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Multiplicity results for some Steklov problems involving
p(x)-Laplacian operator
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Abstract. This paper deals with the existence and multiplicity of
solutions for a class of p (x)-Laplacian problems. The main results are
obtained on variable exponent Sobolev spaces, by using mountain pass
theorem and fountain theorem.
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1. Introduction

This paper is devoted to the study of the following class of Steklov boundary
value problems involving the p (x)-Laplacian operator

(1.1)


−div

(
a (x) |∇u|p(x)−2 ∇u

)
+ |u|p(x)−2

u = f (x, u) in Ω,

a (x) |∇u|p(x)−2 ∂u
∂v + b(x)|u|q(x)−2u = g(x, u) on ∂Ω,

and
(1.2)

−div
(
a (x) |∇u|p(x)−2 ∇u

)
+ |u|p(x)−2

u = f (x, u) + λ |u|γ(x)−2
u in Ω,

a (x) |∇u|p(x)−2 ∂u
∂v + b(x)|u|q(x)−2u = g(x, u) on ∂Ω,

where, through this work, Ω ⊂ RN (N ≥ 2) is a bounded domain with Lipschitz
boundary ∂Ω, ∂

∂v is the outer unit normal derivative, p(x), γ(x) ∈ C(Ω), q(x) ∈
C(∂Ω), p(x), q(x), γ(x) > 1, p(x) ̸= q(y), for any x ∈ Ω, y ∈ ∂Ω, λ is a positive
parameter, f : Ω × R → R, g : ∂Ω × R → R are Carathéodory functions
that satisfy some suitable assumptions which will be stated later, a and b are
continuous functions such that

a1 ≤ a(x) ≤ a2, and b1 ≤ b(x) ≤ b2,
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where a1, a2, b1 and b2 are positive constants. (−∆)p(x)u = −div(|∇u|p(x)−2∇u)
denotes the p(x)-Laplacian. When p(x) ≡ p (a positive constant), p(x)-Lapla-
cian is the usual p-Laplacian. The p(x)-Laplacian possesses more complicated
nonlinearities than the p-Laplacian (see [16]).

The study of partial differential equations with variable exponent is a new
and interesting subject see [9, 12]. This type of problems is interesting in
applications such as, the modeling of image processing , electrorhegological
fluids (see for example [11, 19, 25]), and raises many difficult mathematical
problems. For advances and references in this field, see [13,26].

In the past decay, many authors have studied the Steklov problems involv-
ing the p-Laplacian, (see for example [3, 7, 20–23,30]). More recently, problems
of type (1.1) involving the p(x)-Laplacian, have been investigated by many pa-
pers (see [1, 2, 4–6,8, 9, 12,14,17,18,24,27,29]). For example, Z. Yücedag [29]
studied problem (1.1) with b (x) = −1, and g (x, u) = 0 and proved that prob-
lem (1.1) in this case has at least one nontrivial weak solution u ∈ W 1,p(x) (Ω) .
In a recent paper [10], Chammem et al. considered problems (1.1) and (1.2) in
the case:

f(x, u) = v1(x)h1(u) and g(x, u) = v2(x)h2(u),

and they obtained results on existence and multiplicity of solutions via the
mountain pass theorem and Ekeland’s variational principle. Motivated by the
results mentioned above, our objective is to prove the existence of nontrivial
weak solutions for problem ((1.1) by applying the mountain pass theorem.
moreover, we show the existence of infinite solutions to the problem (1.2) via
the fountain theorem.

This paper is structured as follows. In Section 2, we introduce some neces-
sary preliminary knowledge on variable exponent Lebesgue and Sobolev spaces.
In Section 3, we prove the existence of a nontrivial weak solution of problem
(1.1) by using the mountain pass theorem. In Section 4, we show that problem
(1.2) has infinitely many pairs of weak solutions by means of fountain theorem.

2. Preliminaries

In order to study problems (1.1) and (1.2), we recall some necessary prop-
erties and definitions of variable exponent spaces. For more details, we refer
the reader to [9, 12, 18, 27, 29] and the references therein. Let Ω be a bounded
domain in RN , N ≥ 2. Denote

C+(Ω) = {p ∈ C(Ω), p(x) > 1,∀x ∈ Ω}.

