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A remark on Pixley-Roy hyperspaces

Luong Quoc Tuyen] and Ong Van Tuyen[]]|

Abstract. In this paper, we study the relation between a space X
satisfying certain generalized metric properties and the Pixley-Roy hy-
perspace PR[X] over X satisfying the same properties. We prove that a
regular space X is a countable stric Bo-space if and only if PRo[X] is a
stric Bo-space. However, there exists a countable stric Bo-space X such
that PR, [X] with n > 3 and PR[X] are not stric Bo-spaces. Moreover, we
show that PR[X] is a compact space if and only if X is finite, and there
exists a compact subset K of a space X such that [{z}, K] with « € K
is not a compact subset of PR[X]. On the other hand, X is a P-space if
and only if so is PR[X]. Finally, we prove that if PR[X] of a regular space
X is an r-space, then X is also an r-space.
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1. Introduction

The generalized metric properties on Pixley-Roy hyperspaces have been
studied by many authors ([2], [13], [5], [, [8], [9], [10], [11], [12], for example).
They considered several generalized metric properties and studied the relation
between a space X satisfying such property and its Pixley-Roy hyperspaces
satisfying the same property.

In this paper, we study concepts such as stric Bg-space, P-space, r-space
and compactness on Pixley-Roy hyperspaces. We obtain some new results
about Pixley-Roy hyperspaces.

Throughout this paper, all spaces are assumed to be at least T7, N denotes
the set of all positive integers, the first infinite ordinal denoted by w.

2. Definitions

The Pixley-Roy hyperspace PR[X] over a space X, defined by C. Pixley and
P. Roy in [9], is the set of all non-empty finite subsets of X with the topology
generated by the sets of the form
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[F,V]={G ePR[X]: FCGCV},

where F' € PR[X] and V is an open subset in X containing F'. It is known that
PR[X] is always zero-dimensional, completely regular (see [13]).
For each n € N, let PR, [X] = {F € PR[X] : |F| < n}.

Remark 2.1 ([12], p. 305). For each n € N, PR,[X] is a closed subspace of
PR[X] and, in particular, PRy [X] is a closed discrete subspace of PR[X].

Remark 2.2 ([5], Remark 1.2). Every PR,,[X] is a closed subspace of PR, [X]
for each m,n € N, m < n.

For each F' € PR[X] and A C X, denote
[F,Al]={H €PR[X]|: F C HC A}
Definition 2.3. Let P be a family of subsets of a space X.

1. P is called point-countable [3], if the family {P € P : x € P} is countable
for each z € X.

2. P is an sp-network [6] for X, if for each # € U N A with U open and A
subset in X, there is a set P € P such that x € P C U and x € PN A.

Definition 2.4 ([3]). 1. A space X is called a k-space if X is a Hausdorff
space and X is an image of a locally compact space under a quotient

mapping.

2. A space X is called a sequential space if a set A C X is closed if and only
if together with any sequence it contains all its limits.

3. A space X is called a Fréchet-Urysohn space if for each A C X and each
x € A, there is a sequence in A converging to the point z in X.

Remark 2.5 ([3]). 1. Every Fréchet-Urysohn space is a sequential space.
2. Every sequential Hausdorff space is a k-space.
Definition 2.6 ([0]). Let
X ={oo}U{z, :n e N} U{z,(m): m,n € N},

where every z,,, ,(m) and co are different from each other. The set X endowed
with the following topology is called the Arens space and denoted briefly as
Sy: each x,(m) is isolated; a basic neighborhood of z,, has the form {z,} U
{zn(m) : m > k} for some k € N; a basic neighborhood of co has the form
{0} U (U{V,, : n > k}) for some k € N, where each V,, is a neighborhood of

Ty

Definition 2.7 ([6]). A topological space X is called the sequential fan, which
is denoted briefly as S, if X is the quotient space by identifying all the limit
points of w many non-trivial convergent sequences.
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Definition 2.8. Let X be a space.

(1) X is said to be a stric Bo-space [6], if X is regular and has a countable
sp-network.

(2) X is called a P-space [1], if every Gs-set in X is open.

Definition 2.9 ([4]). Let X be a regular space. A point x of X is an r-point
if it has a sequence {U,, : m € N} of neighborhoods of = such that if z,, € U,,,
then {z,, : m € N} is contained in a compact subset of X. The space X is an
r-space if all of its points are r-points.

3. Main results

Lemma 3.1 ([6], Theorem 4.11). A regular space has a countable sp-network
if and only if it is separable and has a point-countable sp-network.

Theorem 3.2. Let X be a reqular space. Then X is a countable stric Bq-space
if and only if PRy[X] is a stric Bo-space.

Proof. Necessity. Let X be a countable stric Bg-space. Then X is regular
and has a countable sp-network. By Lemma [3.I] X is separable and has a
point-countable sp-network. It follows from [5, Theorem 2.11] that PRo[X] has
a point-countable sp-network. On the other hand, because X is countable,
PRy[X] is countable. This implies that PRy[X] is separable. Hence, PRy[X] is a
stric Bg-space by Lemma |3.1

Sufficiency. Assume that PRy[X] is a stric Bg-space. Then PRy[X] has a
countable sp-network. By Lemma PR, [X] is separable. Similar to the proof
of [B, Theorem 2.16], we claim that X has a countable sp-network. Moreover,
since X is regular, X is a stric Bg-space. On the other hand, it is known
that if X is uncountable, then PRy[X] is not separable (see [II]). This is a
contradiction. Therefore, X is countable. O

Corollary 3.3. Let X be a space.
1. If X is uncountable, then PRy[X] is not a stric Bo-space.
2. If PRIX] is a stric Bo-space, then X is a countable stric Bo-space.

