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Analysis and computational modelling of a coupled
epidemic reaction-diffusion

Khelifa Bouaziz1

Abstract. This paper mainly focuses on the dynamics of an epidemi-
ologically emerging reaction-diffusion system. We establish the global
existence and the local and global asymptotic stability results for solu-
tion of proposed system for a rather broad class of nonlinearities, and
the numerical simulations are conducted by using MATLAB.
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1. Introduction

There have been some recent theoretical studies on SI (susceptible-infected)-
type reaction-diffusion models. For references to other spatial deterministic
epidemic models, we refer the reader to excellent surveys in a [14, 16, 6, 18, 17].
In the study by de Jong et al.[7], the standard incidence transmission term
βSI/(S+ I) was suggested as an alternative to mass action. For such purpose,
Allen et al. proposed in [3] a frequency-dependent SIS reaction-diffusion model
for a population living in a continuous spatial habitat.

We consider the following reaction–diffusion system:

(1.1)

{ ∂s
∂t − ds△s = Λ− β su

s+u − µs in R+ × Ω
∂u
∂t − du△u = β su

s+u − (µ+ σ)u. in R+ × Ω

The system proposed describes the transmission of HIV in a population. The
studied population contains individuals susceptible s and individuals infected
u. The study of epidemiology has attracted the attention of a vast number
of researchers through planning and predictions of the spread of the disease
thereby reducing mortality rates. What we understand of the dynamics of HIV
in the context of mathematical models for multiple groups is critical to our
understanding of the dynamics of HIV in a highly heterogeneous population.

With the initial data s, u on R+. Several infectious diseases are still tar-
geting huge populations. They are considered amongt the principal causes of
mortality. The constant Λ represents the flow rate of newly exposed individu-
als, µ is the death rate, the parameter β describes the rate of disease prevalence
among individuals per unit time, the parameter σ given by σ+η, where 1

η mean
period of sexual activity of affected individuals.
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The notation △ denotes the Laplacian operators on Ω, where Ω is an open
bounded subset of Rn with smooth boundary ∂Ω. The constant parameters ds
and du > 0 are the diffusion coefficients. We assume the initial conditions

(1.2) s0(x) = s(x, 0) > 0, u0(x) = u(x, 0) ≥ 0, in Ω

and Neumann boundary conditions

(1.3)
∂s

∂υ
=

∂u

∂υ
= 0. in R+ × Ω

In [4] the authors presented the global stability of an epidemiological model
with the strength of the infection under intervention strategies in a spatially
heterogeneous environment. In [18], the stability of the infected equilibrium
has been analyzed locally. Nevertheless, the question of global stability for
this type of viral infections dynamics is intriguing. In the present study, we
study the existence of equilibria and their asymptotic stability conditions for
the model considered in [18], in Section 2, we present the local existence of
solutions to problem (1.1)-(1.3), we define the basic reproduction number R0

of the proposed model and establish the existence of two equilibria. The lo-
cal asymptotic stability and instability of the disease-free equilibrium and the
endemic equilibrium are investigated. Section 3 proves that the two steady
states of the model are globally asymptotically stable using an appropriate
Lyapunov functional. Finally, Section 4 presents a numerical test to validate
the theoretical analysis presented.

2. Properties of the Model

In the following section, we define the system’s equilibria and their relation
to the basic reproduction number R0, investigate the local stability of the
system in the ODE and PDE

2.1. Existence and positivity of solutions

Throughout this study, we denote by

∥f∥pp =

∫
Ω

|f(x)|p dx, 1 ≤ p < ∞,

∥f∥∞ =ess sup
x∈Ω

|f(x)| ,

∥f∥C(Ω) =max
x∈Ω

|f(x)| ,

the usual norms in spaces Lp (Ω) , L∞ (Ω) and C(Ω), respectively.
According to the classical results for Abstract parabolic equations (see The-

orem 3.1 in Chapter 7 [15] and Section 2 in [13]), when s0, u0 ∈ C(Ω), we
can deduce that there exists a unique local (i.e. in some interval (0, Tmax),
0 < Tmax ≤ +∞) classical solution of the system (1.1)-(1.3).
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From the maximum principle and the assumption (1.3), it follows that the
solution. (s, u) of the system (1.1)–(1.3) remains nonnegative on (0, T ∗) and

u (t, x) ≥ 0. ∀ (t, x) ∈ (0, T ∗)× Ω

Again, the maximum principle applied to the first and the third equation of
(1.3) permits us to deduce that the components s are bounded on (0, T ∗)× Ω