For all p ∈ C+(Ω), we set

p− = inf
Ω

p(x), p+ = sup
Ω

p(x).

We also denote C+(∂Ω) and p−, p+ for every p(x) ∈ C(∂Ω). We define,

Lp(x)(Ω) = {u : Ω → R, is measurable :

∫
Ω

|u(x)|p(x)dx < ∞},
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and

Lp(x)(∂Ω) = {u : ∂Ω → R, is measurable :

∫
∂Ω

|u(x)|p(x)dσ < ∞},

with norms on Lp(x)(Ω) and Lp(x)(∂Ω) defined respectively by

|u|Lp(x)(Ω) = inf{λ > 0 :

∫
Ω

|u(x)
λ

|p(x)dx ≤ 1},

and

|u|Lp(x)(∂Ω) = inf{γ > 0 :

∫
∂Ω

|u(x)
γ

|p(x)dσ ≤ 1},

where dσ is the surface measure on ∂Ω. The spaces (Lp(x)(Ω), |.|Lp(x)(Ω)) and

(Lp(x)(∂Ω), |.|Lp(x)(∂Ω)) become Banach spaces, which we call variable exponent
Lebesgue spaces.

Now, we define the Sobolev space with variable exponent as follows:

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

endowed with the norm

∥u∥W 1,p(x)(Ω) = inf{κ > 0 :

∫
Ω

(
|u(x)κ |p(x) + |∇u(x)

κ |p(x)
)
dx ≤ 1}.

For u ∈ W 1,p(x)(Ω), if we define

∥u∥ = inf{κ > 0 :

∫
Ω

(a(x)|u(x)κ |p(x) + b(x)|∇u(x)
κ |p(x))dx ≤ 1},

then, from the assumptions on a and b, it is easy to see that ∥u∥ is an equivalent
norm on W 1,p(x)(Ω).

Let W
1,p(x)
0 (Ω) denote the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Proposition 2.1. (see [9,10,12]).
(1) The space (Lp(x)(Ω), |.|Lp(x)(Ω)) is a separable, uniformly convex Banach

space, and its conjugate space is Lp
′
(x)(Ω), where 1

p(x) +
1

p′ (x)
= 1. Moreover,

the Hölder inequality holds, that is, for any u ∈ Lp(x)(Ω) and v ∈ Lp
′
(x)(Ω),

one has

|
∫
Ω

uvdx| ≤ (
1

p−
+

1

(p′)−
)|u|p(x)|v|p′ (x).

(2) If p1, p2 ∈ C+(Ω) and p1(x) ≤ p2(x), for any x ∈ Ω, then Lp2(x)(Ω) ↪→
Lp1(x)(Ω) and the embedding is continuous.

Proposition 2.2. (see [10,27,29]).

(1) W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable reflexive Banach spaces.
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(2) If q ∈ C+(Ω) with q(x) < p∗(x), for all x ∈ Ω, then the embedding from
W 1,p(x)(Ω) to Lq(x)(Ω), is compact and continuous, where

p∗ (x) =


Np(x)
N−p(x) , if p(x) < N,

∞, if p(x) ≥ N.

(3) If q ∈ C+(∂Ω) with q(x) < p∗(x) for all x ∈ ∂Ω, then the trace embedding
from W 1,p(x)(Ω) to Lq(x)(∂Ω), is compact and continuous, where

p∗ (x) =


(N−1)p(x)
N−p(x) , if p(x) < N,

∞, if p(x) ≥ N.

Denote

Γ(u) =

∫
Ω

(a (x) |∇u|p(x) + |u|p(x))dx, ∀u ∈ W 1,p(x) (Ω) .

Proposition 2.3. (see [10, 27, 29]) There exist positive constants ξ1, ξ2, such
that

(i)Γ(u) ≥ 1 =⇒ ξ1||u||p
− ≤ Γ(u) ≤ ξ2||u||p

+

,

(ii) Γ(u) ≤ 1 =⇒ ξ1||u||p
+ ≤ Γ(u) ≤ ξ2||u||p

−
.

Put

ρ(u) =

∫
Ω

|u(x)|p(x)dx.

Then, we have the following result.

