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An iterative algorithm for minimization and fixed point
problems of two families of pseudononspreading

mappings in Hadamard spaces
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Abstract

Using the S-type iteration process, we introduce a modified proximal
point algorithm for approximating a common solution of the minimiza-
tion problem and fixed point problem in Hadamard spaces. In particular,
we establish strong convergence of the proposed algorithm to a common
solution of a finite family of the minimization problem and the fixed
point problem of two finite families of generalized k-strictly pseudonon-
spreading mappings. Numerical example in support of our main result is
given to illustrate its applicability. Our work improves and extends some
recent results existing in the current literature.
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1 Introduction

Let C be a nonempty subset of a metric space (X, d). A point x ∈ C is called
a fixed point of a mapping T : C → C if Tx = x. The set of all fixed points of
T is denoted by F (T ).
The mapping T : C → C is called:

1Department of Mathematics, Government College University, Lahore, Pakistan,
e-mail: abbas.mujahid@gmail.com, ORCID iD: orcid.org/0000-0001-5528-1207

2School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Durban, South Africa. e-mail: izuchukwuc@ukzn.ac.za, ORCID iD: orcid.org/0000-0002-
8262-8605

3Department of Mathematics and Statistics, King Fahd University of Petroleum and Min-
erals, Dhahran, Saudi Arabia. e-mail: arahim@kfump.edu.sa, ORCID iD: orcid.org/0000-
0001-6695-0939

4School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Durban, South Africa. e-mail: mewomoo@ukzn.ac.za, ORCID iD: orcid.org/0000-0003-0389-
7469

5Corresponding author
6Department of Mathematics, University of Swaziland, Kwaluseni, Swaziland.

e-mail: ugwunnadi4u@yahoo.com, ORCID iD: orcid.org/0000-0002-2711-7888

https://doi.org/10.30755/NSJOM.14084
mailto:abbas.mujahid@gmail.com
https://orcid.org/0000-0001-5528-1207
mailto:izuchukwuc@yahoo.com
https://orcid.org/0000-0002-8262-8605
https://orcid.org/0000-0002-8262-8605
mailto:arahim@kfump.edu.sa
https://orcid.org/0000-0001-6695-0939
https://orcid.org/0000-0001-6695-0939
mailto:mewomoo@ukzn.ac.za
https://orcid.org/0000-0003-0389-7469
https://orcid.org/0000-0003-0389-7469
mailto:ugwunnadi4u@yahoo.com
https://orcid.org/0000-0002-2711-7888


156 M. Abbas, C. Izuchukwu, A. R. Khan, O. T. Mewomo, G. C. Ugwunnadi

(i) contraction if there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ C;

if k = 1, then T is called nonexpansive;

(ii) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
lim
n→∞

kn = 1 such that

d(Tnx, Tny) ≤ knd(x, y) ∀x, y ∈ C, n ≥ 1;

(iii) quasinonexpansive if F (T ) ̸= ∅ and

d(p, Tx) ≤ d(p, x) ∀p ∈ F (T ), x ∈ C;

(iv) nonspreading (see [24]) if

2d2(Tx, Ty) ≤ d2(Tx, y) + d2(Ty, x) ∀x, y ∈ C;

(v) k-strictly pseudononspreading (see [38]) if

(2− k)d2(Tx, Ty) ≤ kd2(x, y) + (1− k)d2(y, Tx) + (1− k)d2(x, Ty)

+ kd2(x, Tx) + kd2(y, Ty) ∀x, y ∈ C,(1.1)

which is equivalent to

||Tx− Ty||2 ≤ ||x− y||2 + k||x− Tx− (y − Ty)||2

+ 2⟨x− Tx, y − Ty⟩ ∀x, y ∈ C ⊆ H,(1.2)

where H is a real Hilbert space (see [38, 42]);

(vi) generalized asymptotically nonspreading (see [39]) if there exist two map-
pings f, g : C → [0, γ], γ < 1 such that

d2(Tnx, Tny) ≤ f(x)d2(Tnx, y) + g(x)d2(Tny, x) ∀x, y ∈ C, n ∈ N,

and
0 < f(x) + g(x) ≤ 1 ∀x ∈ C;

if n = 1, then T is called (f, g)-generalized (or simply generalized) non-
spreading;

(vii) (f, g)-generalized (or simply generalized) k-strictly pseudononspreading if
there exist two mappings f, g : C → [0, γ], γ < 1 and k ∈ [0, 1) such that

(1− k)d2(Tx, Ty) ≤ kd2(x, y) + [f(x)− k] d2(Tx, y)

+ [g(x)− k] d2(x, Ty) + kd2(x, Tx)

+ kd2(y, Ty) ∀x, y ∈ C,(1.3)

and
0 < f(x) + g(x) ≤ 1 ∀x ∈ C.
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It is known that nonexpansive mappings and nonspreading mappings with
nonempty fixed point set are quasinonexpansive. Every nonspreading mapping
is k-strictly pseudononspreading with k = 0. We note that a generalized non-
spreading mapping T with f(x) = g(x) = 1

2 ∀x ∈ C reduces to a nonspreading
mapping. Moreover, we make the following remarks about generalized k-strictly
pseudononspreading mappings.

Remark 1.1. (i) Clearly, every generalized nonspreading mapping is gener-
alized 0-strictly pseudononspreading.

(ii) Every k-strictly pseudononspreading mapping is a generalized k-strictly
pseudononspreading mapping. Indeed, if T is a k-strictly pseudonon-
spreading mapping, then by Definition (v), there exists k ∈ [0, 1) such
that

(2− k)d2(Tx, Ty) ≤ kd2(x, y) + (1− k)d2(Tx, y)

+ (1− k)d2(x, Ty) + kd2(x, Tx) + kd2(y, Ty),(1.4)

which implies(
1− k

2

)
d2(Tx, Ty) ≤ k

2
d2(x, y) +

(
1

2
− k

2

)
d2(y, Tx)

+

(
1

2
− k

2

)
d2(x, Ty) +

k

2
d2(x, Tx) +

k

2
d2(y, Ty).(1.5)

That is,

(1− k′) d2(Tx, Ty) ≤ k′d2(x, y) + (f(x)− k′) d2(Tx, y)

+ (g(x)− k′) d2(x, Ty) + k′d2(x, Tx) + k′d(y, Ty),(1.6)

where f(x) = g(x) = 1
2 , ∀x ∈ C and k′ = k

2 ∈ [0, 1). Hence, T is a
generalized k-strictly pseudononspreading mapping.

However, converse of the statements given in Remark 1.1 are not always true
as indicated by the following examples.

Example 1.2. Let T : [0,∞) → [0,∞) be defined by

Tx =

{
1

x+ 1
10

, if x ≥ 1,

0, if x ∈ [0, 1).

Then, T is a generalized k-strictly pseudononspreading mapping, but not k-
strictly pseudononspreading mapping.

Example 1.3. Let T : [0,∞) → R defined by

Tx =

{
−3x, if x ∈ [0, 1],
1
x , if x ∈ (1,∞).

