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Abstract. In the following paper, we deal with a specific type of
joint spectrum, which is the bicommutant joint spectrum. The obtained
results are used to establish a relation between the spectrum of the tensor
product of semigroups on locally convex spaces and the Cartesian product
of its components’ spectrums. In addition, a spectral inclusion theorem
for the tensor product of semigroups is given.
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1. Introduction

In this paper, we will look at the bicommutant joint spectrum of opera-
tor families on locally convex spaces. Based on the obtained results, we will
describe the spectrum of the tensor product of semigroups on locally convex
spaces in terms of the Cartesian product of their component spectra. In ad-
dition, we will prove a spectral inclusion theorem for the tensor product of
semigroups on locally convex spaces.

Many mathematicians have investigated the tensor product of semigroups
on Banach spaces [2, 9]. The authors introduced in [3] the tensor product of
semigroups on locally convex spaces and developed several properties.

Throughout this paper, X and Y will be two locally convex sequentially
complete Hausdorff spaces over the complex field C. Each system of continuous
seminorms ΓX and ΓY inducing the topology of X and Y , respectively, is called
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calibration. We will denote by (X,ΓX), (Y,ΓY ) the space X, Y endowed with
the systems of seminorms ΓX , ΓY , respectively. L (X) will denote the algebra
of the continuous linear operators on a locally convex space X.

According to Moore [13] and Chilana in [4], a linear operator T : X → X
is called universally bounded with respect to a calibration ΓX if there exists
K > 0 such that p (Tx) ≤ Kp (x), for all x ∈ X and p ∈ ΓX . We will
denote by BΓX

(X) the class of universally bounded operators with respect to
a calibration ΓX .

Universally bounded operators acting on a locally convex space have been
studied by Moore, Chilana [13, 4], and Joseph [8]. This class of operators has
also been investigated by Giles, Joseph, Koehler, Sims, and others [7, 12, 14].

Let X⊗̂αY be the complemented tensor product of X and Y , where α
designates the injective or the projective topology on tensor product and Γ =
ΓX⊗̂αΓY =:

{
p⊗̂αq : p ∈ ΓX , q ∈ ΓY

}
the generating family of seminorms for

the topology α.

Let T ∈ L (X) and S ∈ L (Y ). In the following, we will denote by B the
bicommutant of the family

{
T ⊗̂αI, I⊗̂αS

}
.

The bicommutant joint spectrum of the family
{
T ⊗̂αI, I⊗̂αS

}
on Banach

spaces was studied by Dash and Schechter [6, 17].

One of the main problems in the case of locally convex spaces is to describe
the bicommutant joint spectrum σ

(
T ⊗̂αI, I⊗̂αS;B∩BΓ

(
X⊗̂αY

))
of the fam-

ily
{
T ⊗̂αI, I⊗̂αS

}
as the Cartesian product of the spectrum σ (T,BΓ1 (X)),

σ (S,BΓ2 (Y )) of T and S, respectively. Wrobel [20, Corollary 2.4.] treated this
problem, but it turns out that the obtained families Γ1 and Γ2 depend on the
initial calibration Γ and a fixed x1 ⊗ x2 ∈ X ⊗ Y .

Inspired by the results of Wrobel [20, Theorem 2.1., Corollary 2.4.], the
novelty of our paper is to show that the families Γ1 and Γ2 depend only on the
initial calibration Γ. Moreover, based on the obtained results, we will prove
a spectral inclusion theorem for the tensor product of semigroups on locally
convex spaces.

We have organized our paper into three sections.

In Section 2, we give some reminders about the theory of universally bounded
operators.

As a result of Theorems 3.6 and 3.10, in Section 3 we will show that if
Γ = ΓX⊗̂αΓY is the generating family of seminorms of the topology α, then

σ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ (T,BΓX

(X))× σ (S,BΓY
(Y )) .

Finally, in Section 4, we will show that the spectrum of the tensor prod-
uct of semigroups is equal to the Cartesian product of the spectrums of his
components (Theorem 4.4). Also, we will be able to prove a spectral inclusion
theorem for tensor product of semigroups on locally convex spaces (Theorem
4.6).
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2. Preliminaries

A locally convex algebra (A, τ) is an associative linear algebra with a topol-
ogy τ such that (A, τ) is a Hausdorff locally convex topological vector space
and for any element y ∈ A, the maps x 7→ xy and x 7→ yx are continuous [1].

Next, we consider the simple convergence topology in L (X), and we will
denote by Ls (X) the linear space L (X) with this topology. The multiplication
TS S, T ∈ L (X) induces a structure of algebra on L (X), and the algebra
Ls (X) is a locally convex algebra.

Let us recall the following:

Definition 2.1 ([19]). If (X,ΓX) and (Y,ΓY ) are locally convex spaces, then
for all seminorms p ∈ ΓX and q ∈ ΓY the application

mpq : L(X, Y ) → R+,

defined by

mpq(T ) = sup
p(x) ̸=0

q(Tx)

p(x)
,

is called the mixed operator seminorm of T associated with p and q. When
X = Y and p = q we use the notation p̂ = mpp.

Lemma 2.2 ([19]). If (X,ΓX) and (Y,ΓY ) are locally convex spaces and T ∈
L(X,Y ) , then

1. mpq (T ) = sup
p(x)=1

q (Tx) = sup
p(x)≤1

q (Tx) ,∀p ∈ ΓX ,∀q ∈ ΓY .

2. q (Tx) ≤ mpq (T ) p (x) , ∀x ∈ X, whenever mpq (T ) <∞.

3. mpq (T ) = inf {M > 0 : q(Tx) ≤Mp(x), ∀x ∈ X} , whenever mpq(T ) <
∞.

Definition 2.3. Let X be a locally convex space. An operator T ∈ L(X) is
universally bounded with respect to the calibration ΓX if there exists c0 > 0
such that

p(Tx) ≤ c0p(x), (∀x ∈ X, ∀p ∈ ΓX) .