Proposition 2.4. (see [9,12,18]) Let u ∈ Lp(x)(Ω), then we have
(1) |u|Lp(x)(Ω) < 1 (resp = 1, > 1) ⇔ ρ(u) < 1 (resp = 1, > 1),

(2) |u|Lp(x)(Ω) > 1 ⇒ |u|p
−

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

+

Lp(x)(Ω)
,

(3) |u|Lp(x)(Ω) < 1 ⇒ |u|p
+

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

−

Lp(x)(Ω)
.

Denote

ρ∂(u) =

∫
∂Ω

|u(x)|p(x)dx.

Proposition 2.5. (see [9,12,18]) For all u ∈ Lp(x)(∂Ω), we have

(1) |u|Lp(x)(∂Ω) > 1 ⇒ |u|p
−

Lp(x)(∂Ω)
≤ ρ∂(u) ≤ |u|p

+

Lp(x)(∂Ω)
,

(2) |u|Lp(x)(∂Ω) < 1 ⇒ |u|p
+

Lp(x)(∂Ω)
≤ ρ∂(u) ≤ |u|p

−

Lp(x)(∂Ω)
.

Proposition 2.6. (see [9, 12, 18]) If p and q are measurable functions, such
that p ∈ L∞(RN ) and 1 ≤ p(x).q(x) ≤ ∞, for all x ∈ RN , then, for all
u ∈ Lq(x)(RN ) with u ̸= 0, we have

(1) |u|p(x)q(x) ≤ 1 ⇒ |u|q
+

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|q
−

p(x)q(x),

(2) |u|p(x)q(x) ≥ 1 ⇒ |u|q
−

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|q
+

p(x)q(x).
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Corollary 2.1. Let X be a Banach space and Ψ ∈ C1(X,R), c ∈ R. We say
that Ψ satisfies the (PS) condition at level c if any sequence {un} in X, such
that

Ψ(un) → c and Ψ′(un) → 0 in X∗, as n → ∞,

has a convergent subsequence.

Theorem 2.1. (Mountain pass theorem). Let X be a Banach space, Ψ ∈
C1(X,R), e ∈ X and ||e|| > r for some r > 0, and assume that

inf
||u||=r

Ψ(u) > Ψ(0) ≥ Ψ(e).

If Ψ satisfies the (PS) condition at level c, with

c = inf
γ∈Γ

max
t∈[0,1]

Ψ(γ(t)),

and Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e},

then c is a critical value of Ψ.

Throughout the rest of the paper, letters ci, i = 1, 2, ...., denote positive
constants which may change from line to line.

3. Existence result

In this section, we will state and prove the first main result of the paper.
More precisely, we will apply the mountain pass theorem to prove the existence
of a nontrivial weak solution for the problem (1.1). To this aim, we assume the
following hypothesis

(A0) There exist C1 > 0, α ∈ C+(Ω), such that for all (x, u) ∈ Ω × R, we
have

|f (x, u)| ≤ C1

(
1 + |u|α(x)−1

)
,

and

(3.1) 1 < α (x) < p∗ (x) .

(A1) There exist C2 > 0, β ∈ C+(∂Ω), such that for all (x, u) ∈ ∂Ω× R,

|g (x, u)| ≤ C2

(
1 + |u|β(x)−1

)
,

and

(3.2) 1 < β (x) < p∗ (x) , q (x) < p∗ (x) .

(A2) f (x, u) = o
(
|u|p

+−1
)
as u → 0 and for all x ∈ Ω.

(A3) g (x, u) = o
(
|u|p

+−1
)
as u → 0 and for all x ∈ ∂Ω.
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(A4) There exist K1 > 0, θ1 > p+ such that for all x ∈ Ω, we have

0 < θ1F (x, u) ≤ f(x, u)u, |u| ≥ K1,

where F (x, t) =
∫ t

0
f(x, s)ds.

(A5) There exist K2 > 0, θ2 > p+ such that for all x ∈ ∂Ω,

0 < θ2G(x, u) ≤ g(x, u)u, |u| ≥ K2,

where G(x, t) =
∫ t

0
g(x, s)ds.