Then, T is a generalized k-strictly pseudononspreading mapping but it is nei-
ther a k-strictly pseudononspreading mapping nor a generalized nonspreading
mapping.
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The approximation of fixed points of nonlinear mappings is one of the most
flourishing area of research in mathematics that has enjoyed a prosperous de-
velopment in the last fifty years or so. Thus, it has attracted and continued to
attract the interest of researchers due to its extensive applications in diverse
mathematical problems such as inverse problems, signal processing, game the-
ory, fuzzy theory and many others, see [2, 3, 30, 34, 35, 36] and the references
therein. Moreover, many mathematical problems emanating from biology, eco-
nomics, computer science, are among others which can be modelled as a fixed
point problem. It is well known that the pivot of the metric fixed point theory
is the Banach contraction mapping principle, which states that a contraction
mapping T defined on a complete metric space X always has a unique fixed
point, and for any starting point x1 ∈ X, the sequence defined by the Picard
iteration process xn+1 = Txn, n ≥ 1, converges strongly to that fixed point.
However, there are several examples in literature (see [10]) which show that for
a nonexpansive mapping, its Picard iteration process may not converge to its
fixed point, even when the fixed point exists. As a result of this, considerable
efforts have been made to approximate fixed points of not only nonexpansive
mappings, but more general mappings, by developing different iteration pro-
cesses. For example, the Mann iteration process is defined in a Hilbert space
H as follows: x1 ∈ C ⊆ H and

xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 1,(1.7)

where {αn} is a sequence in (0, 1). The Ishikawa iteration process is defined as
follows: x1 ∈ C ⊆ H and{

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, ∀n ≥ 1,
(1.8)

where {αn} and {βn} are sequences in (0, 1). For so many years, many re-
searchers have studied the above iteration processes and their modifications
to approximate fixed points of nonexpansive mappings and wider classes of
mappings and related optimization problems in both Hilbert spaces and Ba-
nach spaces (see, for example [4, 15, 18, 21, 29, 33, 43, 48] and the references
therein).
Recently, Agarwal et al. [1] introduced and studied the following S-iteration
process: x1 ∈ C ⊆ H and{

xn+1 = (1− αn)Txn + αnTyn

yn = (1− βn)xn + βnTxn ∀n ≥ 1,
(1.9)

where {αn} and {βn} are sequences in (0, 1). It was observed in [1] that itera-
tion process (1.9) is independent of (1.8) and (1.7), and has a better convergence
rate than (1.8) and (1.7) for contractions. The study of fixed point problems for
nonlinear mappings using the above iteration processes have recently been ex-
tended from the framework of Hilbert spaces and Banach spaces to Hadamard
spaces (see, for example [17, 32, 31, 46] and the references therein).
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On the other hand, approximating solutions of the minimization problems has
been of great interest in optimization theory, nonlinear analysis and geometry.
Let X be a CAT(0) space and f : X → (−∞,∞] be a proper, convex and lower
semi-continuous mapping. The minimization problem is to find x ∈ X such
that

f(x) = min
y∈X

f(y).(1.10)

Recall that the mapping f is convex if

f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ X, λ ∈ (0, 1).

f is proper if D(f) := {x ∈ X : f(x) < +∞} ≠ ∅, where D(f) denotes the
domain of f . The mapping f : D(f) → (−∞,∞] is lower semi-continuous at a
point x ∈ D(f) if

f(x) ≤ lim inf
n→∞

f(xn),(1.11)

for each sequence {xn} in D(f) such that lim
n→∞

xn = x; f is said to be lower

semi-continuous on D(f) if it is lower semi-continuous at any point in D(f).
For any λ > 0, the resolvent of f in X is defined in [5] as

Jf
λ (x) = argmin

y∈X

[
f(y) +

1

2λ
d2(y, x)

]
,

where argminy∈X f stands for arguments of minima of f . It was established

in [19] that Jf
λ is well defined and that it is a nonexpansive mapping for all

λ > 0. For simplicity, we shall write Jλ for the resolvent of a proper, convex
and lower semi-continuous mapping f . Furthermore, we denote the solution set
of problem (1.10) by argminy∈X f(y). In [5], it was shown that F (Jλ) coincides
with argminy∈X f(y).
The Proximal Point Algorithm (PPA) is known to be one of the most pop-
ular and successful methods for solving (1.10). The PPA was introduced by
Martinet [28] in 1970 and was further developed by Rockafellar [41] for the
approximation of solution of (1.10) in the framework of Hilbert spaces. Later
in 2013, Bačák [6] introduced and studied the PPA in CAT(0) spaces. To ap-
proximate solution of (1.10), Bačák [6] proposed the following algorithm: For
arbitrary x1 ∈ X, define the sequence {xn} by

xn+1 = argmin
y∈X

(
f(y) +

1

2λn
d2(y, xn)

)
,(1.12)

where λn > 0 for all n ≥ 1. Under the conditions that f has a minimizer in
X and

∑∞
n=1 λn = ∞, he proved that {xn} ∆-converges to a minimizer of f .

In 2014, Bačák [7] studied a split version of the PPA for minimizing sum of
convex mappings in Hadamard spaces.
Researchers are now beginning to approximate common solution of the mini-
mization problem and the fixed point problem for nonexpansive mappings in
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Hadamard spaces. In 2015, Cholamjiak, Abdou and Cho [11] proposed the fol-
lowing modified PPA using the S-type iteration process for two nonexpansive
mappings in a Hadamard space: For arbitrary x1 ∈ X, define the sequence
{xn} by 

zn = argminy∈X

[
f(y) + 1

2λn
d2(y, xn)

]
,

yn = (1− βn)xn ⊕ βnT1zn,

xn+1 = (1− αn)T1xn ⊕ αnT2yn, ∀n ≥ 1,

(1.13)

where f : X → (−∞,∞] is a proper, convex and lower semi-continuous map-
ping, T1, T2 are nonexpansive mappings on X, {αn} and {βn} are sequences in
(0, 1) satisfying some conditions, and {λn} is a sequence such that λn ≥ λ > 0
for all n ≥ 1. They obtained strong convergence results of the iteration process
(1.13) to a common solution of the minimization problem and the fixed point
problem for two nonexpansive mappings under some compactness conditions.
Later in 2016, Chang et al. [9] proposed the modified PPA, using the S-type
iteration process for four asymptotically nonexpansive mappings in Hadamard
spaces, and obtained strong convergence results of their proposed algorithm
to a common solution of the minimization problem and the fixed point prob-
lem for four asymptotically nonexpansive mappings under some compactness
conditions. Very recently, Ugwunnadi et. al. [47] studied a hybrid PPA for
approximating a common solution of the minimization problem and the fixed
point problem for a demicontractive mapping in a Hadamard space, and ob-
tained a strong convergence result.
Motivated by the recent interest on PPA and these ongoing research, it is
natural to consider the following question.
Question: Can we propose a modified S-type PPA for two finite families of
generalized k-strictly pseudononspreading mappings in Hadamard spaces, and
establish its strong convergence without the compactness assumption on the
mappings involved?
In this paper, we consider the above question by proposing and studying a
modified S-type PPA, and establish its strong convergence for our proposed
iteration, to a common solution of a finite family of the minimization problems
and the fixed point problems of two finite families of generalized k-strictly
pseudononspreading mappings in Hadamard spaces. Numerical example for
our main result is also given to illustrate its applicability. Our work improves
and extends the results of Bačák [6], Bačák [7], Cholamjiak, Abdou and Cho
[11], Chang et al. [9], and many other results existing in the literature.