We denote by BΓX
(X) the class of all universally bounded operators with

respect to some calibration ΓX .

Lemma 2.4 ([4]). BΓX
(X) is a unital normed algebra with respect to the norm

∥·∥ΓX
defined by

∥T∥ΓX
= inf{M > 0 : p(Tx) ≤Mp(x), ∀x ∈ X, ∀p ∈ ΓX},

for any T ∈ BΓX
(X).

Corollary 2.5. For each T ∈ BΓX
(X) we have

∥T∥ΓX
= sup{p̂(T ) : p ∈ ΓX}.
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Definition 2.6 ([8]). Two families P1 and P2 of seminorms on a linear space
are called B-equivalent (denoted P1 ∼ P2) provided each seminorm in each
family is a positive multiple of a seminorm in the other.

Proposition 2.7 ([8]). Let ΓX be a calibration on X, then:

1. BΓX
(X) is a subalgebra of L(X).

2.
(
BΓX

(X) , ∥·∥ΓX

)
is a unitary normed algebra.

3. Let Γ a calibration on X, with the property ΓX ∼ Γ, we have BΓX
(X) =

BΓ (X) and ∥·∥ΓX
= ∥·∥Γ.

Proposition 2.8 ([4]). Let ΓX be a calibration on X. Then:

1. If (Tn)n is a Cauchy sequence in
(
BΓX

(X) , ∥·∥ΓX

)
which converges to

an operator T , then we have T ∈ BΓX
(X).

2. The algebra
(
BΓX

(X) , ∥·∥ΓX

)
is complete if X is sequentially complete.

Definition 2.9 ([20]). Let (X,ΓX) be a locally convex space. For T ∈ L (X)
we set

1. Λ (T,ΓX)={λ∈C : ∃c > 0 such that p (λx− Tx)≥cp (x) ,∀x ∈ X ∀p ∈ ΓX} .

2. We define the approximate point spectrum by setting σap (T,ΓX) =
(Λ (T,ΓX))

c
= C \ Λ (T,ΓX).

3. We define the residual spectrum by

σr (T,ΓX) = {λ ∈ Λ (T,ΓX) : Im (λI − T ) is not dense in X} .

4. The point spectrum is defined as follows

σp (T ) = {λ ∈ C : λ is an eigenvalue of T} .

5. We put σ (T ) = {λ ∈ C : λI − T is not invertible in L (X)}.

6. The spectrum of T with respect to BΓX
(X) is defined by

σ (T,BΓX
(X)) = {λ ∈ C : λI − T is not invertible in BΓX

(X)} .

and the resolvent set of T with respect to BΓX
(X) will be the comple-

mentary set of σ (T,BΓX
(X)), i.e

ρ (T,BΓX
(X)) = C \ σ (T,BΓX

(X))

=
{
λ ∈ C : R (λ, T ) = (λI − T )

−1
exists and R (λ, T ) ∈ BΓX

(X)
}
.

It is clear that σp (T ) ⊂ σ (T ) ⊂ σ (T,BΓX
(X)).
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The following Proposition is similar to Theorem 4.6 in [18].

Proposition 2.10. Let T ∈ BΓX
(X), then we have

1. λ ∈ σap (T,ΓX) if and only if there exist a sequence (xn)n ∈ X and
(pn)n ∈ ΓX such that for any n ∈ N, pn (xn) = 1 and pn ((λI − T )xn) →
0 as n→ +∞.

2. The set σap (T,ΓX) is closed.

3. σap (T,ΓX) contains the boundary ∂σ (T,BΓX
(X)) of σ (T,BΓX

(X)).

4. σap (T,ΓX) is a nonempty set.

The following proposition is proven using the same approach as Theorem
4.5 in [18].

Proposition 2.11 ([18]). Let T ∈ L (X), then

σ (T,BΓX
(X)) = σap (T,ΓX) ∪̊σr (T,ΓX) .

Let us recall the following

Let T ∈ L (X), Let X ′ denote the topological dual of X. We define the
transpose of T

T ′ : X ′ → X ′

y′ 7→ T ′ (y′)

by setting for any y′ ∈ X ′ and x ∈ X

T ′ (y′)x = ⟨x, T ′ (y′)⟩ = ⟨T (x) , y′⟩ .

It is clear that for all λ ∈ C, (λI − T )
′
= λI ′ − T ′ where I ′ is the identity map

on X ′.

Lemma 2.12. Let T ∈ L (X) then we have σ (T ′) ⊆ σ (T ).

Proof. Let λ ∈ C \ σ0 (T ), then λI − T is invertible, and for all x′ ∈ X ′ and
x ∈ X we have

⟨x, x′⟩ =
〈
(λI − T )

−1
(λI − T )x, x′

〉
=

〈
(λI − T ) (λI − T )

−1
x, x′

〉
=

〈
x, (λI ′ − T ′)

[
(λI − T )

−1
]′
x′
〉

=

〈
x,

[
(λI − T )

−1
]′
(λI ′ − T ′)x′

〉
,

then (λI ′ − T ′) is invertible and (λI ′ − T ′)
−1

=
[
(λI − T )

−1
]′
. Hence, λ ∈ C\

σ0 (T
′).
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3. The Joint spectrum of tensor product of operators on
locally convex spaces

In the following, we will denote by X⊗Y the algebraic tensor product of X
and Y , there exist two main topologies on X⊗Y , the projective topology which
is denoted by π, and the injective topology which is denoted by ε. Next, α will
denote the injective or the projective topology. We will denote by X ⊗α Y the
tensor product of X and Y equipped with the topology α.