Corollary 3.1. We say that u ∈ X := W 1,p(x)(Ω) is a weak solution for the
problem (1.1), if

0 =

∫
Ω

a (x) |∇u|p(x)−2∇u∇v +

∫
Ω

|u|p(x)−2uvdx

−
∫
Ω

f(x, u)vdx+

∫
∂Ω

b(x)|u|q(x)−2uvdσ −
∫
∂Ω

g(x, u)vdσ.

for any v ∈ X.

We give below our main result that we will prove.

Theorem 3.1. Assume that (A0) − (A5) hold. If min (α−, β−) > p+ and
min (θ1, θ2) > q+, then problem (1.1) has a nontrivial solution.

The proof of Theorem 3.1, is divided into several lemmas. First, we define
the energy functional Ψ : X → R, associated to the problem (1.1), as follows:

Ψ(u) = I(u) + J(u)− ϕ(u),

where

I(u) =

∫
Ω

a (x) |∇u|p(x) + |u|p(x)

p(x)
dx,

J(u) =

∫
∂Ω

b(x)|u|q(x)

q(x)
dσ,

and

ϕ(u) =

∫
Ω

F (x, u)dx+

∫
∂Ω

G(x, u)dσ.

Proposition 3.1. (see [29]) Assume that I ∈ C1 (X,R) , and its derivative
I

′
: X → X∗ is given by

⟨I
′
(u) , v⟩ =

∫
Ω

(
a (x) |∇u|p(x)−2 ∇u∇v + |u|p(x)−2

uv
)
dx,

moreover, the functional I ′ satisfies the following properties:
(i) I

′
: X → X∗ is a continuous, bounded and strictly monotone operator.
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(ii) I
′
is a mapping of (S+) type, that is, if un ⇀ u in X and

lim sup
n→∞

⟨I
′
(un)− I

′
(u) , un − u⟩ ≤ 0.

Then un → u strongly in X.
(iii) I ′ : X → X∗ is a homeomorphism.

Proposition 3.2. (see [27,29]) J ∈ C1 (X,R) , and for all u, v ∈ X, we have

⟨J
′
(u) , v⟩ =

∫
∂Ω

b (x) |u|q(x)−2
uvdσ.

Moreover, J : X → R and J
′
: X → X∗, are sequentially weakly-strongly

continuous, namely, un ⇀ u in X implies that J (un) → J (u) and J
′
(un) →

J
′
(u) .

Remark 3.1. By Propositions 2.2, 2.6 and assumptions (A1) , (A2) , it is not
difficult to prove that ϕ ∈ C1 (X,R) and for all u, v ∈ X, we get

⟨ϕ
′
(u) , v⟩ =

∫
Ω

f (x, u (x)) v (x) dx+

∫
∂Ω

g (x, u (x)) v (x) dσ.

Therefore, from Propositions 3.1, 3.2 and Remark 3.1, it is easy to see that
Ψ ∈ C1 (X,R) and for any u, v ∈ X, we obtain

⟨Ψ
′
(u) , v⟩ =

∫
Ω

(
a (x) |∇u|p(x)−2 ∇u∇v + |u|p(x)−2

uv
)
dx

+

∫
∂Ω

b (x) |u|q(x)−2
uvdσ

−
∫
Ω

f (x, u (x)) v (x) dx−
∫
∂Ω

g (x, u (x)) v (x) dσ.

So, the critical points of Ψ are weak solutions of problem (1.1).

Lemma 3.1. Suppose that min (α−, β−) > p+, and (A0)− (A3) are satisfied.
Then there exist ρ, r > 0 such that, for u ∈ X,

if ∥u∥ = r, then Ψ(u) ≥ ρ.

Proof. Let u ∈ X, with ∥u∥ < 1. Then, by (A0) and (A2), we know there exist
an arbitrary constant 0 < ε < 1 and a positive constant C (ε1) such that

(3.3) |F (x, u)| ≤ ε1 |u|p
+

+ C (ε1) |u|α(x) , (x, u) ∈ Ω× R.

Similarly, hypothesis (A1) and (A3) assure that

(3.4) |G (x, u)| ≤ ε2 |u|p
+

+ C (ε2) |u|β(x) , (x, u) ∈ ∂Ω× R.