2 Preliminaries

In this section, we recall some definitions and useful results that will be needed
in proving our main results.
Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y is
an isometry c : [0, d(x, y)] → X such that c(0) = x, c(d(x, y)) = y. The image
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of a geodesic path joining x to y is called a geodesic segment between x and y.
When it is unique, this geodesic segment is denoted by [x, y]. The metric space
(X, d) is said to be a geodesic space if every two points of X can be joined by
a geodesic segment and it is said to be a uniquely geodesic space if every two
points of X are joined by only one geodesic segment. A subset C of a geodesic
space X is said to be convex, if for all x, y ∈ C, the segment [x, y] is in C. A
geodesic triangle ∆(x1, x2, x3) in a geodesic space X consists of three points
x1, x2, x3 in X (known as the vertices of ∆) and a geodesic segment between
each pair of vertices (known as the edges of ∆). A comparison triangle for the
geodesic triangle ∆(x1, x2, x3) in X is a triangle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3)
in the Euclidean plane R2 such that d(xi, xj) = dR2(x̄i, x̄j) for all i, j ∈ {1, 2, 3}.
A metric space (X, d) is called a CAT(0) space if it is geodesically connected
and if every geodesic triangle inX is at least as ”thin” as its comparison triangle
in the Euclidean plane R2. Let t ∈ [0, 1], we write (1− t)x⊕ ty for the unique
point z in the geodesic segment joining x to y for each x, y in a CAT(0) space
X such that d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y).

Let X be a CAT(0) space. Denote the pair (a, b) ∈ X ×X by
−→
ab and call it a

vector. Then, a mapping ⟨., .⟩ : (X ×X)× (X ×X) → R defined by

⟨
−→
ab,

−→
cd⟩ = 1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
∀a, b, c, d ∈ X

is called a quasilinearization mapping (see [8]). It is easy to verify that ⟨
−→
ba,

−→
cd⟩ =

−⟨
−→
ab,

−→
cd⟩, ⟨

−→
ab,

−→
cd⟩ = ⟨−→ae,

−→
cd⟩+⟨

−→
eb,

−→
cd⟩ and ⟨

−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩ for all a, b, c, d, e ∈

X. A geodesic space X is said to satisfy the Cauchy-Swartz inequality if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d) ∀a, b, c, d ∈ X. It has been established in [8] that a

geodesically connected metric space is a CAT(0) space if and only if it sat-
isfies the Cauchy-Schwartz inequality. It is known that CAT(0) spaces are
uniquely geodesic spaces (see [31, 45, 46]) and complete CAT(0) spaces are
called Hadamard spaces. Examples of CAT(0) spaces includes: Euclidean
spaces Rn, Hilbert spaces, simply connected Riemannian manifolds of non-
positive sectional curvature, R-trees, Hilbert ball ([16], [20]), hyperbolic spaces
[40]. For more properties of CAT(0) spaces, see [12, 32, 31, 45] and the refer-
ences therein.
Let {xn} be a bounded sequence in X and r(., {xn}) : X → [0,∞) be a continu-
ous mapping defined by r(x, {xn}) = lim sup

n→∞
d(x, xn). The asymptotic radius of

{xn} is given by r({xn}) := inf{r(x, {xn}) : x ∈ X} while the asymptotic cen-
ter of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. It is known
that in a Hadamard spaceX, A({xn}) consists of exactly one point. A sequence
{xn} in X is said to be ∆-convergent to a point x ∈ X if A({xnk

}) = {x} for
every subsequence {xnk

} of {xn}. In this case, we write ∆- lim
n→∞

xn = x (see

[13, 23]).

Definition 2.1. Let C be a nonempty closed and convex subset of a Hadamard
space X. A mapping T : C → C is said to be ∆-demiclosed, if for any bounded
sequence {xn} in X such that ∆- lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0, then
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x = Tx.

Definition 2.2. Let C be a nonempty closed and convex subset of a CAT(0)
space X. The metric projection is a mapping PC : X → C which assigns to
each x ∈ X the unique point PCx in C such that

d(x, PCx) = inf{d(x, y) : y ∈ C}.

Recall that a mapping T is firmly nonexpansive (see [22]) if we have that

d2(Tx, Ty) ≤ ⟨
−−−→
TxTy,−→xy⟩ ∀x, y ∈ X.

It follows from the Cauchy-Schwartz inequality that firmly nonexpansive map-
pings are nonexpansive. An example of a firmly nonexpansive mapping is the
metric projection (see [22, Corollary 3.8]).
We will need the following known lemmas.

Lemma 2.3. ([31, 45, 46]). Let X be a CAT(0) space. Then, for x, y, z ∈ X
and t ∈ [0, 1], the following hold:

(i) d(z, tx⊕ (1− t)y) ≤ td(z, x) + (1− t)d(z, y),

(ii) d2(z, tx⊕ (1− t)y) ≤ td2(z, x) + (1− t)d2(z, y)− t(1− t)d2(x, y),

(iii) d2(z, tx⊕ (1− t)y) ≤ t2d2(z, x) + (1− t)2d2(z, y) + 2t(1− t)⟨−→zx,−→zy⟩.

Lemma 2.4. ([44]). Let C be a nonempty, closed and convex subset of a
CAT(0) space X. Let {xi, i = 1, 2, . . . , N} ⊂ C, and αi ∈ (0, 1), i = 1, 2, . . . , N

such that
∑N

i=1 αi = 1. Then the following inequalities hold:

d

(
z,

N⊕
i=1

αixi

)
≤

N∑
i=1

αid(z, xi), ∀z ∈ C,

d2

(
z,

N⊕
i=1

αixi

)
≤

N∑
i=1

αid
2(z, xi)−

N∑
i,j=1,i̸=j

αiαjd
2(xi, xj), ∀z ∈ C.

Lemma 2.5. ([26]). Every bounded sequence in a Hadamard space has a ∆-
convergent subsequence.

Lemma 2.6. [31, 45, 46]. Let X be a Hadamard space, {xn} be a bounded se-
quence in X and x ∈ X. Then {xn} ∆-converges to x if and only if
lim sup
n→∞

⟨−−→xnx,
−→yx⟩ ≤ 0 ∀y ∈ X.

Lemma 2.7. [14]. Let X be a Hadamard space and T : X → X be a nonex-
pansive mapping. Then T is ∆-demiclosed.

Lemma 2.8. [25]. Let X be a Hadamard space and f : X → (−∞,∞] be a
proper convex and lower semi-continuous mapping. Then, for all x, y ∈ X and
λ > 0, we have

1

2λ
d2(Jλx, y)−

1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y).(2.1)
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Lemma 2.9. [49]. Let {an} be a sequence of non-negative real numbers satis-
fying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], Σ∞

n=0αn = ∞,
(ii) lim supn→∞ δn ≤ 0,
(iii) γn ≥ 0(n ≥ 0), Σ∞

n=0γn < ∞.
Then limn→∞ an = 0.

Lemma 2.10. [27]. Let {an} be a sequence of real numbers such that there
exists a subsequence {nj} of {n} with anj

< anj+1 ∀j ∈ N. Then there exists
a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.

3 Main Results

Lemma 3.1. Let X be a Hadamard space and f : X → (−∞,∞] be a proper
convex and lower semi-continuous mapping. Then,
d(Jf

λx, x) ≤ d(Jf
µx, x) for 0 < λ < µ and x ∈ X.

Proof. For x, y ∈ X, we obtain from the definition of the resolvent of f that

f(Jµx) +
1

2µ
d2(Jµx, x) ≤ f(y) +

1

2µ
d2(y, x).

In particular, we have that

f(Jµx) +
1

2µ
d2(Jµx, x) ≤ f(Jλx) +

1

2µ
d2(Jλx, x).(3.1)

Similarly, we obtain

f(Jλx) +
1

2λ
d2(Jλx, x) ≤ f(Jµx) +

1

2λ
d2(Jµx, x)(3.2)

Adding (3.1) and (3.2), we obtain that

d2(Jλx, x)−
λ

µ
d2(Jλx, x) ≤ d2(Jµx, x)−

λ

µ
d2(Jµx, x).

