A remark on Pixley-Roy hyperspaces

Luong Quoc Tuyen¹ and Ong Van Tuyen²³

Abstract. In this paper, we study the relation between a space X satisfying certain generalized metric properties and the Pixley-Roy hyperspace $\operatorname{PR}[X]$ over X satisfying the same properties. We prove that a regular space X is a countable stric \mathfrak{B}_0 -space if and only if $\operatorname{PR}_2[X]$ is a stric \mathfrak{B}_0 -space. However, there exists a countable stric \mathfrak{B}_0 -space X such that $\operatorname{PR}_n[X]$ with $n \geq 3$ and $\operatorname{PR}[X]$ are not stric \mathfrak{B}_0 -spaces. Moreover, we show that $\operatorname{PR}[X]$ is a compact space if and only if X is finite, and there exists a compact subset K of a space X such that $[\{x\}, K]$ with $x \in K$ is not a compact subset of $\operatorname{PR}[X]$. On the other hand, X is a P-space if and only if so is $\operatorname{PR}[X]$. Finally, we prove that if $\operatorname{PR}[X]$ of a regular space X is an r-space, then X is also an r-space.

AMS Mathematics Subject Classification (2010): 54B20; 54D20; 54G10 Key words and phrases: Pixley-Roy; hyperspace; stric \mathfrak{B}_0 -space; compact space; *r*-space; *P*-space

1. Introduction

The generalized metric properties on Pixley-Roy hyperspaces have been studied by many authors ([2], [13], [5], [7], [8], [9], [10], [11], [12], for example). They considered several generalized metric properties and studied the relation between a space X satisfying such property and its Pixley-Roy hyperspaces satisfying the same property.

In this paper, we study concepts such as stric \mathfrak{B}_0 -space, *P*-space, *r*-space and compactness on Pixley-Roy hyperspaces. We obtain some new results about Pixley-Roy hyperspaces.

Throughout this paper, all spaces are assumed to be at least T_1 , \mathbb{N} denotes the set of all positive integers, the first infinite ordinal denoted by ω .

2. Definitions

The *Pixley-Roy hyperspace* PR[X] over a space X, defined by C. Pixley and P. Roy in [9], is the set of all non-empty finite subsets of X with the topology generated by the sets of the form

¹Department of Mathematics, Da Nang University of Education, 459 Ton Duc Thang Street, Da Nang City, Vietnam, e-mail: tuyendhdn@gmail.com, ORCID iD: orcid.org/0000-0002-4330-0746

²Hoa Vang high school, 101 Ong Ich Duong Street, Da Nang City, Vietnam, e-mail: tuyenvan612dn@gmail.com, ORCID iD: orcid.org/0000-0002-0232-2092

³Corresponding author

$$[F,V] = \{ G \in \mathsf{PR}[X] : F \subset G \subset V \},\$$

where $F \in PR[X]$ and V is an open subset in X containing F. It is known that PR[X] is always zero-dimensional, completely regular (see [13]).

For each $n \in \mathbb{N}$, let $\operatorname{PR}_n[X] = \{F \in \operatorname{PR}[X] : |F| \le n\}$.

Remark 2.1 ([12], p. 305). For each $n \in \mathbb{N}$, $PR_n[X]$ is a closed subspace of PR[X] and, in particular, $PR_1[X]$ is a closed discrete subspace of PR[X].

Remark 2.2 ([5], Remark 1.2). Every $PR_m[X]$ is a closed subspace of $PR_n[X]$ for each $m, n \in \mathbb{N}, m < n$.

For each $F \in PR[X]$ and $A \subset X$, denote

$$[F, A] = \{ H \in \mathsf{PR}[X] : F \subset H \subset A \}.$$

Definition 2.3. Let \mathcal{P} be a family of subsets of a space X.

- 1. \mathcal{P} is called *point-countable* [3], if the family $\{P \in \mathcal{P} : x \in P\}$ is countable for each $x \in X$.
- 2. \mathcal{P} is an *sp-network* [6] for X, if for each $x \in U \cap \overline{A}$ with U open and A subset in X, there is a set $P \in \mathcal{P}$ such that $x \in P \subset U$ and $x \in \overline{P \cap A}$.
- **Definition 2.4** ([3]). 1. A space X is called a k-space if X is a Hausdorff space and X is an image of a locally compact space under a quotient mapping.
 - 2. A space X is called a *sequential space* if a set $A \subset X$ is closed if and only if together with any sequence it contains all its limits.
 - 3. A space X is called a *Fréchet-Urysohn space* if for each $A \subset X$ and each $x \in \overline{A}$, there is a sequence in A converging to the point x in X.

