10. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr be a mixed C−cosine family on X with {C(t)}t∈Ωr be a C−cosine
family and α ∈ K\{−1} such that for all t, s ∈ Ωr, C(s)S(t) = S(t)C(s), then
for all t, s ∈ Ωr, S(s)S(t) = S(t)S(s).
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Set A1 = (1 + α)A − αA0, where α ∈ K\{−1} and A0 is the infinitesimal
generator of the C−cosine family {C(t)}t∈Ωr

and A is the infinitesimal generator
of a mixed C−cosine family {S(t)}t∈Ωr

. We have the following theorem.

Theorem 2.11. Let X be a non-Archimedean Banach space over K,
let {S(t)}t∈Ωr

be a mixed C−cosine family of bounded linear operators on X with
α ∈ K\{−1}. Set for all t ∈ Ωr, C1(t) = (1+α)S(t)−αC(t), then {C1(t)}t∈Ωr

is a C−cosine family of bounded linear operators whose infinitesimal generator
is an extension of A1. Furthermore, for all x ∈ X, and t ∈ Ωr,

S(t)x =
1

1 + α
C1(t)x+

α

1 + α
C(t)x.

Proof.

(i) Trivially, C1(0) = (1 + α)S(0)− αC(0) = C.

(ii) For all t, s ∈ Ωr, x ∈ X, we have

C
(
C1(s+ t) + C1(s− t)

)
x

= (1 + α)
(
S(s+ t) + S(s− t)

)
x− α

(
C(s+ t) + C(s− t)

)
x

= (1 + α)
(
2S(s)S(t) + 2α(S(s)− C(s))× (S(t)− C(t))

)
x− 2αC(s)C(t)x

= 2(1 + α)S(s)S(t)x+ 2α(1 + α)S(s)S(t)x

−2α(1 + α)S(s)C(t)x− 2α(1 + α)C(s)S(t)x

+2α(1 + α)C(s)C(t)x− 2αC(s)C(t)x

= 2(1 + α)2S(s)S(t)x− 2α(1 + α)S(s)C(t)x

−2α(1 + α)C(s)S(t)x+ 2α(1 + α)C(s)C(t)x

−2αC(s)C(t)x

= 2
(
(1 + α)S(s)− αC(s)

)
×
(
(1 + α)S(t)− αC(t)

)
x

= 2C1(s)C2(t)x.

Since (C(t))t∈Ωr and (S(t))t∈Ωr are continuous, then (C1(t))t∈Ωr is continuous.
Thus, (C1(t))t∈Ωr

is a C− cosine family of bounded linear operators on X.

(iii) Finally, we show that an extension of A1 is the infinitesimal generator
of {C1(t)}t∈Ωr

, Let B be the infinitesimal generator of {C1(t)}t∈Ωr
and let

x ∈ D(A1) = D(A) ∩D(A0). By definition of D(A) and D(A0), we have
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2C−1 lim
t→0

(S(t)x− x

t2

)
= Ax and 2C−1 lim

t→0

(C(t)x− x

t2

)
= A0x. Then,

2C−1 lim
t→0

(C1(t)x− x

t2

)
= 2C−1 lim

t→0

( (1 + α)S(t)x− αC(t)x− x

t2

)
= 2(1 + α)C−1 lim

t→0

(S(t)x− x

t2

)
−2αC−1 lim

t→0

(C(t)x− x

t2

)

exists in X. It follows that x ∈ D(B) and A1x = Bx, then the infinitesimal
generator of (C1(t))t∈Ωr

is an extension of A1.

Put A1 = (1 +D)A −DA0, where D ∈ B(X) and A0 is the infinitesimal
generator of the C−cosine family {C(t)}t∈Ωr

and A is the infinitesimal generator
of an H − C−cosine family {S(t)}t∈Ωr , similar the proof of Theorem 2.11, we
conclude the following theorem.

Theorem 2.12. Let X be a non-Archimedean Banach space over K, let
{S(t)}t∈Ωr be a commuting H − C−cosine family of bounded linear operators
on X with for all s ∈ Ωr, DT (s) = T (s)D and DS(s) = S(s)D. Set for all
t ∈ Ωr, C1(t) = (I +D)S(t)−DC(t), we have

(i) {C1(t)}t∈Ωr
is a C−cosine family of bounded linear operators whose infinites-

imal generator is an extension of A1.

(ii) If I +D is invertible, then for all x ∈ X, and t ∈ Ωr,

S(t)x = (1 +D)−1C1(t)x+D(I +D)−1C(t)x.
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