0 < s (t, x) ≤ max

{
Λ

µ
, ∥s0∥∞

}
,

Proposition 2.1. The solution (s, u) of the system (1.1)-(1.3) exists uniquely
and globally in time. Moreover, there exists a positive constant A depending on
initial data, such that

(2.1) ∥s (., t)∥L∞(Ω) + ∥u (., t)∥L∞(Ω) ≤ A. for all t > 0

Furthermore, there exists a positive constant Ã such that for a large T > 0,

(2.2) ∥s (., t)∥L∞(Ω) + ∥u (., t)∥L∞(Ω) ≤ Ã. for all t > T

Proof. Let s (t, x) ∈ (0, Tmax)× Ω be the first component of the local solution
for system (1.1), which can be formulated as follows

(2.3)


∂s

∂t
− ds∆s = Λ− β

su

s+ u
− µs, in (0, Tmax)× Ω,

s(0, x) = s0(x), on Ω,
∂s

∂ν
= 0, on (0, Tmax)× ∂Ω.

We notice that an upper solution exists for (2.3) for any positive function
u(t, x) ∈ (0, Tmax)× Ω. This upper solution is provided by

C1 := max

{
Λ

µ
, ∥s0∥C(Ω)

}
.

By using the comparison principle, we obtain s(t, x) ≤ C1 in [0, Tmax) × Ω,
thus, s(t, x) is uniformly bounded in [0, Tmax) × Ω. On the other hand, we

consider χ̃ =

∫
Ω

(s(x, t) + u(x, t))dx and from (1.1)-(1.3), we have

d

dt
χ̃ (t) = Λ |Ω| −

∫
Ω

(µs(t, x) + (µ+ σ)u(t, x))dx

≤ Λ |Ω| − µχ̃ (t) .(2.4)

Thanks to the Gronwall’s inequality, we have for t ∈ (0, Tmax),

(2.5) χ̃(t) ≤ C2,
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where C2 > 0. Hence, for t ∈ (0, Tmax),

(2.6) u(t, .) ∈ L1(Ω).

By using the second equation of (1.1), we conclude that there exists C3 > 0
depending on C2 such that u(t, x) ≤ C3 in [0, Tmax)×Ω. By using the standard
theory of semilinear parabolic systems described in [11], we deduce Tmax = ∞.

When Tmax = +∞, the problem (2.3) becomes (for any positive function
u)

(2.7)


∂s

∂t
− d1∆s ≤ Λ− µs, in (0,+∞)× Ω,

s(0, x) = s0(x) ≤ ∥s0∥C(Ω) , on Ω,
∂s

∂ν
= 0, on (0,∞)× ∂Ω.

Using the comparison principle, we get s(t, x) ≤ ω(t) for t ∈ [0,+∞), where

ω(t) = ∥s0∥C(Ω) e
−µt+

(
Λ
µ

)
(1−e−µt) is the unique solution of the initial value

problem

(2.8)

{
dω
dt = Λ− µω, t > 0,
ω(0) = ∥s0∥C(Ω) .

Then, for x ∈ Ω, we have

s(t, x) ≤ ω(t)
t→∞−→ Λ

µ
.

Thus, we have an upper bound for ∥s(t, .)∥L∞(Ω) independent of the initial

data for a given sufficiently large t. Thanks to [16, Lemma 3.1] we find that
∥u(t, .)∥L∞(Ω) is also bounded by a positive constant independent of the initial
data for a large enough t.

2.2. Equilibrium Points and Basic Reproduction Number

There are two equilibrium points, the disease free equilibrium point (DFE)

E0 =
(

Λ
µ , 0
)
and endemic equilibrium point (EE) E∗ = (s∗, u∗) .