That is, (
1− λ

µ

)
d2(Jλx, x) ≤

(
1− λ

µ

)
d2(Jµx, x).

As 0 < λ < µ, so we obtain that

d(Jλx, x) ≤ d(Jµx, x).
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Lemma 3.2. Let C be a closed and convex subset of a Hadamard space X
and fi : X → (−∞,∞], i = 1, 2, . . . , N be a finite family of proper convex and
lower semi-continuous mappings such that ∩N

i=1argminy∈X fi(y) ̸= ∅. Let {un}
and {zn} be bounded sequences such that

un = PC(Jλ(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
(zn)),

where {λ(i)
n }, i = 1, 2, . . . , N is a sequence such that λ

(i)
n > λ(i) > 0 for each

i = 1, 2, . . . , N and n ≥ 1. If lim
n→∞

d(un, zn) = 0, then lim
n→∞

d(Jλ(i)zn, zn) = 0,

for each i = 1, 2, . . . , N .

Proof. Let p ∈ ∩N
i=1argminy∈X fi(y).

Set w(i+1)
n = J

λ
(i)
n
w(i)

n , for each i = 1, 2, . . . , N,

where w
(1)
n = zn, for all n ≥ 1. Then,

w
(2)
n = J

λ
(1)
n
(zn), w

(3)
n = J

λ
(2)
n

◦ J
λ
(1)
n
(zn), . . . , w

(N+1)
n = J

λ
(N)
n

◦ J
λ
(N−1)
n

◦
· · · ◦ J

λ
(2)
n

◦ J
λ
(1)
n
(zn).

By Lemma 2.8, we obtain
1

2λ
(i)
n

d2(p, w
(i+1)
n )− 1

2λ
(i)
n

d2(p, w
(i)
n ) + 1

2λ
(i)
n

d2(w
(i)
n , w

(i+1)
n ) + f(w

(i+1)
n ) ≤ f(p).

As f(p) ≤ f(w
(i+1)
n ), we have that

d2(w(i)
n , w(i+1)

n ) ≤ d2(p, w(i)
n )− d2(p, w(i+1)

n ).

Taking sum in the above inequality from i = 1 to i = N , we obtain

N∑
i=1

d2(w(i)
n , w(i+1)

n ) ≤ d2(p, zn)− d2(p, w(N+1)
n )

≤ d2(p, zn)− d2(p, un)

≤ [d(p, un) + d(un, zn)]
2 − d2(p, un)

≤ d2(zn, un) + 2d(zn, un)d(p, un) → 0 as n → ∞,

which implies

lim
n→∞

d(w(i)
n , w(i+1)

n ) = 0, i = 1, 2, . . . , N.(3.3)

By (3.3) and the triangle inequality, we obtain for each i = 1, 2, . . . , N , that

lim
n→∞

d(zn, w
(i+1)
n ) = lim

n→∞
d(w(1)

n , w(i+1)
n ) = 0.(3.4)

Also, since λ
(i)
n > λ(i) > 0 for all n ≥ 1, we obtain by Lemma 3.1 and (3.3)

that

d
(
w(i)

n , Jλ(i)w(i)
n

)
≤ d

(
w(i)

n , J
λ
(i)
n
w(i)

n

)
→ 0, as n → ∞, i = 1, 2, . . . , N.(3.5)
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Since Jλ(i) is nonexpansive, we have from (3.3) and (3.4) that

d(Jλ(i)zn, Jλ(i)w(i)
n ) ≤ d(Jλ(i)zn, Jλ(i)w(i+1)

n ) + d(Jλ(i)w(i+1)
n , Jλ(i)w(i)

n )

≤ d(zn, w
(i+1)
n ) + d(w(i+1)

n , w(i)
n ) → 0, as n → ∞.(3.6)

By (3.3)-(3.5), we obtain

d (Jλ(i)zn, zn) ≤ d
(
Jλ(i)zn, Jλ(i)w(i)

n

)
+ d

(
Jλ(i)w(i)

n , w(i)
n

)
+ d

(
w(i)

n , w(i+1)
n

)
+ d

(
w(i+1)

n , zn

)
→ 0 as n → ∞.(3.7)

That is,

lim
n→∞

d (Jλ(i)zn, zn) = 0, i = 1, 2, . . . , N.

Lemma 3.3. Let C be a closed and convex subset of a Hadamard space X
and T : C → C be (f, g)-generalized k-strictly pseudononspreading mapping
with k ∈ [0, 1) such that F (T ) ̸= ∅, where f, g : C → [0, γ], γ < 1 and
0 < f(x) + g(x) ≤ 1 for all x ∈ C. Let Tβ : C → C be defined by Tβx =
βx⊕ (1− β)Tx ∀x ∈ C, where k

f(p) ≤ β < 1 with f(p) ̸= 0 for each p ∈ F (T ).

Then,

(a) F (Tβ) = F (T ),

(b) Tβ is quasinonexpansive.

Proof. (a) If β = 0, then Tβ = T . Thus, F (T ) = F (Tβ). Now, let β ̸= 0.
For each p ∈ F (Tβ), we have that p = Tβp and by Lemma 2.3 (i), we have
d(p, Tp) ≤ βd(p, Tp), which implies (1− β)d(p, Tp) ≤ 0.
Since β < 1, it follows that p ∈ F (T ). Thus, F (Tβ) ⊆ F (T ).
We now show that F (T ) ⊆ F (Tβ). Let p ∈ F (T ), then Tp = p and by Lemma
2.3 (i) we have
d(p, Tβp) = d(p, βp⊕ (1− β)p) ≤ 0, which implies that p ∈ F (Tβ). Thus,
F (T ) ⊆ F (Tβ). Therefore, F (Tβ) = F (T ).
(b) First, observe that if T is (f, g)-generalized k-strictly pseudononspreading
mapping, then for each p ∈ F (T ) and x ∈ C, we obtain

d2(p, Tx) ≤ f(p)d2(p, x) + g(p)d2(p, Tx) + kd2(x, Tx),

which implies

(1− g(p))d2(p, Tx) ≤ f(p)d2(p, x) + kd2(x, Tx).

Since f(p) + g(p) ≤ 1, we obtain

d2(p, Tx) ≤ d2(p, x) +
k

f(p)
d2(x, Tx).(3.8)
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By Lemma 2.3 (ii) and (3.8), we have for each x ∈ C and p ∈ F (T ) = F (Tβ)
that

d2(Tβp, Tβx) = d2(p, βx⊕ (1− β)Tx)

≤ βd2(p, x) + (1− β)d2(p, Tx)− β(1− β)d2(x, Tx)

≤ βd2(p, x) + (1− β)

[
d2(p, x) +

k

f(p)
d2(x, Tx)

]
−β(1− β)d2(x, Tx)

= d2(p, x) + (1− β)

(
k

f(p)
− β

)
d2(x, Tx)

≤ d2(p, x).

Therefore, Tβ is quasinonexpansive.