A seminorm r on X ⊗ Y is called a cross-semi-norm provided there exist
continuous seminorms p ∈ ΓX and q ∈ ΓY such that r (x⊗ y) = p (x) q (y) for
every x ⊗ y ∈ X ⊗ Y . The projective and the injective topologies are defined
by the family of cross-semi-norms {p⊗α q : p ∈ ΓX , q ∈ ΓY } where p⊗π q and
p⊗ε q are the canonical cross-semi-norms on X⊗π Y and X⊗ε Y , respectively,
it is well known that for any z ∈ X ⊗α Y we have p ⊗π q (z) ≥ p ⊗ε q (z). In
the following X⊗̂αY will denote the completion of X ⊗α Y . We refer to [3] for
more details about tensor product of locally convex spaces.

Next, we shall assume that the space Ls
(
X⊗̂αY

)
is sequentially complete

[15]. One should remark that a sufficient condition for the space of operators
Ls

(
X⊗̂αY

)
to be sequentially complete is that X⊗̂αY is barreled [16, III,4.6],

[15].
Let us recall the following:

Lemma 3.1. Let X be a locally convex Hausdorff space and M a closed sub-
space of X. Let x0 ∈ X \M , then there exist a seminorm p on X and φ ∈ X ′

such that

1. φ (M) = 0.

2. |φ (x0)| ≠ 0.

3. φ ∈ U0
p , where U

0
p is the polar of Up = {x ∈ X : p (x) ≤ 1}.

Proof. We consider the quotient space X/M . We have M is closed then X/M
is a locally convex Hausdorff space. If ΓX is a family of seminorms defining the
topology of X, we consider p̂ : X/M → R+ defined by p̂ ([x]) = inf

y∈M
p (x+ y),

then the family Γ̄ = {p̂ : p ∈ ΓX} defines the topology of X/M . Let ϕ : X →
X/M be the canonical surjection defined by ϕ (x) = [x] = x +M ; ϕ is linear
and continuous [16].

Let x0 ∈ X \M , then ϕ (x0) ̸= 0, so there exists p̂ ∈ Γ̄ such that p̂ ([x0]) ̸= 0.
Let f0 : C [x0] → C be defined by f0 (λ [x0]) = λp̂ ([x0]), f0 is a linear form
and we have |f0 (λ [x0])| = |λp̂ ([x0])| = |λ| p̂ ([x0]) = p̂ (λ [x0]), therefore f0 is
continuous. Hence, the Hahn Banach extension theorem gives that f0 can be
extended to a continuous linear form f̄ : X/M → C such that f̄|C[x0] = f0 and∣∣f̄ ([x])∣∣ ≤ p̂ ([x]), ∀ [x] ∈ X/M .

Let φ = f̄ ◦ ϕ : X → C; φ is linear and continuous and we have

1. For any x ∈M , φ (x) = f̄ (ϕ (x)) = f̄ (0) = 0, so φ (M) = 0.
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2. |φ (x0)| =
∣∣f̄ (ϕ (x0))∣∣ = ∣∣f̄ ([x0])∣∣ = |f0 ([x0])| = p̂ ([x0]) ̸= 0.

3. If x ∈ Up, then p (x) ≤ 1 and we have

|φ (x)| =
∣∣f̄ ([x])∣∣ ≤ p̂ ([x]) ≤ p (x) ≤ 1,

therefore φ ∈ U0
p .

Definition 3.2 ([21]). For a given n-tuple a = (a1, ..., an) of pairwise commut-
ing operators from L (X), we define

{a}c := {b ∈ L (X) : baj = ajb for 1 ≤ j ≤ n}

and
{a}cc := {b ∈ L (X) : bc = cb for all c ∈ {a}c} .

{a}c and {a}cc are called the commutant of a and the bicommutant of a,
respectively.

It is clear that the bicommutant {a}cc is a commutative subalgebra of L (X).

Definition 3.3 ([20]). Let A denote an algebra with a unit element e over the
complex numbers field C, and letM be a subset of A. For ai ∈ A ( i = 1, .., n)
denote by ρ (a1, ..., an;M) the set of all those (λ1, ..., λn) ∈ Cn such that there
exist bi ∈M ( i = 1, .., n) with

n∑
i=1

bi (λie− ai) = e.

The set ρ (a1, ..., an;M) is called the joint resolvent of (a1, ..., an) with re-
spect to M .

The set σ (a1, ..., an;M) = Cn \ρ (a1, ..., an;M) is called the joint spectrum
of (a1, ..., an) with respect to M .

Next, the spectrum of an element x of A, denoted σ (x,A), is the set of
complex numbers for which λe− x is not invertible in A.

Let us recall the spectral mapping theorem for joint spectra in Banach
algebras.

Theorem 3.4 ([6]). Let A be a commutative unital Banach algebra and let
ai ∈ A ( i = 1, .., n) and let P (z1, ..., zn) be a polynomial in n variables then
we have

P [σ ( a1, ..., an;A)] = σ (P ( a1, ..., an) , A) .

The following proposition is proved with the same method as Proposition
4 in [3].

Proposition 3.5. Let T ∈ L (X) and S ∈ L (Y ), if there exist two calibrations
ΓX and ΓY on X and Y , respectively, such that T ∈ BΓX

(X) and S ∈ BΓY
(Y ),

then T ⊗̂αS ∈ BΓX⊗̂αΓY

(
X⊗̂αY

)
.



196 R. Ameziane Hassani, A. Blali, A. El Amrani, M. El Beldi

The following theorem characterizes the spectrum of operators of the form
T ⊗̂αI with T ∈ L (X) in terms of the spectrum of T ; however, it is not a
straightforward corollary of the previous proposition. It is also crucial to prove
Theorem 3.10.

Theorem 3.6. Let T ∈ L (X), then we have

σ
(
T ⊗̂αI,BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ (T,BΓX

(X)) .

Proof. First of all, we show that σ
(
T ⊗̂αI,BΓX⊗̂αΓY

(
X⊗̂αY

))
⊆σ (T,BΓX

(X)).