Moreover, basic reproduction number R0 is defined as the spectral radius
of the matrix FV −1 [8, 19]. Where F and V respectively denote the matrix of
transmission terms of the system (1.1) at E0 such as

(
ut

st

)
=

(
β su

s+u − (µ+ σ)u

Λ− β su
s+u − µs

)
=

(
β su

s+u

0

)
−
(

(µ+ σ)u
−Λ + β su

s+u + µs

)
.
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The Jacobian matrices corresponding to vectors

(
β su

s+u

0

)
and

(
(µ+ σ)u

−Λ + β su
s+u + µs

)
at the disease-free equilibrium E0 =

(
Λ
µ , 0
)
are given, respectively, by(

β 0
0 0

)
=

(
F 0
0 0

)
,

and (
µ+ σ 0
β µ

)
=

(
V 0
V1 V2

)
.

The basic reproduction number R0 is simply the spectral radius of the next
generation matrix R0 = ρ

(
FV −1

)
, which is given by

(2.9) R0 =
β

σ + µ
.

The endemic equilibrium point E∗ = (s∗, u∗) ,

where

s∗ =
Λ

β − σ
,

u∗ = Λ
σ − β + µ

(σ + µ) (σ − β)
,

Proposition 2.2. i) If R0 ≤ 1 the system (1.1) accepts one equilibrium point
E0.

ii) If R0 > 1 the system (1.1) has a two equilibriums points E0 and E∗.

Proof. We put

(2.10)

{
Λ− β su

s+u − µs = 0

β su
s+u − (µ+ σ)u = 0,

we obtain

(2.11)

{
−µs2 + (Λ− βu− µu)s+ Λu = 0

Λ− (µ+ σ)u = µs.

1) If µ ̸= 0, we find s and then substitute in the first equation to find u, we
obtain

−µs2 + (Λ− βu− µu)s+ Λu = 0(2.12)

Λ

µ
− µ+ σ

µ
u = s,(2.13)

we substitute (2.13) in (2.12), we get

−µ

(
Λ

µ
− µ+ σ

µ
u

)2

+ (Λ− βu− µu)

(
Λ

µ
− µ+ σ

µ
u

)
+ Λu = 0,
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after simplification we find

u(−σ2

µ
u− σu+ βu+

βσ

µ
u+ Λ+

Λσ

µ
− βΛ

µ
) = 0.

And from that

u = 0 or u

(
−σ2

µ
− σ + β +

βσ

µ

)
= −Λ

(
1 +

σ

µ
− β

µ

)
.

From it the result

(2.14)

 u = 0,
or

u(σ + µ)(σ − β) = Λ(σ − β + µ).

◦ The first case of u = 0, then s = Λ
µ , hence the equilibrium point

(2.15) E0 =

(
Λ

µ
, 0

)
.

◦ In the second case:

If σ ̸= β, then u = Λ
σ − β + µ

(σ + µ) (σ − β)
, we get the second equilibrium point

(2.16) E∗ =

(
Λ

β − σ
,Λ

σ − β + µ

(σ + µ) (σ − β)

)
2) If µ = 0, we substitute it into the (2.11), we obtain a solution that

satisfies E∗.
We now discuss the existence of equilibriums points obtained in (2.15)-

(2.16).
◦ Through the form of E0 the equilibrium point exists regardless of the

value of R0.
◦ If R0 > 1, then σ−β+µ < 0, and σ−β < 0, the solution remains positive,

and from it there is a equilibrium point E∗.
◦ If R0 < 1, then σ − β + µ > 0, and σ − β < 0, we get negative u, from

which the equilibrium point E∗ does not exist.

2.3. The Local Stability of ODE and properties of R0

We now move to study the local asymptotic stability to the two equilibrium
points E0 and E∗ as shown in the following theorem.

Proposition 2.3. a) if R0 < 1 the equilibrium point E0 is locally asymptoti-

cally stable.
b) if R0 > 1, E0 is unstable and the second equilibrium point E∗ is locally

asymptotically stable.
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Proof. To prove the local asymptotic stability, we make advantage of the Ja-
cobian matrix, which may be given by

(2.17) J(s, u) =

(
−µ− β u2

(s+u)2 −β s2

(s+u)2

β u2

(s+u)2
β s2

(s+u)2
− (σ + µ)

)
.