Theorem 3.4. Let C be a closed and convex subset of a Hadamard space X
and hi : X → (−∞,∞], i = 1, 2, . . . , N be a finite family of proper convex and
lower semi-continuous mappings. For each j = 1, 2, . . . ,m, let Tj : C → C be
a finite family of (fj , gj)-generalized kj-strictly pseudononspreading mappings
with kj ∈ [0, 1), where fj , gj : C → [0, γ], γ < 1 and 0 < fj(x) + gj(x) ≤ 1 for
all x ∈ C, and Sj : C → X be a finite family of (f ′

j , g
′
j)-generalized k′j-strictly

pseudononspreading mappings with k′j ∈ [0, 1), where f ′
j , g

′
j : C → [0, γ′], γ′ < 1

and 0 < f ′
j(x) + g′j(x) ≤ 1 for all x ∈ C. Suppose that Γ :=

(
∩m
j=1F (Tj)

)
∩(

∩m
j=1F (Sj)

)
∩
(
∩N
i=1argminy∈X hi(y)

)
̸= ∅. Let u, x1 ∈ X be arbitrary and the

sequence {xn} be generated by

zn = (1− tn)xn ⊕ tnu,

un = PC(Jλ(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
(zn)),

yn = β
(0)
n un ⊕ β

(1)
n T(β,1)un ⊕ β

(2)
n T(β,2)un ⊕ . . .

⊕β
(m)
n T(β,m)un,

xn+1 = α
(0)
n T(β,m)un ⊕ α

(1)
n S(α,1)un ⊕ α

(2)
n S(α,2)un

⊕ · · · ⊕ α
(m)
n S(α,m)yn, n ≥ 1,

(3.9)

where T(β,j)x = βx⊕(1−β)Tjx and S(α,j)x = αx⊕(1−α)Sjx, j = 1, 2, . . . ,m,

for all x ∈ C such that T(β,j) and S(β,j) are ∆-demiclosed with
kj

fj(p)
≤ β < 1,

fj(p) ̸= 0 and
k′
j

f ′
j(p)

≤ α < 1, f ′
j(p) ̸= 0 respectively, for each j = 1, 2, . . . ,m

and for each p ∈
(
∩m
j=1F (Tj)

)
∩
(
∩m
j=1F (Sj)

)
, {tn}, {λ(i)

n }, {β(j)
n } and {α(j)

n }
are sequences in (0, 1) satisfying the following conditions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ α
(j)
n , β

(j)
n ≤ b < 1, j = 0, 1, 2, . . . ,m such that

∑m
j=0 α

(j)
n = 1

and
∑m

j=0 β
(j)
n = 1 for all n ≥ 1,
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C4: {λ(i)
n } is a sequence such that λ

(i)
n > λ(i) for all n ≥ 1, i = 1, 2, . . . , N

and some λ(i) > 0.

Then, {xn} converges strongly to an element of Γ.

Proof. Let p ∈ Γ. Then for each j = 1, 2, . . . ,m, we have by Lemma 3.3 that
p = T(β,j)p = S(α,j)p, and T(β,j) and S(α,j) are quasi-nonexpansive mappings.
Set ΦN

λn
= J

λ
(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
, where Φ0

λn
= I. Now by (3.9) and

Lemma 2.4, we have

d(p, xn+1) ≤ α(0)
n d(p, T(β,m)un) + α(1)

n d(p, S(α,1)un) + α(2)
n d(p, S(α,2)un)

+ · · ·+ α(m)
n d(p, S(α,m)yn)

≤ α(0)
n d(p, un) + α(1)

n d(p, un) + α(2)
n d(p, un) + · · ·+ α(m)

n d(p, yn)

≤
m−1∑
j=0

α(j)
n d(p, un) + α(m)

n [β(0)
n d(p, un) + β(1)

n d(p, T(β,1)un)

+β(2)
n d(p, T(β,2)un) + · · ·+ β(m)

n d(p, T(β,m)un)]

≤
m−1∑
j=0

α(j)
n d(p, un) + α(m)

n d(p, un)

= d(p, un)(3.10)

≤ d(p,ΦN
λn

zn)

≤ d(p,ΦN−1
λn

zn)

...

≤ d(p, zn)(3.11)

≤ (1− tn)d(p, xn) + tnd(u, p)

≤ max{d(p, xn), d(p, u)}
...

≤ max{d(p, x1), d(p, u)}.

Therefore, {d(p, xn)} is bounded. Hence, {xn}, {yn}, {zn} and {yn} are all
bounded.
From (3.9), Lemma 2.3 (i) and condition C1, we obtain that

d(zn, xn) ≤ tnd(u, xn) → 0, as n → ∞.(3.12)

We need to consider two cases for our proof.
Case 1: Suppose that {d(p, xn)} is monotonically non-increasing. Then
lim
n→∞

d(p, xn) exists. Without loss of generality, we may assume that

lim
n→∞

d(p, xn) = c ≥ 0.(3.13)

Since PC is firmly nonexpansive, therefore, we have

d2(p, un) ≤ ⟨−−→unp,
−−−−−→
ΦN

λn
zn p⟩ = 1

2

(
d2(p, un) + d2(p,ΦN

λn
zn)− d2(un,Φ

N
λn

zn)
)
,
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which together with (3.10), (3.10), (3.12) and (3.13), implies that

d2(un,Φ
N
λn

zn) ≤ d2(p,ΦN
λn

zn)− d2(p, un)

≤ d2(p,ΦN
λn

zn)− d2(p, xn+1)

...

≤ d2(p, zn)− d2(p, xn+1)

≤ d2(p, xn) + 2d(p, xn)d(xn, zn) + d2(xn, zn)

−d2(p, xn+1) → 0 as n → ∞.(3.14)

We now show that lim
n→∞

d(un, Jλ(i)un) = 0, i = 1, 2, . . . , N .

Indeed, it follows from Lemma 2.8 that

1

2λn
d2(p,ΦN

λn
zn)−

1

2λn
d2(p,ΦN−1

λn
zn)+

1

2λn
d2(ΦN

λn
zn,Φ

N−1
λn

zn)+f
(
ΦN

λn

)
≤ f(p).

Since f(p) ≤ f
(
ΦN

λn

)
, we have by (3.10), (3.13) and (3.12) that

d2(ΦN
λn

zn,Φ
N−1
λn

zn) ≤ d2(p,ΦN−1
λn

zn)− d2(p,ΦN
λn

zn)

≤ d2(p,ΦN−1
λn

zn)− d2(p, xn+1)

...

≤ d2(p, zn)− d2(p, xn+1)

≤ d2(zn, xn) + 2d(zn, xn)d(p, xn)

+
[
d2(p, xn)− d2(p, xn+1)

]
→ 0, as n → ∞.(3.15)

Similarly, we obtain by Lemma 2.8, (3.10), (3.13) and (3.12) that

d2(ΦN−1
λn

zn,Φ
N−2
λn

zn) ≤ d2(p,ΦN−2
λn

zn)− d2(p,ΦN−1
λn

zn)

≤ d2(p,ΦN−2
λn

zn)− d2(p,ΦN
λn

zn)

≤ d2(p,ΦN−2
λn

zn)− d2(p, xn+1)

...

≤ d2(p, zn)− d2(p, xn+1) → 0, as n → ∞.(3.16)

Continuing in this manner, we can show that

lim
n→∞

d2(ΦN−2
λn

zn,Φ
N−3
λn

zn) = · · · = lim
n→∞

d2(Φ2
λn

zn,Φ
1
λn

zn)

= lim
n→∞

d2(Φ1
λn

zn, zn) = 0.(3.17)

Thus,

d(un, zn) ≤ d(un,Φ
N
λn

zn) + d(ΦN
λn

zn,Φ
N−1
λn

zn)

+ d(ΦN−1
λn

zn,Φ
N−2
λn

zn) + · · ·+ d(Φ1
λn

zn, zn),(3.18)
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which implies by (3.14), (3.15), (3.16) and (3.17) that

lim
n→∞

d(un, zn) = 0.(3.19)

It follows from (3.19) and Lemma 3.2 that

d(Jλ(i)un, un)

≤ d(Jλ(i)un, Jλ(i)zn) + d(Jλ(i)zn, zn) + d(zn, un)

≤ 2d(un, zn) + d(Jλ(i)zn, zn) → 0, as n → ∞, i = 1, 2, . . . , N.