Let λ ∈ ρ (T,BΓX
(X)), then λI−T is invertible and (λI − T )

−1 ∈ BΓX
(X),

and we have I ∈ BΓY
(Y ), therefore by Proposition 3.5, (λI − T )

−1 ⊗̂αI ∈
BΓX⊗̂αΓY

(
X⊗̂αY

)
, and we have:(

(λI − T )
−1 ⊗̂αI

) (
λI⊗̂αI − T ⊗̂αI

)
=

(
λI⊗̂αI − T ⊗̂αI

) (
(λI − T )

−1 ⊗̂αI
)

= I⊗̂αI.

Hence, λ ∈ ρ
(
T ⊗̂αI,BΓX⊗̂αΓY

(
X⊗̂αY

))
.

For the reverse inclusion, let λ ∈ σ (T,BΓX
(X)) = σap (T,ΓX) ∪̊σr (T,ΓX),

then there are two cases.
If λ ∈ σap (T,ΓX), then for any ε > 0 there exist x ∈ X and p ∈ ΓX such

that
p ((λI − T )x) < εp (x) .

Let y ∈ Y \ {0} then there exists q ∈ ΓY such that q (y) ̸= 0, so one obtains

p⊗̂αq
((
λI⊗̂αI − T ⊗̂αI

)
(x⊗ y)

)
= p⊗̂αq ((λI ⊗α I − T ⊗α I) (x⊗ y))

= p⊗α q ((λI − T )x⊗α y)
= p ((λI − T )x) q (y)

< εp (x) q (y)

= εp⊗̂αq (x⊗ y) ,

therefore, λ ∈ σap
(
T ⊗̂αI,ΓX⊗̂αΓY

)
.

Now, if λ ∈ σr (T,ΓX) then Im (λI − T ) is not dense in (X,ΓX). By Lemma
3.1, we can find φ ∈ X ′ such that φ (Im (λI − T )) = 0. Then we have, for any
x ∈ X, 0 = ⟨(λI − T )x, φ⟩ = ⟨x, (λI ′ − T ′)φ⟩. Therefore (λI ′ − T ′)φ = 0 ∈
X ′, which is equivalent to T ′φ = λφ, and hence λ ∈ σp (T

′).
Let ψ ∈ Y ′ \ {0} arbitrary, then for all x⊗ y ∈ X ⊗ Y〈

x⊗ y,
(
T ⊗̂αI

)′
φ⊗ ψ

〉
= ⟨Tx⊗ y, φ⊗ ψ⟩ = ⟨Tx, φ⟩ ⟨y, ψ⟩

= ⟨x, T ′φ⟩ ⟨y, ψ⟩ = ⟨x, λφ⟩ ⟨y, ψ⟩
= λ ⟨x, φ⟩ ⟨y, ψ⟩ = λ ⟨x⊗ y, φ⊗ ψ⟩

then by linearity, we get for all z ∈ X ⊗ Y〈
z,
(
T ⊗̂αI

)′
φ⊗ ψ

〉
= λ ⟨z, φ⊗ ψ⟩ .
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Let φ⊗̂αψ be the continuous extension of φ⊗αψ toX⊗̂αY , we have φ⊗̂αψ ∈(
X⊗̂αY

)′
and for all z ∈ X ⊗α Y〈

z,
(
T ⊗̂αI

)′
φ⊗̂αψ

〉
= λ

〈
z, φ⊗̂αψ

〉
.

By density of X ⊗α Y in X⊗̂αY , it follows that for any z ∈ X⊗̂αY〈
z,
(
T ⊗̂αI

)′
φ⊗̂αψ

〉
= λ

〈
z, φ⊗̂αψ

〉
=

〈
z, λφ⊗̂αψ

〉
.

Finally, we have found φ⊗̂αψ ∈
(
X⊗̂αY

)′
such that

(
T ⊗̂αI

)′
φ⊗̂αψ = λφ⊗̂αψ,

therefore λ ∈ σp

((
T ⊗̂αI

)′)
, but we have σp

((
T ⊗̂αI

)′) ⊂ σ
((
T ⊗̂αI

)′) ⊂
σ
(
T ⊗̂αI

)
and σ

(
T ⊗̂αI

)
⊂ σ

(
T ⊗̂αI,BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Hence, λ ∈ σ
(
T ⊗̂αI,BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Lemma 3.7. Let T ∈ L (X) and S ∈ L (Y ), and let B denote the bicommutant
of T ⊗̂αI and I⊗̂αS in the algebra L

(
X⊗̂αY

)
, then we have

σap (T,ΓX)× σap (S,ΓY ) ⊆ σ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Proof. If (λ, µ) ∈ σap (T,ΓX)× σap (S,ΓY ) .

Suppose that (λ, µ) ∈ ρ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
, then there

exist b1, b2 ∈ B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)
such that

(3.1) I⊗̂αI = b1
(
λI⊗̂αI − T ⊗̂αI

)
+ b2

(
µI⊗̂αI − I⊗̂αS

)
.

The fact that b1, b2 ∈ B∩BΓX⊗̂αΓY

(
X⊗̂αY

)
gives that for all p⊗̂αq ∈ ΓX⊗̂αΓY ,

there exist C1, C2 > 0 such that

(3.2)

{
p⊗̂αq (b1z) ≤ C1p⊗̂αq (z)
p⊗̂αq (b2z) ≤ C2p⊗̂αq (z)

, ∀z ∈ X⊗̂αY

Let 0 < ε < [4 (C1 + C2)]
−1

, we have (λ, µ) ∈ σap (T,ΓX)×σap (S,ΓY ) then
there exist (x0, y0) ∈ X × Y and (p0, q0) ∈ ΓX × ΓY such that

(3.3)

{
p0 ((λI − T )x0) < εp0 (x0)
q0 ((µI − S) y0) < εq0 (y0) .
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Then by applying successively (3.1), (3.2) and (3.3), we get

p0 ⊗α q0 (x0 ⊗ y0) = p0 ⊗α q0
(

b1
(
λI⊗̂αI − T ⊗̂αI

)
(x0 ⊗ y0)