Evaluating J(s, u) at E0, we obtain

J(E0) =

(
−µ −β
0 β − (σ + µ)

)
.

The eigenvalues can be easily shown to be

(2.18) λ1 = −µ < 0 and λ2 = β − (σ + µ).

It is easy to see that λ2 < 0 if R0 < 1, the real parts of the eigenvalues
of J(E0) are negative, we depend on [2], leading to the asymptotic stability of
E0.

The second case if where R0 > 1. The equilibrium E0 is clearly unstable
but the system possesses an equilibrium point E∗.

Evaluating the Jacobian matrix (2.17) at E∗ yields

(2.19) J(E∗) =

(
−µ− (σ−β+µ)2

β − (σ+µ)2

β
(σ−β+µ)2

β
(σ+µ)2

β − (σ + µ)

)
.

We solve det(J(E∗)− λI) = 0. Hence,

(2.20) det (J(E∗)− λI) = λ2 + (β − σ)λ+ det J(E∗) = 0,

where

(2.21) det J(E∗) =
1

β
(σ − β) (σ + µ) (σ − β + µ) .

By using the basic reproduction number R0, we obtain{
σ − β < 0

σ − β + µ < 0.

The previous (2.21) has two eigenvalues negative real parts solutions λ1, λ2

becouse λ1 + λ2 = σ − β < 0 and λ1λ2 = det J(E∗) > 0.
Hence, the equilibrium E∗ is locally asymptotically stable.

2.4. The Local Stability of PDE

We have already established sufficient conditions for the local asymptotic
stability in the ODE scenario. Let us now examine the more general PDE case
(1.1)-(1.3).
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Theorem 2.4. For system (1.1):
(i) If R0 < 1, the DFE point E0 is locally asymptotically stable.
(ii) If R0 > 1, the EE point E∗ is locally asymptotically stable.

Proof. (i) In the presence of diffusion, the equilibrium point E0 =
(

Λ
µ , 0
)

satisfes

(2.22)

{
ds△s∗ + Λ− β s∗u∗

s∗+u∗ − µs∗ = 0 in R+ × Ω

du△u∗ + β s∗u∗

s∗+u∗ − (µ+ σ)u∗ = 0. in R+ × Ω

With

L(E0) =

(
ds△− µ −β

0 du△+ β − (σ + µ)

)
.

Using the same method from [1], the stability of E0 reduces to examining the
eigenvalues of the matrices

(2.23) Ji(E0) =

(
−dsλi − µ −β

0 −duλi + β − (σ + µ)

)
, for all i,

which are given for all i ≥ 0 by{
k1i = −dsλi − µ

k2i = −duλi + β − (σ + µ).

Since the Laplacian eigenvalues are positive and in ascending order, both k1i
and k2i clearly have negative real parts for R0 < 1 leading to the local stability
of E0.

The second equilibrium E∗ satisfes (2.22)-(1.3). The corresponding lin-
earization operator is

L(E∗) =

(
ds△− µ− (σ−β+µ)2

β − (σ+µ)2

β
(σ−β+µ)2

β du△+ (σ+µ)2

β − (σ + µ)

)
.

Hence, the stability of E∗ rests on the negativity of the real parts of the eigen-
values of matrices

Ji(E
∗) =

(
−dsλi − µ− (σ−β+µ)2

β − (σ+µ)2

β
(σ−β+µ)2

β −duλi +
(σ+µ)2

β − (σ + µ)

)
, for all i

which has trace
trJi(E

∗) = −(ds + du)λi + σ − β.

For R0 > 1 we obtain trJi(E
∗) < 0.

The determinant of the Jacobian may be given by
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det Ji(E
∗) = dsduλ

2
i +H0λi + det J(E∗),

where

H0 = ds
(σ + µ)(−σ + β − µ)

β
+ du(µ+

(σ − β + µ)
2

β
) > 0,

which leads to det Ji(E
∗) > 0. Hence, E∗ is locally asymptotically stable.

3. Global stability

In this section, we study the global asymptotic stability of the two steady
states E0 and E∗.