Remark 2.5 ([3]). 1. Every Fréchet-Urysohn space is a sequential space.

2. Every sequential Hausdorff space is a k-space.

Definition 2.6 ([6]). Let

$$X = \{\infty\} \cup \{x_n : n \in \mathbb{N}\} \cup \{x_n(m) : m, n \in \mathbb{N}\},\$$

where every $x_n, x_n(m)$ and ∞ are different from each other. The set X endowed with the following topology is called the Arens space and denoted briefly as S_2 : each $x_n(m)$ is isolated; a basic neighborhood of x_n has the form $\{x_n\} \cup$ $\{x_n(m) : m > k\}$ for some $k \in \mathbb{N}$; a basic neighborhood of ∞ has the form $\{\infty\} \cup (\bigcup\{V_n : n \ge k\})$ for some $k \in \mathbb{N}$, where each V_n is a neighborhood of x_n .

Definition 2.7 ([6]). A topological space X is called the *sequential fan*, which is denoted briefly as S_{ω} if X is the quotient space by identifying all the limit points of ω many non-trivial convergent sequences.

Definition 2.8. Let X be a space.

- (1) X is said to be a *stric* \mathfrak{B}_0 -space [6], if X is regular and has a countable *sp*-network.
- (2) X is called a *P*-space [1], if every G_{δ} -set in X is open.

Definition 2.9 ([4]). Let X be a regular space. A point x of X is an r-point if it has a sequence $\{U_m : m \in \mathbb{N}\}$ of neighborhoods of x such that if $x_m \in U_m$, then $\{x_m : m \in \mathbb{N}\}$ is contained in a compact subset of X. The space X is an *r*-space if all of its points are r-points.

3. Main results

Lemma 3.1 ([6], Theorem 4.11). A regular space has a countable sp-network if and only if it is separable and has a point-countable sp-network.

Theorem 3.2. Let X be a regular space. Then X is a countable stric \mathfrak{B}_0 -space if and only if $PR_2[X]$ is a stric \mathfrak{B}_0 -space.

Proof. Necessity. Let X be a countable stric \mathfrak{B}_0 -space. Then X is regular and has a countable *sp*-network. By Lemma 3.1, X is separable and has a point-countable *sp*-network. It follows from [5, Theorem 2.11] that $PR_2[X]$ has a point-countable *sp*-network. On the other hand, because X is countable, $PR_2[X]$ is countable. This implies that $PR_2[X]$ is separable. Hence, $PR_2[X]$ is a stric \mathfrak{B}_0 -space by Lemma 3.1.

Sufficiency. Assume that $PR_2[X]$ is a stric \mathfrak{B}_0 -space. Then $PR_2[X]$ has a countable *sp*-network. By Lemma 3.1, $PR_2[X]$ is separable. Similar to the proof of [5, Theorem 2.16], we claim that X has a countable *sp*-network. Moreover, since X is regular, X is a stric \mathfrak{B}_0 -space. On the other hand, it is known that if X is uncountable, then $PR_2[X]$ is not separable (see [11]). This is a contradiction. Therefore, X is countable.

Corollary 3.3. Let X be a space.

- 1. If X is uncountable, then $PR_2[X]$ is not a stric \mathfrak{B}_0 -space.
- 2. If PR[X] is a stric \mathfrak{B}_0 -space, then X is a countable stric \mathfrak{B}_0 -space.

Example 3.4. There exists a countable stric \mathfrak{B}_0 -space X such that $\mathsf{PR}_n[X]$ with $n \geq 3$ and $\mathsf{PR}[X]$ are not stric \mathfrak{B}_0 -spaces.

Proof. It follows from [5, Example 2.13] that the sequential fan S_{ω} is a countable regular space with a countable *sp*-network but $\operatorname{PR}_n[X]$ with $n \geq 3$ and $\operatorname{PR}[X]$ do not have point-countable *sp*-networks. Thus, S_{ω} is a countable stric \mathfrak{B}_0 -space but $\operatorname{PR}_n[X]$ with $n \geq 3$ and $\operatorname{PR}[X]$ are not stric \mathfrak{B}_0 -spaces. \Box

Remark 3.5. Let X be a space. By Remark 2.1, PR[X] is a compact space if and only if X is finite.

Example 3.6. There exists a compact subset K of a space X such that $[\{x\}, K]$ with $x \in K$ is not a compact subset of PR[X].