+b2
(
µI⊗̂αI − I⊗̂αS

)
(x0 ⊗ y0)

)
≤ p0 ⊗α q0

(
b1

(
λI⊗̂αI − T ⊗̂αI

)
(x0 ⊗ y0)

)
+ p0 ⊗α q0

(
b2

(
µI⊗̂αI − I⊗̂αS

)
(x0 ⊗ y0)

)
≤ C1p0 ⊗α q0 [(λI − T )x0 ⊗ y0]

+ C2p0 ⊗α q0 [x0 ⊗α (µ− S) y0]

= C1p0 [(λI − T )x0] q0 (y0) + C2p0 (x0) q0 [(µ− S) y0]

< C1εp0 (x0) q0 (y0) + C2εp0 (x0) q0 (y0)

= ε (C1 + C2) p0 ⊗α q0 (x0 ⊗ y0)

≤ 4−1p0 ⊗α q0 (x0 ⊗ y0) .

Finally, we have found that there exist x0 ⊗ y0 ∈ X ⊗ Y and p0 ⊗α q0 ∈
ΓX × ΓY such that

p0 ⊗α q0 (x0 ⊗ y0) < 4−1p0 ⊗α q0 (x0 ⊗ y0) ,

and this is a contradiction.

Lemma 3.8. Let T ∈ L (X) and S ∈ L (Y ), and let B denote the bicommutant
of T ⊗̂αI and I⊗̂αS in the algebra L

(
X⊗̂αY

)
, then we have

σr (T,ΓX)× σr (S,ΓY ) ⊆ σ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Proof. If (λ, µ) ∈ σr (T,ΓX)× σr (S,ΓY ) .

Then Im (λI − T ) and Im (µI − S) are not dense in X and Y , respectively.
Then by Lemma 3.1 and with a slight modification, we can find φ ∈ X ′ and
x0 ∈ X such that

(3.4) φ (Im (λI − T )) = 0 and φ (x0) = 1,

and similarly, we find ψ ∈ Y ′ and y0 ∈ Y such that

(3.5) ψ (Im (µI − S)) = 0 and ψ (y0) = 1.

Therefore, because of density we have:

(3.6) φ⊗̂αψ
[(
(λI − T ) ⊗̂αI

) (
X⊗̂αY

)]
= 0

and

(3.7) φ⊗̂αψ
[(
I⊗̂α (µI − S)

) (
X⊗̂αY

)]
= 0.
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Indeed, for z =
n∑
i=1

xi ⊗ yi ∈ X ⊗ Y we have

φ⊗̂αψ
[(
(λI − T ) ⊗̂αI

)
(z)

]
= φ⊗α ψ [((λI − T )⊗α I) (z)]

= φ⊗α ψ

[
n∑
i=1

(λI − T )xi ⊗α yi

]

=

n∑
i=1

φ ((λI − T )xi)ψ (yi) ,

but we have φ (Im (λI − T )) = 0, so for all z ∈ X ⊗ Y

φ⊗̂αψ
[(
(λI − T ) ⊗̂αI

)
(z)

]
= 0,

and by the density of X ⊗ Y in X⊗̂αY we get for all z ∈ X⊗̂αY

φ⊗̂αψ
[(
(λI − T ) ⊗̂αI

)
(z)

]
= 0.

Hence,
φ⊗̂αψ

[(
(λI − T ) ⊗̂αI

) (
X⊗̂αY

)]
= 0

and similarly, we show that

φ⊗̂αψ
[(
I⊗̂α (µI − S)

) (
X⊗̂αY

)]
= 0.

Now, if we suppose that (λ, µ) ∈ ρ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
,

then there exist b1, b2 ∈ B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)
such that

I⊗̂αI = b1
(
λI⊗̂αI − T ⊗̂αI

)
+ b2

(
µI⊗̂αI − I⊗̂αS

)
,

then

x0 ⊗ y0 = b1
(
λI⊗̂αI − T ⊗̂αI

)
(x0 ⊗ y0) + b2

(
µI⊗̂αI − I⊗̂αS

)
(x0 ⊗ y0)

= b1
[
(λI − T ) ⊗̂αI

]
(x0 ⊗ y0) + b2

[
I⊗̂α (µI − S)

]
(x0 ⊗ y0)

= b1 [(λI − T )x0 ⊗ y0] + b2 [x0 ⊗ (µI − S) y0] .

We apply φ⊗̂αψ to both sides of the equality.
For the left side, by using (3.4) and (3.5) we get:

φ⊗̂αψ (x0 ⊗ y0) = φ⊗α ψ (x0 ⊗ y0) = φ (x0)ψ (y0) = 1.

For the right side:
we have (λI − T ) ⊗̂αI and I⊗̂α (µI − S) are in the commutant of{

T ⊗̂αI, I⊗̂αT
}
, and since b1, b2 ∈ B, we have

b1 [(λI − T )x0 ⊗ y0] + b2 [x0 ⊗ (µI − S) y0]

= b1
[
(λI − T ) ⊗̂αI

]
(x0 ⊗ y0) + b2

[
I⊗̂α (µI − S)

]
(x0 ⊗ y0)

=
[
(λI − T ) ⊗̂αI

]
b1 (x0 ⊗ y0) +

[
I⊗̂α (µI − S)

]
b2 (x0 ⊗ y0) .
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Therefore, by using (3.6) and (3.7) we have

φ⊗̂αψ (b1 [(λI − T )x0 ⊗ y0] + b2 [x0 ⊗ (µI − S) y0])

= φ⊗̂αψ
([
(λI − T ) ⊗̂αI

]
b1 (x0 ⊗ y0) +

[
I⊗̂α (µI − S)

]
b2 (x0 ⊗ y0)

)
= φ⊗̂αψ

([
(λI − T ) ⊗̂αI

]
b1 (x0 ⊗ y0)

)
+ φ⊗̂αψ

([
I⊗̂α (µI − S)

]
b2 (x0 ⊗ y0)

)
= 0.