That is,

lim
n→∞

d(un, Jλ(i)un) = 0, for each i = 1, 2, . . . , N.(3.20)

Next, we show that lim
n→∞

d(un, xn) = 0 and lim
n→∞

d(p, yn) = c. By (3.12) and

(3.19), we obtain

lim
n→∞

d(un, xn) = 0.(3.21)

Again, by (3.9), we have

d(p, xn+1) ≤ α(0)
n d(p, T(β,m)un) + α(1)

n d(p, S(α,1)un) + α(2)
n d(p, S(α,2)un)

+ · · ·+ α(m)
n d(p, S(α,m)yn)

≤ α(0)
n d(p, un) + α(1)

n d(p, un) + α(2)
n d(p, un) + · · ·+ α(m)

n d(p, yn)

= (1− α(m)
n )d(p, un) + α(m)

n d(p, yn)

...

≤ (1− α(m)
n )d(p, zn) + α(m)

n d(p, yn)

≤ (1− α(m)
n ) [(1− tn)d(p, xn) + tnd(p, u)] + α(m)

n d(p, yn)

≤ (1− α(m)
n )d(p, xn) + tn(1− α(m)

n )d(p, u) + α(m)
n d(p, yn),

which implies

d(p, xn) ≤
1

α
(m)
n

[
d(p, xn)− d(p, xn+1) + (1− α(m)

n )tnd(u, p)
]
+ d(p, yn).

It then follows from (3.13) and conditions C1 and C3 that

c = lim inf
n→∞

d(p, xn) ≤ lim inf
n→∞

d(p, yn).(3.22)

Also, by (3.9), we have

d(p, yn) ≤ β(0)
n d(p, un) + β(1)

n d(p, T(β,1)un) + β(2)
n d(p, T(β,2)un)

+ · · ·+ β(m)
n d(p, T(β,m)un)

≤ d(p, un)(3.23)

≤ d(p, zn)

≤ d(p, xn) + tn [d(p, u)− d(p, xn)] ,
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which implies that

lim sup
n→∞

d(p, yn) ≤ lim sup
n→∞

(d(p, xn) + tn [d(p, u)− d(p, xn)]) = c.(3.24)

Thus, by (3.22) and (3.24), we have

lim
n→∞

d(p, yn) = c.(3.25)

We now show that lim
n→∞

d(un, T(β,j)un) = 0, for each j = 1, 2, . . . ,m and

lim
n→∞

d(un, yn) = 0.

Indeed, by (3.9), Lemma 2.4 and Lemma 3.3, we have

d2(p, yn) ≤ β(0)
n d2(p, un) +

m∑
j=1

β(j)
n d2(p, T(β,j)un)−

m∑
j=1

β(0)
n β(j)

n d2(un, T(β,j)un)

−
m∑

j,r=1,j ̸=r

β(j)
n β(r)

n d2(T(β,j)un, T(β,r)un)

≤ d2(p, un)−
m∑
j=1

β(0)
n β(j)

n d2(un, T(β,j)un)

−
m∑

j,r=1,j ̸=r

β(j)
n β(r)

n d2(T(β,j)un, T(β,r)un),(3.26)

which implies

m∑
j=1

β(0)
n β(j)

n d2(un, T(β,j)un) ≤ d2(p, un)− d2(p, yn)

≤ d2(un, xn) + 2d(un, xn)d(p, xn)

+ d2(p, xn)− d2(p, yn).(3.27)

By (3.13), (3.21), (3.25) and condition C3, we obtain that

lim
n→∞

d(un, T(β,j)un) = 0, j = 1, 2, . . . ,m.(3.28)

Thus, by (3.9), (3.28) and Lemma 2.4, we have

d(un, yn) ≤ β(0)
n d(un, un) + β(1)

n d(un, T(β,1)un) + β(2)
n d(un, T(β,2)un)

+ · · ·+ β(m)
n d(un, T(β,m)un) → 0 as n → ∞.(3.29)

Next, we show that lim
n→∞

d(un, S(α,j)un) = 0, for each j = 1, 2, . . . ,m− 1, and

lim
n→∞

d(yn, S(α,m)yn) = 0.
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By (3.9), (3.23), Lemma 2.4 and Lemma 3.3, we obtain

d2(p, xn+1) ≤ α(0)
n d2(p, T(β,m)un) +

m−1∑
j=1

α(j)
n d2(p, S(α,j)un)

+ α(m)
n d2(p, S(α,m)yn)

−
m−1∑
j=1

α(0)
n α(j)

n d2(T(β,m)un, S(α,j)un)

− α(0)
n α(m)

n d2(T(β,m)un, S(α,m)yn)

−
m−1∑
j=1

α(m)
n α(j)

n d2(S(α,m)yn, S(α,j)un)

−
m−1∑

j,r=1,j ̸=r

α(j)
n α(r)

n d2(S(α,j)un, S(α,r)un)

≤ d2(p, un)−
m−1∑
j=1

α(0)
n α(j)

n d2(T(β,m)un, S(α,j)un)

− α(0)
n α(m)

n d2(T(β,m)un, S(α,m)yn)

−
m−1∑
j=1

α(m)
n α(j)

n d2(S(α,m)yn, S(α,j)un)

−
m−1∑

j,r=1,j ̸=r

α(j)
n α(r)

n d2(S(α,j)un, S(α,r)un),(3.30)

which implies by (3.13) and (3.21) that

m−1∑
j=1

α(0)
n α(j)

n d2(T(β,m)un, S(α,j)un) + α(0)
n α(m)

n d2(T(β,m)un, S(α,m)yn)

≤ d2(p, un)− d2(p, xn+1)

→ 0 as n → ∞.(3.31)

This together with condition C3, implies that

lim
n→∞

d(T(β,m)un, S(α,j)un) = 0, j = 1, 2, . . . ,m− 1(3.32)

and

lim
n→∞

d(T(β,m)un, S(α,m)yn) = 0.(3.33)

By (3.28), (3.32) and triangle inequality, we obtain

lim
n→∞

d(un, S(α,j)un) = 0, j = 1, 2, . . . ,m− 1.(3.34)
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Furthermore,

d(yn, S(α,m)yn) ≤ d(yn, un) + d(un, T(β,m)un) + d(T(β,m)un, S(α,m)yn),

which implies by (3.28), (3.29) and (3.33) that

lim
n→∞

d(yn, S(α,m)yn) = 0.(3.35)

Moreover, as {xn} is bounded and X is a Hadamard space so by Lemma 2.5,
there exists a subsequence {xnk

} of {xn} such that ∆- lim
k→∞

xnk
= z ∈ C. It

follows from (3.21) and (3.29) that there exist subsequences {unk
} of {un} and

{ynk
} of {yn} such that ∆- lim

k→∞
unk

= z = ∆- lim
k→∞

ynk
. Since T(β,j) and S(α,j)

are ∆-demiclosed, it follows from (3.28), (3.34), (3.35) and Lemma 3.3 that
z ∈

(
∩m
j=1F (T(β,j)

)
∩
(
∩m
j=1F (S(β,i))

)
=
(
∩m
j=1F (Tj)

)
∩
(
∩m
j=1F (Sj)

)
. Also,

since Jλ(i) is nonexpansive for each i = 1, 2, . . . , N , we obtain by (3.20) and
Lemma 2.7 that z ∈ ∩N

i=1F (Jλ(i)) =
(
∩N
i=1argminy∈X fi(y)

)
. Hence z ∈ Γ.