3.1. Global stability of DFE point E0 with R0 < 1

Theorem 3.1. Let:

Fθ(t) =

∫
Ω

[
su+

θ

2

(
s− Λ

µ

)2

+
1

2
u2 + 2

Λ

µ+ σ
u

]
dx,

where

(3.1) β

(
θ
1

µ
+

2

µ+ σ

)
≤ 1,

with

(3.2) θ >
(ds + du)

2

4dsdu
.

Then, Fθ(t) is a Lyapunov functional.

Proof. We must show that Fθ(t) is a Lyapunov function.
At E0 = (Λµ , 0), Fθ(t) = 0.

At first we have to show that Fθ(t) > 0 for all (Λµ , 0) ̸= (0, 0).
The evaluation of the derivative is given as follows

d

dt
Fθ(t) =

∫
Ω

(
∂s

∂t
u+

∂u

∂t
s

)
dx+θ

∫
Ω

(
s− Λ

µ

)
∂s

∂t
dx+

∫
Ω

u
∂u

∂t
dx+2

Λ

µ+ σ

∫
Ω

∂u

∂t
dx.

Substituting the partial derivatives ∂s
∂t and ∂u

∂t with their respective values from
(1.1)

d

dt
Fθ(t) =

∫
Ω

(
u+ θ

(
s− Λ

µ

))
∂s

∂t
dx+

∫
Ω

(
s+ u+ 2

Λ

µ+ σ

)
∂u

∂t
dx

=

∫
Ω

(
u+ θ

(
s− Λ

µ

))(
ds△s+ Λ− β

su

s+ u
− µs

)
dx

+

∫
Ω

(
s+ u+ 2

Λ

µ+ σ

)(
du△u+ β

su

s+ u
− (µ+ σ)u

)
dx.

= I1 + I2.(3.3)
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We start by looking at I1. Using Green’s formula and assuming the Neumann
boundary conditions in (1.3), we obtain

I1 =

∫
Ω

(
u+ θ

(
s− Λ

µ

))
ds△sdx+

∫
Ω

(
s+ u+ 2

Λ

µ+ σ

)
du△udx

= −ds

∫
Ω

(∇u+ θ∇s)∇sdx− du

∫
Ω

(∇s+∇u)∇udx

= −ds

∫
Ω

∇u∇sdx− θds

∫
Ω

|∇s|2 dx− du

∫
Ω

∇s∇udx− du

∫
Ω

|∇u|2 dx.

We start with the term I1, we can rewrite it as

I1 = −
∫
Ω

θds |∇s|2 + (ds + du)∇u∇s+ du |∇u|2 dx.

We know Q is positive as θ, ds and du satisfy the conditions θds > 0 and

θ > (ds+du)
2

4dsdu
, from which we obtain

(3.4) I1 ≤ 0.

The second part of the derivative is

I2 = −µ

∫
Ω

sudx+ Λ

∫
Ω

udx− β

∫
Ω

su2

s+ u
dx− θµ

∫
Ω

(
s− Λ

µ

)2

dx

−θβ

∫
Ω

s2u

s+ u
dx+ θβ

Λ

µ

∫
Ω

su

s+ u
dx

+β

∫
Ω

s2u

s+ u
dx− (µ+ σ)

∫
Ω

sudx+ β

∫
Ω

su2

s+ u
dx

− (µ+ σ)

∫
Ω

u2dx+ 2
Λβ

µ+ σ

∫
Ω

su

s+ u
dx− 2Λ

∫
Ω

udx

= I21 + I22 + I23 + I24,

with

(3.5) I21 = β

∫
Ω

s2u

s+ u
dx− θβ

∫
Ω

s2u

s+ u
dx− β

∫
Ω

su2

s+ u
dx

(3.6) I22 = β

∫
Ω

su2

s+ u
dx

I23 = −Λ

∫
Ω

udx− (2µ+ σ)

∫
Ω

sudx

(3.7)

I24 = θβ
Λ

µ

∫
Ω

su

s+ u
dx+2

Λβ

µ+ σ

∫
Ω

su

s+ u
dx−θµ

∫
Ω

(
s− Λ

µ

)2

dx−(µ+ σ)

∫
Ω

u2dx.
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We have

(3.8)
s

s+ u
≤ 1.