Finally, we get 1 = 0, which is a contradiction.

Lemma 3.9. Let T ∈ L (X) and S ∈ L (Y ), and let B denote the bicommutant
of T ⊗̂αI and I⊗̂αS in the algebra L

(
X⊗̂αY

)
, then we have

σap (T,ΓX)× σr (S,ΓY ) ⊆ σ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
,

and

σr (T,ΓX)× σap (S,ΓY ) ⊆ σ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Proof. We will only treat the first inclusion since the second inclusion is similar
because of symmetry.

Let (λ, µ) ∈ σap (T,ΓX)× σr (S,ΓY ).
Suppose that (λ, µ) ∈ ρ

(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
, then there

exist b1, b2 ∈ B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)
such that

I⊗̂αI = b1
(
λI⊗̂αI − T ⊗̂αI

)
+ b2

(
µI⊗̂αI − I⊗̂αS

)
.

Let ε > 0, we have λ ∈ σap (T,ΓX), then there exist x0 ∈ X and p0 ∈ ΓX
such that

p0 (λx0 − Tx0) < εp0 (x0) ,

by Hahn Banach theorem, there exists φ ∈ (Up0)
0
such that |φ (x0)| = p0 (x0)

and |φ (x)| ≤ p0 (x) for all x ∈ X.
We have µ ∈ σr (S,ΓY ), then Im (µI − S) is not dense in Y . Let y0 ∈

Y \Im (µI − S), by Lemma 3.1 there exists ψ ∈ Y ′ such that ψ (Im (µI − S)) =

0 and |ψ (y0)| = c > 0 and a seminorm q0 ∈ ΓY such that ψ ∈ (Uq0)
0
. Similarly

to (3.7), we have

φ⊗̂αψ
[(
I⊗̂α (µI − S)

) (
X⊗̂αY

)]
= 0.

Thus, we get

p0 (x0) c

= |φ (x0)| |ψ (y0)| = |φ (x0)ψ (y0)| = |φ⊗α ψ (x0 ⊗ y0)| =
∣∣φ⊗̂αψ (x0 ⊗ y0)

∣∣
=

∣∣φ⊗̂αψ (
b1

[
(λI − T ) ⊗̂αI

]
(x0 ⊗ y0)

)
+ φ⊗̂αψ

(
b2

[
I⊗̂α (µI − S)

]
(x0 ⊗ y0)

)∣∣
=

∣∣φ⊗̂αψ (
b1

[
(λI − T ) ⊗̂αI

]
(x0 ⊗ y0)

)
+ φ⊗̂αψ

([
I⊗̂α (µI − S)

]
b2 (x0 ⊗ y0)

)∣∣
=

∣∣φ⊗̂αψ (
b1

[
(λI − T ) ⊗̂αI

]
(x0 ⊗ y0)

)∣∣ ,
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then if α = ε we get

p0 (x0) c =
∣∣φ⊗̂εψ (

b1
[
(λI − T ) ⊗̂αI

]
(x0 ⊗ y0)

)∣∣
=

∣∣φ⊗̂εψ (b1 [(λI − T )x0 ⊗ y0])
∣∣

≤ sup
φ∈U0

p0

ψ∈U0
q0

{∣∣φ⊗̂εψ (b1 [(λI − T )x0 ⊗ y0])
∣∣}

≤ p0⊗̂εq0 (b1 [(λI − T )x0 ⊗ y0])

≤ p0⊗̂πq0 (b1 [(λI − T )x0 ⊗ y0]) .

Therefore, for α = π and α = ε we have

p0 (x0) c ≤ p0⊗̂αq0 (b1 [(λI − T )x0 ⊗ y0])

≤ ∥b1∥ΓX⊗̂αΓY
p0⊗̂αq0 ([(λI − T )x0 ⊗ y0])

≤ ∥b1∥ΓX⊗̂αΓY
p0 ((λI − T )x0) q0 (y0)

< ∥b1∥ΓX⊗̂αΓY
εp0 (x0) q0 (y0) = ∥b1∥ΓX⊗̂αΓY

εp0 (x0) c.

Thus, taking into consideration that c ̸= 0, we have that for all ε > 0 there
exist x0 ∈ X, p0 ∈ ΓX such that

p0 (x0) < ∥b1∥ΓX⊗̂αΓY
εp0 (x0) .

We have ∥b1∥ΓX⊗̂αΓY
̸= 0, if not we obtain p0 (x0) < 0, which is a contradiction

so we can take 0 < ε <
(
2 ∥b1∥ΓX⊗̂αΓY

)−1

. Therefore,

p0 (x0) <
p0 (x0)

2
.

Contradiction.

Theorem 3.10. Let T ∈ L (X) and S ∈ L (Y ), and let B denote the bicom-
mutant of T ⊗̂αI and I⊗̂αS in the algebra L

(
X⊗̂αY

)
, then we have

σ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ

(
T ⊗̂αI;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
× σ

(
I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ (T,BΓX

(X))× σ (T,BΓX
(X)) .

Proof. Let
(λ, µ) ∈ ρ

(
T ⊗̂αI;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
×ρ

(
I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
,

by Theorem 3.6, we have (λ, µ) ∈ ρ (T ;BΓX
(X)) × ρ (S;BΓY

(Y )), then

(λI − T )
−1

exists, but we have

(λI − T )
−1 ⊗̂αI =

(
(λI − T )

−1 ⊗̂αI
) (

(λI − T ) ⊗̂αI
) (

(λI − T ) ⊗̂αI
)−1

=
(
(λI − T ) ⊗̂αI

)−1

=
(
λI⊗̂αI − T ⊗̂αI

)−1
,
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then
(λI − T )

−1 ⊗̂αI ∈ B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)
.