Proof. We consider the Arens space

$$S_2 = \{\infty\} \cup \{x_n : n \in \mathbb{N}\} \cup \{x_n(m) : m, n \in \mathbb{N}\}.$$

Put $L_n = \{x_n(m) : m \in \mathbb{N}\}$ for each $n \in \mathbb{N}$ and $K = \{\infty\} \cup \{x_1\} \cup L_1$. Then observe that K is a compact subset of X. However, $[\{\infty\}, K]$ is not a compact subset of $\operatorname{PR}[S_2]$. Indeed, we have

$$[\{\infty\}, K] \cap \mathsf{PR}_2[S_2] = \Big\{\{\infty\}, \{\infty, x_1\}\Big\} \cup \Big\{\{\infty, x_1(m)\} : m \in \mathbb{N}\Big\}.$$

Put $M = \bigcup_{n \ge 2} (L_n \cup \{x_n\})$. Since $\{\infty\} \cup M$ and S_2 are open subsets of S_2 , we also that

claim that

$$\begin{split} \left\{ \left[\{\infty\}, \{\infty\} \cup M \right] \cap \mathrm{PR}_2[S_2] \right\} \cup \left\{ \left[\{\infty, x_1\}, S_2 \right] \cap \mathrm{PR}_2[S_2] \right\} \\ \cup \left\{ \left[\{\infty, x_1(m)\}, S_2 \right] \cap \mathrm{PR}_2[S_2] : m \in \mathbb{N} \right\} \end{split}$$

is an open cover of $[\{\infty\}, K] \cap \operatorname{PR}_2[S_2]$ in $\operatorname{PR}_2[S_2]$ without any finite subcover. This implies that $[\{\infty\}, K] \cap \operatorname{PR}_2[S_2]$ is not a compact subset of $\operatorname{PR}_2[S_2]$. Since $\operatorname{PR}_2[S_2]$ is closed in $\operatorname{PR}[S_2]$ by Remark 2.1, we conclude that $[\{\infty\}, K]$ is not a compact subset of $\operatorname{PR}[S_2]$.

Theorem 3.7. Let X be a space. Then X is a P-space if and only if so is PR[X].

Proof. Necessity. Let X be a P-space and \mathcal{U} be a G_{δ} -set in $\operatorname{PR}[X]$. Then there exists a sequence $\{\mathcal{U}_m : m \in \mathbb{N}\}$ consisting of open subsets of $\operatorname{PR}[X]$ such that $\mathcal{U} = \bigcap_{m \in \mathbb{N}} \mathcal{U}_m$. We prove that \mathcal{U} is open in $\operatorname{PR}[X]$. In fact, let $F \in \mathcal{U}$. Then $F \in \mathcal{U}_m$ for each $m \in \mathbb{N}$. For each $m \in \mathbb{N}$, since \mathcal{U}_m is open in $\operatorname{PR}[X]$, there is an open set \mathcal{U}_m in X satisfying $F \in [F, \mathcal{U}_m] \subset \mathcal{U}_m$. This implies that

$$F \in [F, \bigcap_{m \in \mathbb{N}} U_m] = \bigcap_{m \in \mathbb{N}} [F, U_m] \subset \bigcap_{m \in \mathbb{N}} U_m = \mathcal{U}.$$

Since X is a P-space, $\bigcap_{m \in \mathbb{N}} U_m$ is open in X. It shows that $[F, \bigcap_{m \in \mathbb{N}} U_m]$ is open in PR[X]. Therefore, \mathcal{U} is open in PR[X].

Sufficiency. Assume that PR[X] is a *P*-space and *U* is a G_{δ} -set in *X*. Then there exists a sequence $\{U_m : m \in \mathbb{N}\}$ consisting of open subsets of *X* such that $U = \bigcap_{m \in \mathbb{N}} U_m$. We will prove that *U* is open in *X*. Given a point $x \in U$. Then we have that

$$\bigcap_{m \in \mathbb{N}} [\{x\}, U_m] = [\{x\}, \bigcap_{m \in \mathbb{N}} U_m] = [\{x\}, U].$$

Since $\operatorname{PR}[X]$ is a *P*-space and $[\{x\}, U_m]$ is open in $\operatorname{PR}[X]$ for each $m \in \mathbb{N}$, $\bigcap_{m \in \mathbb{N}}[\{x\}, U_m]$ is open in $\operatorname{PR}[X]$. It follows from [5, Lemma 2.1] that $\bigcup(\bigcap_{m \in \mathbb{N}}[\{x\}, U_m])$ is open in *X*. This implies that

$$\bigcup(\bigcap_{m\in\mathbb{N}}[\{x\},U_m])=\bigcup[\{x\},U]=U.$$

Thus, U is open in X. This shows that X is a P-space.

Lemma 3.8. Every closed subspace of an r-space is an r-space.