Therefore, from Propositions 2.4 and 2.5, we get

Ψ (u) ≥ 1

p+
Γ (u)−

∫
Ω

F (x, u) dx−
∫
∂Ω

G (x, u) dσ
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≥ 1

p+
Γ (u)−

∫
Ω

(
ε1 |u|p

+

+ C (ε1) |u|α(x)
)
dx

−
∫
∂Ω

(
ε2 |u|p

+

+ C (ε2) |u|β(x)
)
dσ

≥ 1

p+
Γ (u)−

∫
Ω

ε1 |u|p
+

dx−
∫
∂Ω

ε2 |u|p
+

dσ

−C (ε1)max
(
|u|α

−

Lα(x)(Ω) , |u|
α+

Lα(x)(Ω)

)
−C (ε2)max

(
|u|β

−

Lβ(x)(∂Ω)
, |u|β

+

Lβ(x)(∂Ω)

)
.

Since 1 < p+ < α− < α (x) < p∗ (x) , 1 < p+ < β− < β (x) < p∗ (x), then,
from Proposition 2.2, there exist c1, c2, c3, c4 > 0, such that

|u|Lp+ (Ω) ≤ c1 ∥u∥ , |u|Lp+ (∂Ω) ≤ c2 ∥u∥ ,(3.5)

|u|Lα(x)(Ω) ≤ c3 ∥u∥ , |u|Lβ(x)(∂Ω) ≤ c4 ∥u∥ .(3.6)

So, using Proposition 2.3, we get

Ψ (u)

≥ ξ1
p+

∥u∥p
+

− (ε1c1 + ε2c2) ∥u∥p
+

− c3C (ε1) ∥u∥α
−
− c4C (ε2) ∥u∥β

−

≥ ∥u∥p
+
(
ξ1
p+

− ε1c1 − ε2c2 − c3C (ε1) ∥u∥α
−−p+

− c4C (ε2) ∥u∥β
−−p+

)
.

Choose ε1, ε2 small enough that 0 < ε1c1 + ε2c2 < ξ1
2p+ , we obtain

Ψ (u) ≥ ∥u∥p
+
(

ξ1
2p+

− c3C (ε1) ∥u∥α
−−p+

− c4C (ε2) ∥u∥β
−−p+

)
≥ ∥u∥p

+
(

ξ1
2p+

− η ∥u∥min(α−−p+,β−−p+)
)
.

η = c3C (ε1) + c4C (ε2) .

Using the fact that α−, β− > p+, we can choose ∥u∥ = r, small enough such
that

ξ1
2p+

− ηrmin(α−−p+,β−−p+) > 0.

Finally, we conclude that

Ψ (u) ≥ rp
+

(
ξ1
2p+

− ηrmin(α−−p+,β−−p+)
)

:= ρ > 0.

Lemma 3.2. If min (θ1, θ2) > q+, and (A0) , (A1) , (A4) and (A5) are fulfilled,
then Ψ satisfies (PS) condition.
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Proof. Suppose that {un} is a sequence in X, such that

Ψ (un) → c,Ψ
′
(un) → 0, in X∗, as n → ∞,

where c is a positive constant.
Since Ψ (un) → c, then there exists M1 > 0, such that

(3.7) |Ψ(un)| ≤ M1.

On the other hand, the fact that Ψ
′
(un) → 0 in X∗, implies that

⟨Ψ′
(un) , un ⟩ → 0, in particular, ⟨Ψ′

(un) , un ⟩ is bounded. Thus, there exists
M2 > 0, such that

(3.8)
∣∣∣⟨Ψ′

(un) , un⟩
∣∣∣ ≤ M2.

We claim that {un} is bounded. If it is not true, by passing to a subsequence,
if necessary, we may assume that ∥un∥ → ∞. Without loss of generality, we
assume that ∥un∥ ≥ 1.

From (3.7) and (3.8), we obtain for θ := min (θ1, θ2)

M1 ≥ Ψ(un) = I (un) + J (un)− ϕ (un)

≥ 1

p+
Γ (un) +

1

q+

∫
∂Ω

b (x) |un|q(x) dσ − ϕ (un)

≥ 1

p+
Γ (un) +

1

θ

∫
∂Ω

b (x) |un|q(x) dσ − ϕ (un) ,(3.9)

and

(3.10) M2 ≥ −⟨Ψ
′
(un) , un⟩ = −Γ (un)−

∫
∂Ω

b (x) |un|q(x) dσ + ⟨ϕ
′
(un) , un⟩.