Example 3.4. There exists a countable stric Bg-space X such that PR, [X]
with n > 3 and PR[X] are not stric By-spaces.

Proof. Tt follows from [5, Example 2.13] that the sequential fan S, is a count-
able regular space with a countable sp-network but PR,[X] with n > 3 and
PR[X] do not have point-countable sp-networks. Thus, S, is a countable stric
$Bo-space but PR, [X] with n > 3 and PR[X] are not stric By-spaces. O

Remark 3.5. Let X be a space. By Remark PR[X] is a compact space if
and only if X is finite.
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Example 3.6. There exists a compact subset K of a space X such that [{z}, K]
with « € K is not a compact subset of PR[X].

Proof. We consider the Arens space
S = {oo}U{z, :n e N}U{x,(m) : m,n € N}.

Put L, = {z,(m) : m € N} for each n € N and K = {oo} U {z1} U Ly. Then
observe that K is a compact subset of X. However, [{oco}, K] is not a compact
subset of PR[S3]. Indeed, we have

[{co}, K] N PRy[Ss] = {{00}7 {oo,xl}} U {{oqml(m)} m e N}.

Put M = | (L, U{zyn}). Since {co} UM and S are open subsets of Sy, we
n>2
claim that

{[{o0} oo} U M| N PR[S5] } U { [{o0, 21}, 8] NPRa[S2] |
u{ [{oo, z1(m)}, 52} N PRy[Sy] : m € N}

is an open cover of [{co}, K] N PRy[S3] in PRy[S2] without any finite subcover.
This implies that [{co}, K] N PR2[S2] is not a compact subset of PR2[S2]. Since
PRy [S2] is closed in PR[S2] by Remark we conclude that [{oo}, K] is not a
compact subset of PR[S5]. O

Theorem 3.7. Let X be a space. Then X is a P-space if and only if so is
PR[X].

Proof. Necessity. Let X be a P-space and U be a Gs-set in PR[X]. Then there
exists a sequence {U,, : m € N} consisting of open subsets of PR[X] such that

U = () Un. We prove that U is open in PR[X]. In fact, let F € U. Then
meN
F € U, for each m € N. For each m € N, since U, is open in PR[X], there is

an open set Uy, in X satisfying F' € [F,U,,] C Uy,. This implies that

FelF, N Ux= NI[FUxC N Un=U.
meN meN meN
Since X is a P-space, [,y Um is open in X. It shows that [F,(,,cy U] is
open in PR[X]. Therefore, U is open in PR[X].

Sufficiency. Assume that PR[X] is a P-space and U is a Gg-set in X. Then
there exists a sequence {U,, : m € N} consisting of open subsets of X such
that U = (,,cn Um- We will prove that U is open in X. Given a point 2 € U.
Then we have that

N[} Unl = ks ) Ul = Hah UL
meN meN

Since PR[X] is a P-space and [{z},Up] is open in PR[X] for each m € N,

Mmenl{z}, Un] is open in PR[X]. It follows from [5, Lemma 2.1] that (J(,,en[{2}, Unm])

is open in X. This implies that



A remark on Pixley-Roy hyperspaces 187

Ut N Kz}, Unl) = Uiz}, Ul = U.

meN
Thus, U is open in X. This shows that X is a P-space. O

Lemma 3.8. Every closed subspace of an r-space is an r-space.

Proof. Let Y be a closed subspace of an r-space X and x € Y. Then since X is
an r-space, there exists a sequence {U,, : m € N} of open neighborhoods of z
in X such that if z,, € U,, for each m € N, then {x,,, : m € N} is contained in
a compact subset of X. For each m € N, put V,,, = U,,, Y, then {V;,, : m € N}
is a sequence of open neighborhoods of x in Y. Now, for each m € N, take
Ym € Vi, then y,, € U,,. This implies that there is a compact subset K of
X satisfying {y, : m € N} € K. Put K; = KNY. Then since Y is closed,
K, is a compact subset of Y which contains {y,, : m € N}. Therefore, z is an
r-point in Y, and Y is an r-space. O

Theorem 3.9. Let X be a regular space. If PR[X] is an r-space, then X is an
r-space.

Proof. Assume that PR[X] is an r-space and € X. Then {z} € PR[X] and
there exists a sequence {U,, : m € N} of open neighborhoods of {z} satisfying
the definition of an r-point. For each m € N, put U, = JU,,. By [, Lemma
2.1], {U,, : m € N} is a sequence of open neighborhoods of x. For each m € N,
take x,, € U,,. Then there is a set A,, € U,, satisfying x,, € A,,. Because
PR[X] is an r-space, {A,, : m € N} is contained in a compact subset K of PR[X].
This implies that z,, € A,, C |JK for each m € N. Tt follows from [5, Lemma
2.2] that |J K is a compact subset of X. Thus, {z,, : m € N} is contained in a
compact subset | K of X. It shows that X is an r-space. O

Question 1. If X is an r-space, then is PR, [X] an r-space for some n € N ?
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