Using the inequality (3.8) in I24 yields

(3.9) I24 ≤
(
θβ

Λ

µ
+ 2

Λβ

µ+ σ

)∫
Ω

udx−θµ

∫
Ω

(
s− Λ

µ

)2

dx−(µ+ σ)

∫
Ω

u2dx.

Beside that, we can write

(3.10) I23 ≤ −Λ

∫
Ω

udx.

Using (3.5), (3.6), (3.9) and (3.10), we get

I2 = I21 + I22 + I23 + I24

≤ β

∫
Ω

s2u

s+ u
dx− θβ

∫
Ω

s2u

s+ u
dx

+

[(
θβ

Λ

µ
+ 2

Λβ

µ+ σ

)
− Λ

] ∫
Ω

udx− θµ

∫
Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

u2dx.

Since θ verifies the estimates (3.2), then

(3.11) I2 ≤ β (1− θ)

∫
Ω

s2u

s+ u
dx− θµ

∫
Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

u2dx.

Then, by (3.4) and (3.11)

d

dt
Fθ(t) ≤ −θds

∫
Ω

|∇s|2 dx− du

∫
Ω

|∇u|2 dx− θµ

∫
Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

u2dx

(3.12)

≤ 0.

Finally, Fθ(t) is a Lyapunov functional.

Theorem 3.2. Let E0 = (Λµ , 0) be the solution of (1.1)-(1.3) in (0,+∞) , with

hypotheses (3.1) and (3.2) then

(3.13) lim
t→+∞

∥∥∥∥s(t, .)− Λ

µ

∥∥∥∥
∞

= 0,

and

(3.14) lim
t→+∞

∥u(t, .)∥∞ = 0.
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Proof. Using inequality (3.12), and integrating over (0, t) yields

Fθ(t) + θds

∫ t

0

[∫
Ω

|∇s|2 dx
]
dS + du

∫ t

0

[∫
Ω

|∇u|2 dx
]
dS

+θµ

∫ t

0

[∫
Ω

(
s− Λ

µ

)2

dx

]
dS + (µ+ σ)

∫ t

0

[∫
Ω

u2dx

]
dS

≤ Fθ(0).(3.15)

Since Fθ(t) ≥ 0, we have from (3.15) that

(3.16)

∫ t

0

[∫
Ω

(
s− Λ

µ

)2

dx

]
dS ≤ Fθ(0)

θµ
,

and

(3.17)

∫ t

0

[∫
Ω

u2dx

]
dS ≤ Fθ(0)

µ+ σ
.

Thus, we conclude from (3.15), (3.16) and (3.17) that Fθ(t) ∈ L1(0,+∞) and
d
dtFθ(t) ∈ L1(0,+∞).
By Barbalate’s lemma ([9] Lemma (1.2.2)), we obtain Fθ(t) → 0, that is

(3.18) lim
t→+∞

∥∥∥∥s(t, .)− Λ

µ

∥∥∥∥
2

= 0,

and

(3.19) lim
t→+∞

∥u(t, .)∥2 = 0.

Combining (3.18) and (3.19) and the fact that the orbits {s(t, x), t > 0} and
{u(t, x), t > 0} are relatively compact on C(Ω̄)[10]. Using this result, the limits
(3.13) and (3.14) are evident. And the theorem is completely proved.

3.2. Global stability of EE point E∗ with R0 > 1

Henshaw and McCluskey [12] established the global asymptotic stability of
the unique equilibrium using an appropriate Lyapunov function. We consider

(3.20) L (x) = x− 1− lnx, for all x > 0

Lemma 3.3. The second equilibrium point E∗, satisfies the inequality

(3.21) L

(
u

s+u
u∗

s∗+u∗

)
≤ L

( u

u∗

)
.

Proof. We put g(u) = u
s+u , for all u > 0. Since g(u)

u is a decreasing function,
we may separate the proof into two regions:
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1. Suppose u ≥ u∗. Since g(u)
u is a decreasing function, we have

g (u)

g (u∗)
≤ u

u∗ .

And from it the result
u

s+u
u∗

s∗+u∗

≤ u

u∗ .