Furthermore, for arbitrary u ∈ X, we have by Lemma 2.6 that

lim sup
n→∞

⟨−→zu,−−→zxn⟩ ≤ 0,(3.36)

which implies by condition C1 that

lim sup
n→∞

(
tnd

2(z, u) + 2(1− tn)⟨−→zu,−−→zxn⟩
)
≤ 0.(3.37)

We now show that {xn} converges strongly to z. By (3.10) and Lemma 2.3(ii)
(iii), we obtain

d2(z, xn+1) ≤ d2(z, zn)

≤ (1− tn)
2d2(z, xn) + t2nd

2(z, u) + 2tn(1− tn)⟨−→zu,−−→zxn⟩
≤ (1− tn)d

2(z, xn) + tn
(
tnd

2(z, u) + 2(1− tn)⟨−→zu,−−→zxn⟩
)
.(3.38)

Hence, by (3.37) and Lemma 2.9, we conclude that {xn} converges strongly to
z.
Case 2: Suppose that {d2(p, xn)} is monotonically non-decreasing. Then,
there exists a subsequence {d2(p, xni

)} of {d2(p, xn)} such that d2(p, xni
) <

d2(p, xni+1) for all i ∈ N. Thus, by Lemma 2.10, there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞, and

d2(p, xmk
) ≤ d2(p, xmk+1) and d2(p, xk) ≤ d2(p, xmk+1) ∀k ∈ N.(3.39)

Thus, by (3.10), (3.39) and Lemma 2.3, we obtain

0 ≤ lim
k→∞

(
d2(p, xmk+1)− d2(p, xmk

)
)

≤ lim sup
n→∞

(
d2(p, xn+1)− d2(p, xn)

)
≤ lim sup

n→∞

(
d2(p, zn)− d2(p, xn)

)
≤ lim sup

n→∞

(
(1− tn)d

2(p, xn) + tnd
2(p, u)− d2(p, xn)

)
= lim sup

n→∞

[
tn
(
d2(p, u)− d2(p, xn)

)]
= 0,
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which implies that

lim
k→∞

(
d2(p, xmk+1)− d2(p, xmk

)
)
= 0.(3.40)

Following the arguments as in Case 1, we can show that

lim
k→∞

(
tmk

d2(z, u) + 2(1− tmk
)⟨−→zu,−−−→zxmk

⟩
)
≤ 0.(3.41)

Also, by (3.38) we have

d2(z, xmk+1) ≤ (1−tmk
)d2(z, xmk

)+tmk

(
tmk

d2(z, u) + 2(1− tmk
)⟨−→zu,−−−→zxmk

⟩
)
.

Since d2(z, xmk
) ≤ d2(z, xmk+1), we obtain

d2(z, xmk
) ≤

(
tmk

d2(z, u) + 2(1− tmk
)⟨−→zu,−−−→zxmk

⟩
)
.

Thus, by (3.41) we get

lim
k→∞

d2(z, xmk
) = 0.(3.42)

It then follows from (3.39), (3.40) and (3.42) that lim
k→∞

d2(z, xk) = 0. Therefore,

we conclude by Case 1 that {xn} converges to z ∈ Γ.

By setting N = 2 = m in Theorem 3.4, we obtain the following result which
extends Theorems 3.1 and 3.2 in [11] and Theorem 3.1 in [9].

Corollary 3.5. Let C be a closed and convex subset of a Hadamard space
X and hi : X → (−∞,∞], i = 1, 2 be a finite family of proper convex and
lower semi-continuous mappings. For each j = 1, 2, let Tj : C → C be a finite
family of (fj , gj)-generalized kj-strictly pseudononspreading mappings with kj ∈
[0, 1), where fj , gj : C → [0, γ], γ < 1 and 0 < fj(x) + gj(x) ≤ 1 for all
x ∈ C, and Sj : C → X be a finite family of (f ′

j , g
′
j)-generalized k′j-strictly

pseudononspreading mappings with k′j ∈ [0, 1), where f ′
j , g

′
j : C → [0, γ′], γ′ < 1

and 0 < f ′
j(x) + g′j(x) ≤ 1 for all x ∈ C. Suppose that Γ :=

(
∩2
j=1F (Tj)

)
∩(

∩2
j=1F (Sj)

)
∩
(
∩2
i=1argminy∈X hi(y)

)
̸= ∅. Let u, x1 ∈ X be arbitrary and the

sequence {xn} be generated by
zn = (1− tn)xn ⊕ tnu,

un = PC(Jλ(2)
n

◦ J
λ
(1)
n
(zn)),

yn = β
(0)
n un ⊕ β

(1)
n T(β,1)un ⊕ β

(2)
n T(β,2)un,

xn+1 = α
(0)
n T(β,2)un ⊕ α

(1)
n S(α,1)un ⊕ α

(2)
n S(α,2)yn, n ≥ 1,

(3.43)

where T(β,j)x = βx ⊕ (1 − β)Tjx and S(α,j)x = αx ⊕ (1 − α)Sjx, j = 1, 2,

for all x ∈ C such that T(β,j) and S(β,j) are ∆-demiclosed with
kj

fj(p)
≤ β < 1,

fj(p) ̸= 0 and
k′
j

f ′
j(p)

≤ α < 1, f ′
j(p) ̸= 0 respectively, for each j = 1, 2 and

for each p ∈
(
∩2
j=1F (Tj)

)
∩
(
∩2
j=1F (Sj)

)
, {tn}, {λ(i)

n }, {β(j)
n } and {α(j)

n } are
sequences in (0, 1) satisfying the following conditions:
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C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ α
(j)
n , β

(j)
n ≤ b < 1, j = 0, 1, 2 such that

∑2
j=0 α

(j)
n = 1 and∑2

j=0 β
(j)
n = 1 for all n ≥ 1,

C4: {λ(i)
n } is a sequence such that λ

(i)
n > λ(i) for all n ≥ 1, i = 1, 2 and some

λ(i) > 0.

Then, {xn} converges strongly to an element of Γ.

In view of Remark 1.1, we obtain the following corollaries which extend and
improve the main results of Osilike and Isiogugu [37], Bačák [7] and Bačák [6].

Corollary 3.6. Let C be a closed and convex subset of a Hadamard space X
and hi : X → (−∞,∞], i = 1, 2, . . . , N be a finite family of proper convex and
lower semi-continuous mappings. For each j = 1, 2, . . . ,m, let Tj : C → C
be a finite family of (fj , gj)-generalized nonspreading mappings, where fj , gj :
C → [0, γ], γ < 1, 0 < fj(x) + gj(x) ≤ 1 for all x ∈ C, and Sj : C → X
be a finite family of (f ′

j , g
′
j)-generalized nonspreading mappings, where f ′

j , g
′
j :

C → [0, γ′], γ′ < 1, 0 < f ′
j(x) + g′j(x) ≤ 1 for all x ∈ C. Suppose that

Γ :=
(
∩m
j=1F (Tj)

)
∩
(
∩m
j=1F (Sj)

)
∩
(
∩N
i=1argminy∈X hi(y)

)
̸= ∅. Let u, x1 ∈ X

be arbitrary and the sequence {xn} be generated by

zn = (1− tn)xn ⊕ tnu,

un = PC(Jλ(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
(zn)),

yn = β
(0)
n un ⊕ β

(1)
n T1un ⊕ β

(2)
n T2un ⊕ . . .