Proof. Let Y be a closed subspace of an r-space X and $x \in Y$. Then since X is an r-space, there exists a sequence $\{U_m : m \in \mathbb{N}\}$ of open neighborhoods of x in X such that if $x_m \in U_m$ for each $m \in \mathbb{N}$, then $\{x_m : m \in \mathbb{N}\}$ is contained in a compact subset of X. For each $m \in \mathbb{N}$, put $V_m = U_m \cap Y$, then $\{V_m : m \in \mathbb{N}\}$ is a sequence of open neighborhoods of x in Y. Now, for each $m \in \mathbb{N}$, take $y_m \in V_m$, then $y_m \in U_m$. This implies that there is a compact subset K of X satisfying $\{y_m : m \in \mathbb{N}\} \subset K$. Put $K_1 = K \cap Y$. Then since Y is closed, K_1 is a compact subset of Y which contains $\{y_m : m \in \mathbb{N}\}$. Therefore, x is an r-point in Y, and Y is an r-space. \Box

Theorem 3.9. Let X be a regular space. If PR[X] is an r-space, then X is an r-space.

Proof. Assume that $\operatorname{PR}[X]$ is an r-space and $x \in X$. Then $\{x\} \in \operatorname{PR}[X]$ and there exists a sequence $\{\mathcal{U}_m : m \in \mathbb{N}\}$ of open neighborhoods of $\{x\}$ satisfying the definition of an r-point. For each $m \in \mathbb{N}$, put $U_m = \bigcup \mathcal{U}_m$. By [5, Lemma 2.1], $\{U_m : m \in \mathbb{N}\}$ is a sequence of open neighborhoods of x. For each $m \in \mathbb{N}$, take $x_m \in U_m$. Then there is a set $A_m \in \mathcal{U}_m$ satisfying $x_m \in A_m$. Because $\operatorname{PR}[X]$ is an r-space, $\{A_m : m \in \mathbb{N}\}$ is contained in a compact subset \mathcal{K} of $\operatorname{PR}[X]$. This implies that $x_m \in A_m \subset \bigcup \mathcal{K}$ for each $m \in \mathbb{N}$. It follows from [5, Lemma 2.2] that $\bigcup \mathcal{K}$ is a compact subset of X. Thus, $\{x_m : m \in \mathbb{N}\}$ is contained in a compact subset $\bigcup \mathcal{K}$ of X. It shows that X is an r-space. \Box

Question 1. If X is an r-space, then is $PR_n[X]$ an r-space for some $n \in \mathbb{N}$?

Acknowledgement

The authors would like to express their thanks to refere for his/her helpful comments and valuable suggestions.

References

- ARHANGEL'SKII, A., AND TKACHENKO, M. Topological groups and related structures, vol. 1 of Atlantis Studies in Mathematics. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
- [2] BELLA, A., AND SAKAI, M. Compactifications of a Pixley-Roy hyperspace. *Topology Appl. 196*, part A (2015), 173–182.
- [3] ENGELKING, R. General topology, second ed., vol. 6 of Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author.
- [4] GOOD, C., AND MACÍAS, S. Symmetric products of generalized metric spaces. Topology Appl. 206 (2016), 93–114.

- [5] KOČINAC, L. D. R., TUYEN, L. Q., AND TUYEN, O. V. Some results on Pixley-Roy hyperspaces. J. Math. (2022), Art. ID 5878044, 8.
- [6] LIU, X., LIU, C., AND LIN, S. Strict Pytkeev networks with sensors and their applications in topological groups. *Topology Appl.* 258 (2019), 58–78.
- [7] LUTZER, D. J. Pixley-Roy topology. Topology Proc. 3, 1 (1978), 139–158 (1979).
- [8] MOU, L., LI, P., AND LIN, S. Regular G_{δ} -diagonals and hyperspaces. *Topology* Appl. 301 (2021), Paper No. 107530, 9.
- [9] PIXLEY, C., AND ROY, P. Uncompletable Moore spaces. In Proceedings of the Auburn Topology Conference (Auburn Univ., Auburn, Ala., 1969; dedicated to F. Burton Jones on the occasion of his 60th birthday) (1969), pp. 75–85.
- [10] SAKAI, M. The Fréchet-Urysohn property of Pixley-Roy hyperspaces. *Topology Appl.* 159, 1 (2012), 308–314.
- [11] SAKAI, S. Cardinal functions on Pixley-Roy hyperspaces. Proc. Amer. Math. Soc. 89, 2 (1983), 336–340.
- [12] TANAKA, H. Metrizability of Pixley-Roy hyperspaces. Tsukuba J. Math. 7, 2 (1983), 299–315.
- [13] VAN DOUWEN, E. K. The Pixley-Roy topology on spaces of subsets. In Settheoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976). 1977, pp. 111–134.

Received by the editors February 15, 2022 First published online July 18, 2022