With the same procedure, we get

I⊗̂α (µI − S)
−1 ∈ B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)
.

We can take b1 = (λI − T )
−1 ⊗̂αI and b2 = 0 then

b1
(
λI⊗̂αI − T ⊗̂αI

)
+ b2

(
µI⊗̂αI − I⊗̂αS

)
= I⊗̂αI.

Hence, (λ, µ) ∈ ρ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.

For the inverse, from Theorem 3.6, we have to show that:

σ (T,BΓX
(X))× σ (S,BΓY

(Y )) ⊆ σ
(
T ⊗̂αI, I⊗̂αS;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Let (λ, µ) ∈ σ (T,BΓX
(X))× σ (S,BΓY

(Y )). There are four cases:
1) (λ, µ) ∈ σap (T,ΓX)× σap (S,ΓY ) .
2) (λ, µ) ∈ σr (T,ΓX)× σr (S,ΓY ) .
3) (λ, µ) ∈ σap (T,ΓX)× σr (S,ΓY ) .
4) (λ, µ) ∈ σr (T,ΓX)× σap (S,ΓY ) .
Then the result follows from Lemmas 3.7, 3.8 and 3.9.

Remark 3.11. Let p⊗̂αq ∈ Γ with Γ = ΓX⊗̂αΓY , and let r1 ∈ Γ1 and r2 ∈ Γ2

as defined in [20, Corollary 2.4.]. Let x ∈ X and y ∈ Y , we have r1 (x) =
p⊗̂αq (x⊗ x2) = p (x) q (x2) and similarly r2 (y) = p (x1) q (y).

From [20, Corollary 2.4.] we have x1 ⊗ x2 ̸= 0 then there exist p ∈ ΓX and
q ∈ ΓY such that p (x1) ̸= 0 and q (x2) ̸= 0.

If we add the hypothesis that: ∀p ∈ ΓX , p (x1) ̸= 0 and ∀q ∈ ΓY , q (x2) ̸= 0,
then from Definition 2.6 we have Γ1 ∼ ΓX and Γ2 ∼ ΓY . Therefore from
Proposition 2.7 we get BΓ1

(X) = BΓX
(X) and ∥.∥Γ1

= ∥.∥ΓX
and likewise

BΓ2 (Y ) = BΓY
(Y ) and ∥.∥Γ2

= ∥.∥ΓY
, so under this assumption, we can

deduce our result from the result of Wrobel [20, Corollary 2.4.]. But otherwise,
we cannot deduce the previous result directly.

4. A spectral inclusion theorem for tensor product of
semigroups

Lemma 4.1 ([13, 5]). Let (T (s))s≥0 be a semigroup on X and let ΓX a cali-
bration on X. The semigroup (T (s))s≥0 of linear operators is equicontinuous

if and only if there is a calibration Γ̃X for X such that (T (s))s≥0 ⊂ BΓ̃X
(X).

Remark 4.2 ([5]). The calibration Γ̃X in the previous Lemma is defined by

Γ̃X := {p̃ : p ∈ ΓX}

where for each p ∈ ΓX , p̃ is defined on X by

p̃ (x) := sup
s≥0

p (T (s)x) , x ∈ X.
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p̃ is well defined, is a seminorm and Γ̃X := {p̃ : p ∈ ΓX} is also a system
of continuous seminorms generating the topology of X, with the additional
property that

p̃ (T (s)x) = sup
t≥0

p (T (t)T (s)x) = sup
t≥0

p (T (t+ s)x) ≤ p̃(x) , x ∈ X, s ≥ 0.

Now, let
(
T (s) ⊗̂αS (t)

)
s,t≥0

be an equicontinuous tensor product of semi-

groups on X⊗̂αY . Then (T (s))s≥0 and (S (t))t≥0 are one parameter equicon-
tinuous semigroups on X and Y [3].

Then Lemma 4.1 gives that there exist two calibrations ΓX and ΓY such that
(T (s))s≥0 ⊂ BΓX

(X) and (S (t))t≥0 ⊂ BΓY
(Y ), ie, for all p ∈ ΓX and q ∈ ΓX ,

there exist c1, c2 > 0 such that p (T (s)x) ≤ c1p (x) and q (S (t) y) ≤ c2q (y) for
all x ∈ X , y ∈ Y , s ≥ 0 and t ≥ 0. Then applying the same steps of Theorem
2 in [3], we get the following result.

Theorem 4.3 ([3]). Let
(
T (s) ⊗̂αS (t)

)
s,t≥0

be an equicontinuous tensor prod-

uct of semigroups on X⊗̂αY , then there exist two calibrations ΓX and ΓY on
X and Y , respectively, such that the following are equivalent :

1.
(
T (s) ⊗̂αS (t)

)
s,t≥0

⊂ BΓX⊗̂αΓY

(
X⊗̂αY

)
.

2.
(
T (s) ⊗̂αI

)
s≥0

and
(
I⊗̂αS (t)

)
t≥0

⊂ BΓX⊗̂αΓY

(
X⊗̂αY

)
.

3. (T (s))s≥0 ⊂ BΓX
(X) and (S (t))t≥0 ⊂ BΓY

(Y ) .

Theorem 4.4. Let
(
T (s) ⊗̂αS (t)

)
s,t≥0

be an equicontinuous tensor product of

semigroups on X⊗̂αY , and let B denote the bicommutant of
(
T (s) ⊗̂αI

)
s≥0

and
(
I⊗̂αS (t)

)
t≥0

in the algebra Ls
(
X⊗̂αY

)
, then there exist two calibrations

ΓX and ΓY on X and Y , respectively, such that

σ
(
T (s) ⊗̂αS (t) ,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ (T (s) , BΓX

(X))× σ (S (t) , BΓY
(Y )) .