Since g is non-decreasing, which leads to

g (u) ≥ g (u∗) ,

and, consequently,

1 ≤
u

s+u
u∗

s∗+u∗

≤ u

u∗ .

Since L is increasing for all x > 1, (3.21) holds.

2.The second region is 0 < u < u∗. Again, Since g(u)
u is a decreasing

function, we have
g (u)

g (u∗)
>

u

u∗ .

This gives us
u

s+u
u∗

s∗+u∗

>
u

u∗ ,

and given the non-decreasing nature of g we end up with

g (u) < g (u∗) ,

we get

1 >
u

s+u
u∗

s∗+u∗

>
u

u∗ > 0.

Hince L is decreasing for 0 < x < 1, (3.21) holds.

Theorem 3.4. Let

(3.22) W (t) =

∫
Ω

[
s∗L

( s

s∗

)
+ u∗L

( u

u∗

)]
dx.

Then, W (t) is non-negative and is strictly minimized at the unique equilib-
rium E∗. Hence, W (t) is a Lyapunov functional.

Proof. The derivative of W (t) is evaluated as follows

d

dt
W (t) =

∫
Ω

[(
1− s∗

s

)
ds

dt
+

(
1− u∗

u

)
du

dt

]
dx

=

∫
Ω

(
1− s∗

s

)[
ds△s+ Λ− β

su

s+ u
− µs

]
dx

+

∫
Ω

(
1− u∗

u

)[
du△u+ β

su

s+ u
− (µ+ σ)u

]
dx.(3.23)
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Using Green’s formula and Neuman boundary conditions we get

d

dt
W (t) = −ds

∫
Ω

∇
(
1− s∗

s

)
∇sdx+

∫
Ω

(
1− s∗

s

)(
Λ− β

su

s+ u
− µs

)
dx

− du

∫
Ω

∇
(
1− u∗

u

)
d2∇udx+

∫
Ω

(
1− u∗

u

)(
β

su

s+ u
− (µ+ σ)u

)
dx

= −ds

∫
Ω

s∗

s2
|∇s|2 dx+

∫
Ω

(
1− s∗

s

)(
Λ− β

su

s+ u
− µs

)
dx

− du

∫
Ω

u∗

u2
|∇u|2 dx+

∫
Ω

(
1− u∗

u

)(
β

su

s+ u
− (µ+ σ)u

)
dx

= M +N,

where

(3.24) M = −ds

∫
Ω

s∗

s2
|∇s|2 dx− du

∫
Ω

u∗

u2
|∇u|2 dx ≤ 0,

and
(3.25)

N =

∫
Ω

(
1− s∗

s

)(
Λ− β

su

s+ u
− µs

)
dx+

∫
Ω

(
1− u∗

u

)(
β

su

s+ u
− (µ+ σ)u

)
dx.

Considering that (s∗, u∗) are solutions to system (1.1) we find

(3.26)

{
Λ = β S∗U∗

S∗+U∗ + µs∗

(µ+ σ) = β S∗

S∗+U∗ .

We substitute in (3.25) we get

N =

∫
Ω

(
1− s∗

s

)(
β

s∗u∗

s∗ + u∗ + µs∗ − β
su

s+ u
− µs

)
dx

+

∫
Ω

(
1− u∗

u

)[
β

su

s+ u
− β

s∗u

s∗ + u∗

]
dx

=

∫
Ω

[(
1− s∗

s

)
(µs∗ − µs) +

(
1− s∗

s

)(
β

s∗u∗

s∗ + u∗ − β
su

s+ u

)]
dx

+

∫
Ω

(
1− u∗

u

)[
β

su

s+ u
− β

s∗u

s∗ + u∗

]
dx

=

∫
Ω

µs∗
(
1− s∗

s

)(
1− s

s∗

)
dx

+β
s∗u∗

s∗ + u∗

∫
Ω

[(
1− s∗

s

)(
1−

su
s+u
s∗u∗

s∗+u∗

)
+

(
1− u∗

u

)( su
s+u
s∗u∗

s∗+u∗

− u

u∗

)]
dx

= µs∗
∫
Ω

(
1− s∗

s

)(
1− s

s∗

)
dx

+β
s∗u∗

s∗ + u∗

∫
Ω

[
1− s∗

s
+

u
s+u
u∗

s∗+u∗

+ 1− u

u∗ −
u∗su
s+u
us∗u∗

s∗+u∗

]
dx.
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After simplification, we find