⊕β
(m)
n Tmun,

xn+1 = α
(0)
n Tmun ⊕ α

(1)
n S1un ⊕ α

(2)
n S2un ⊕ . . .

⊕α
(m)
n Smyn, n ≥ 1,

(3.44)

where {tn}, {λ(i)
n }, {β(j)

n } and {α(j)
n } are sequences in (0, 1) satisfying the fol-

lowing conditions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ α
(j)
n , β

(j)
n ≤ b < 1, j = 0, 1, 2, . . . ,m such that

∑m
j=0 α

(j)
n = 1

and
∑m

j=0 β
(j)
n = 1 for all n ≥ 1,

C4: {λ(i)
n } is a sequence such that λ

(i)
n > λ(i) for all n ≥ 1, i = 1, 2, . . . , N

and some λ(i) > 0.

Then, {xn} converges strongly to an element of Γ.
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Corollary 3.7. Let C be a closed and convex subset of a Hadamard space X
and hi : X → (−∞,∞], i = 1, 2, . . . , N be a finite family of proper convex and
lower semi-continuous mappings. For each j = 1, 2, . . . ,m, let Tj : C → C
and Sj : C → X be finite family of kj-strictly pseudononspreading mappings
with kj ∈ [0, 1) and finite family of k′j-strictly pseudononspreading mappings

with kj ∈ [0, 1) respectively. Suppose that Γ :=
(
∩m
j=1F (Tj)

)
∩
(
∩m
j=1F (Sj)

)
∩(

∩N
i=1argminy∈X hi(y)

)
̸= ∅. Let u, x1 ∈ X be arbitrary and the sequence {xn}

be generated by

zn = (1− tn)xn ⊕ tnu,

un = PC(Jλ(N)
n

◦ J
λ
(N−1)
n

◦ · · · ◦ J
λ
(2)
n

◦ J
λ
(1)
n
(zn)),

yn = β
(0)
n un ⊕ β

(1)
n T(β,1)un ⊕ β

(2)
n T(β,2)un ⊕ . . .

⊕β
(m)
n T(β,m)un,

xn+1 = α
(0)
n T(β,m)un ⊕ α

(1)
n S(α,1)un ⊕ α

(2)
n S(α,2)un ⊕ . . .

⊕α
(m)
n S(β,m)yn, n ≥ 1,

(3.45)

where T(β,j)x = βx⊕(1−β)Tjx and S(α,j)x = αx⊕(1−α)Sjx, j = 1, 2, . . . ,m,
for all x ∈ C such that kj ≤ β < 1 and k′j ≤ α < 1. For each i, j =

0, 1, 2, . . . ,m, {tn}, {λ(i)
n }, {β(i)

n } and {α(i)
n } are sequences in (0, 1) satisfying

the following conditions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ α
(j)
n , β

(j)
n ≤ b < 1 such that

∑m
j=0 α

(j)
n = 1 and

∑m
j=0 β

(j)
n = 1

for all n ≥ 1,

C4: {λ(i)
n } is a sequence such that λ

(i)
n > λ(i) for all n ≥ 1, i = 1, 2, . . . , N

and some λ(i) > 0.

Then, {xn} converges strongly to an element of Γ.

4 Numerical Example

We give numerical example to illustrate Theorem 3.4. Let X = R, endowed
with the usual metric and C = [0, 100]. Then,

PC(x) =


0, if x < 0,

x, if x ∈ [0, 100],

100, if x > 100

is a metric projection onto C. For m = 1, we define S : C → R by

Sx =

{
−3x, if x ∈ [0, 1],
1
x , if x ∈ (1, 100].
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Then, S is an (f ′, g′)-generalized k′-strictly pseudononspreading mapping with
k′ = 9

10 and f ′, g′ : [0, 100] → [0, 10
11 ] defined by

f ′(x) =

{
10
11 , if x ∈ [0, 1],
1
11 , if x ∈ (1, 100]

and g′(x) =

{
1
11 , if x ∈ [0, 1],
10
11 , if x ∈ (1, 100].

Also, we define T : C → C by

Tx =

{
1

x+ 1
10

, if x ∈ [1, 100],

0, if x ∈ [0, 1).

Then, T is an (f, g)-generalized k-strictly pseudocontractive mapping with k =
0 and f, g : [0, 100] → [0, 9

10 ] defined by

f(x) =

{
0, if x ∈ [1, 100],
9
10 , if x ∈ [0, 1)

and g(x) =

{
1

(x+ 1
10 )

2 , if x ∈ [1, 100],

0, if x ∈ [0, 1).

Clearly, F (T ) ∩ F (S) = {0}. Thus, we can choose α = k′

f ′(0) = 99
100 and β = 0.

Then, Sαx = 99
100x+

(
1− 99

100

)
Sx and Tβx = Tx.

Let N = 2. Then for i = 1, 2, we define h1, h2 : R → (−∞,∞] by h1(x) =
1
2 |B1(x)− b1|2 and h2(x) =

1
2 |B2(x)− b2|2, where B1(x) = 2x, B2(x) = 5x and

b1 = b2 = 0. Since Bi is a continuous and linear mapping, so for each i = 1, 2,
hi is a proper convex and lower semi-continuous mapping (see [28]). Thus, for
λn = 1, we have that (see [28])

J1(i)(x) = Proxhix = argmin
y∈C

(
hi(y) +

1

2
|y − x|2

)
= (I +BT

i Bi)
−1(x+BT

i bi).

Take tn = 1
4n+3 , α

(0)
n = n

3n+5 , α
(1)
n = 2n+5

3n+5 , β
(0)
n = n

2n+1 and β
(1)
n = n+1

2n+1 .
Now, conditions C1-C4 are satisfied.
Hence, for u, x1 ∈ R, our Algorithm (3.9) becomes:

zn = (1− tn)xn + tnu,

un = PC (J1(2)(J1(1)(zn))) ,

yn = β
(0)
n un + β

(1)
n Tβun,

xn+1 = α
(0)
n Tβun + α

(1)
n Sαyn, n ≥ 1.

(4.1)

Case I: Take x1 = 1 and u = 0.1.
Case II: Take x1 = 0.5 and u = 0.1.
Case III: Take x1 = 0.5 and u = 2.
The following table shows results of our numerical experiment based on MAT-
LAB version R2016a software.
Declaration
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Iteration 

Numbers 

Errors for Case I  

u=0.1 

Errors for Case II 

u=0.1 

Errors for Case III 

u=2 

1 1.0000 0.5000 0.5000 

2 0.7560                                   0.3760 0.3000 

3 0.1715 0.0857 0.0858 

4 0.0485 0.0246 0.0367 

5 0.0149 0.0077 0.0192 

6 0.0049 0.0027 0.0116 

7 0.0017 0.0010 0.0077 

8 0.0007 0.0005 0.0055 

9 0.0003 0.0003 0.0041 

10 0.0002 0.0002 0.0032 

11 0.0001 0.0001 0.0026 

12 0.0001 0.0001 0.0021 

13 0.0001 0.0001 0.0018 

14 0.0001 0.0001 0.0015 

15 0.0001 0.0001 0.0013 

 

TABLE 1.  Showing numerical results for Case I, Case II and  Case III. 
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Figure 1: Errors vs number of iterations for Case I, Case II and Case III.
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