Proof. From Theorems 3.10 and 4.3, we have that there exist two calibrations
ΓX and ΓY on X and Y , respectively, such that

σ
(
T (s) ⊗̂αI, I⊗̂αS (t) ;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ (T (s) , BΓX

(X))× σ (S (t) , BΓY
(Y ))

and

σ
(
T (s) ⊗̂αI, I⊗̂αS (t) ;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
=σ

(
T (s) ⊗̂αI,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
× σ

(
I⊗̂αS (t) ,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.
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We have that
(
B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)
, ∥·∥ΓX⊗̂αΓY

)
is a commutative unital

Banach algebra. Let P be a polynomial in two variables, then the spectral
mapping theorem for joint spectra in Banach algebras (Theorem 3.4) gives

P
(
σ
(
T (s) ⊗̂αI, I⊗̂αS (t) ;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)))
= σ

(
P
(
T (s) ⊗̂αI, I⊗̂αS (t)

)
,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Let P (z1, z2) = z1z2 be a polynomial in two variables. Then we get

P
(
σ
(
T (s) ⊗̂αI, I⊗̂αS (t) ;B ∩BΓX⊗̂αΓY

(
X⊗̂αY

)))
= P (σ (T (s) , BΓX

(X)) , σ (S (t) , BΓY
(Y )))

= σ (T (s) , BΓX
(X))× σ (S (t) , BΓY

(Y )) ,

on the other hand we have

σ
(
P
(
T (s) ⊗̂αI, I⊗̂αS (t)

)
,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ

((
T (s) ⊗̂αI

) (
I⊗̂αS (t)

)
,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ

(
T (s) ⊗̂αS (t) ,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
.

Finally

σ
(
T (s) ⊗̂αS (t) ,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
= σ (T (s) , BΓX

(X))× σ (S (t) , BΓY
(Y )) .

Let us recall the following (see [11], [22, page 241]).
IfA is the infinitesimal generator of an equicontinuous C0-semigroup (T (s))s≥0

on X, then the resolvent set defined by

ρ (A) =
{
λ ∈ C : R (λ,A) = (λI −A)

−1
exists and R (λ,A) ∈ L (X)

}
is not empty and {λ ∈ C : Reλ > 0} ⊂ ρ (A). We consider σ (A) = C \ ρ (A).

Lemma 4.5. Let (T (s))s≥0 be an equicontinuous C0-semigroup of one param-
eter on (X,ΓX) with the generator A. Then we have the spectral inclusion
relation :

σ (T (s) , BΓX
(X)) ⊃ esσ(A,BΓX

(X)) ⊃ esσ(A), ∀s ≥ 0.

Proof. We consider F (s) = e−λsT (s), s ≥ 0. It is clear that (F (s))s≥0 is
an equicontinuous C0-semigroup on X with the infinitesimal generator A− λ.
Using [10, Proposition 1.2], we have for all s ≥ 0 and λ ∈ C

(λ−A)

∫ s

0

eλ(s−t)T (t)xdt =
(
eλs − T (s)

)
x, ∀x ∈ X,
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and ∫ s

0

eλ(s−t)T (t) (λ−A)xdt =
(
eλs − T (s)

)
x, ∀x ∈ D (A) ,

where the integral above is an integral of Riemann on X.
Suppose that eλs ∈ ρ (T (s) ;BΓX

(X)) for some λ ∈ C and s ≥ 0, and let

Qλ,s :=
(
eλs − T (s)

)−1
. Since Qλ,s ∈ BΓX

(X) and Qλ,s commutes with T (s),
then Qλ,s commutes also with A, and we have

(λ−A)

∫ s

0

eλ(s−t)T (t)Qλ,sxdt = x, ∀x ∈ X,

and ∫ s

0

eλ(s−t)T (t)Qλ,s (λ−A)xdt = x,∀x ∈ D (A) .

This last point shows that the operator Nλ defined by

Nλx =

∫ s

0

eλ(s−t)T (t)Qλ,sxdt

is the inverse of λ − A, and we have Nλ ∈ BΓX
(X). It follows that λ ∈

ρ (A,BΓX
(X)). Hence we have shown that

σ (T (s) , BΓX
(X)) ⊃ esσ(A,BΓX

(X)), ∀s ≥ 0.

We have BΓX
(X) ⊂ L (X) then σ (A) ⊂ σ (A,BΓX

(X)). Finally

σ (T (s) , BΓX
(X)) ⊃ esσ(A,BΓX

(X)) ⊃ esσ(A), ∀s ≥ 0.

The main conclusion of this section is the following Theorem, in which a
spectral inclusion theorem for tensor product of semigroups over locally convex
spaces is announced.

Theorem 4.6. Let
(
T (s) ⊗̂αS (t)

)
s,t≥0

be an equicontinuous C0 tensor product

of semigroups on X⊗̂αY , and let B denote the bicommutant of
(
T (s) ⊗̂αI

)
s≥0

and
(
I⊗̂αS (t)

)
t≥0

in the algebra Ls
(
X⊗̂αY

)
, then there exist two calibrations

ΓX and ΓY on X and Y , respectively, such that

σ
(
T (s) ⊗̂αS (t) ,B ∩BΓX⊗̂αΓY

(
X⊗̂αY

))
⊃ esσ(A1,BΓX

(X))+tσ(A2,BΓY
(Y ))

⊃ esσ(A1)+tσ(A2)

where A1 and A2 are the infinitesimal generators of (T (s))s≥0 and (S (t))t≥0,
respectively.

Proof. From Theorem 2 and Theorem 3 in [3], we have (T (s))s≥0 and (S (t))t≥0

are equicontinuous C0-semigroups, therefore by Lemma 4.5, we have

σ (T (s) , BΓX
(X)) ⊃ esσ(A1,BΓX

(X)) ⊃ esσ(A1), ∀s ≥ 0.

and
σ (S (t) , BΓY

(Y )) ⊃ etσ(A2,BΓY
(Y )) ⊃ etσ(A2), ∀t ≥ 0.

Using Theorem 4.4, we get the result.
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