N = −µs∗
∫
Ω

[
L

(
s∗

s

)
+ L

( s

s∗

)]
dx

−β
s∗u∗

s∗ + u∗

∫
Ω

[
L

(
s∗

s

)
+ L

(
u∗su
s+u
us∗u∗

s∗+u∗

)]
dx

+β
s∗u∗

s∗ + u∗

∫
Ω

[
−L

( u

u∗

)
+ L

(
u

s+u
u∗

s∗+u∗

)]
dx.

Using (3.21), we get N ≤ 0. Back to (3.24), which leads to d
dtW (t) ≤ 0.

Hence, W (t) is a Lyapunov function.

Theorem 3.5. Let E∗ = (s∗, u∗) be the solution of (1.1)-(1.3) in (0,+∞) ,
Then

(3.27) lim
t→+∞

∥s(t, .)− s∗∥∞ = 0,

and

(3.28) lim
t→+∞

∥u(t, .)− u∗∥∞ = 0.

Proof. In order to prove this theorem, we need the following corollary in ([5]
pp. 386-387). As there is complete proof of this result in [5], we omit the proof
of this for simplicity.

4. Numerical experiments

In order to demonstrate the changes in solution behaviour that arise when
the parameters are varied. The computer algorithm for numerical simulation
was written in MATLAB.

The resulting problem is given by

(4.1)


∂s
∂t − ds△s = Λ− β su

s+u − µs in R+ × Ω
∂u
∂t − du△u = β su

s+u − (µ+ σ)u. in R+ × Ω

s0(x) = s(x, 0) > 0, u0(x) = u(x, 0) ≥ 0 in Ω,
∂s
∂υ = ∂u

∂υ = 0. in R+ × Ω

System (4.1) possesses two constant steady states

(4.2) E0 =

(
Λ

µ
, 0

)
,

and

(4.3) E∗ =

(
Λ

β − σ
,Λ

σ − β + µ

(σ + µ) (σ − β)

)
.
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Table 1: Simulation parameters for system (4.1).

Set Figure s0 u0 ds du Λ β µ σ

ODE 1 1(a) 2 8 − − 5 8
11

1
2

1
3

2 1(b) 6 1.5 − − 8 9
10

1
5

1
2

EDP 1 2 2 + cos(x) 8 + 2 sin(x) 2 3 5 8
11

1
2

1
3

2 3 2 + cos(x) 8 + 2 sin(x) 2 3 8 9
10

1
5

1
2

Note that the second steady state E∗ exists only when the reproduction number
R0 > 1.

As detailed in Table 1, we use different sets of parameters to obtain numeri-
cal solutions in the ODE and PDE. Note that throughout the PDE simulations,
we assume a single spatial dimension with Ω = (0, 10).

The following is a description of the results:

◦ Figure 1 shows the solutions in the ODE case subject to sets 1 and 2,
with R0 = 0.87 and R0 = 1.28, respectively. In the first case, as R0 < 1,
E0 = (10, 0) is globally asymptotically stable. In the second case, R0 > 1 and
E∗ = (20, 40/7) is globally asymptotically stable.

◦ Figure 2 depicts the solution in the PDE case subject to parameter set
1, where R0 = 1.28 > 1, which by Theorem 5 means that E∗ = (20, 40/7) is
globally asymptotically stable.

◦ Figure 3 depicts the solution in the PDE case subject to parameter set 2,
where R0 = 0.87 < 1. By Theorem 4, E0 = (10, 0) is globally asymptotically
stable.

Throughout the simulations we considered the following initial conditions:

Figure 1: Numerical solutions of system (4.1) (ODE case) subject to the first
and second sets of parameters.

Remark 4.1. The approximate solution depicted in Figure 1, 2 and 3 agree
with the theoretical results obtained, regarding the dynamics of system (4.1).
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Figure 2: Numerical solutions of system (4.1) subject to the first set of param-
eters.

Figure 3: Numerical solutions of system (4.1) subject to the second set of
parameters.
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