By combining (3.9), (3.10) and using Proposition 2.3, we have

θM1 +M2 ≥
(

θ

p+
− 1

)
Γ (un)− θϕ (un) + ⟨ϕ

′
(un) , un⟩

≥
(

θ

p+
− 1

)
ξ1 ∥un∥p

−
+

∫
Ω

(f (x, un)un − θ1F (x, un)) dx

+

∫
∂Ω

(g (x, un)un − θ2G (x, un)) dσ.

Hence, assumptions (A4)− (A5) imply,

θM1 +M2 ≥
(

θ

p+
− 1

)
ξ1 ∥un∥p

−
.

Note that θ = min (θ1, θ2) > p+. So, by letting n tend to infinity, we obtain a
contradiction.

Therefore, the sequence {un} is bounded in X. Thus, up to a subsequence,
there exists u ∈ X such that, {un} converges weakly to u in X.
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Because q (x) < p∗ (x) and α (x) < p∗ (x) , we deduce by Proposition 2.2
that 

un → u, strongly in Lα(x) (Ω) ,

un → u, strongly in Lp+

(Ω) ,
un → u, strongly in Lq(x) (Ω) .

To complete the proof, it remains to show that un → u strongly in X. For that,
we have

⟨Ψ
′
(un) , un − u⟩ = ⟨I

′
(un) , un − u⟩+

∫
∂Ω

b (x) |un|q(x)−2
un (un − u) dσ

−
∫
Ω

f (x, un) (un − u) dx−
∫
∂Ω

g (x, un) (un − u) dσ.

Using Hölder’s inequality and Propositions 2.2, 2.6, we obtain∫
∂Ω

b (x) |un|q(x)−1 |un − u| dσ

≤ b2 |un − u|Lq(x)

∣∣∣|un|q(x)−1
∣∣∣
L

q(x)
q(x)−1

≤ b2 |un − u|Lq(x) max
(
|un|q

+−1
Lq(x) , |un|q

−−1
Lq(x)

)
≤ c1 |un − u|Lq(x) max

(
∥un∥q

+−1
, ∥un∥q

−−1
)
.

So, we get

(3.11) lim
n→∞

∫
∂Ω

b (x) |un|q(x)−2
un (un − u) dσ = 0.

On the other hand, using (A0) , Propositions 2.2, 2.6, and the Hölder inequality,
one has∣∣∣∣∫

Ω

f (x, un) (un − u) dx

∣∣∣∣
≤
∫
Ω

C1 |un − u| dx+

∫
Ω

C1 |un|α(x)−1 |un − u| dx

≤ C1 |Ω|
p+−1

p+ |un − u|Lp+ (Ω) + C1 |un − u|Lα(x)

∣∣∣|un|α(x)−1
∣∣∣
L

α(x)
α(x)−1

≤ C1 |Ω|
p+−1

p+ |un − u|Lp+ (Ω) + C1 |un − u|Lα(x) max
(
|un|α

+−1
Lα(x) , |un|α

−−1
Lα(x)

)
≤ C1 |Ω|

p+−1

p+ |un − u|Lp+ (Ω) + C1 |un − u|Lα(x) max
(
||un||α

+−1
, ||un||α

−−1
)

So, we obtain

(3.12) lim
n→∞

∫
Ω

f (x, un) (un − u) dx = 0.

Similarly, we have

(3.13) lim
n→∞

∫
∂Ω

g (x, un) (un − u) dσ = 0.
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By combining (3.11) – (3.13), and using the fact that ⟨Ψ′
(un) , un − u⟩ → 0,

we conclude that

⟨I
′
(un) , un − u⟩

=

∫
Ω

(
a (x) |∇un|p(x)−2 ∇un∇ (un − u) + |un|p(x)−2

un (un − u)
)
dx → 0,

Passing to the limit as n tends to infinity, and using the fact that un converges
weakly to u, we get

⟨I
′
(u) , un − u⟩ → 0.

Hence
lim

n→∞
⟨I

′
(un)− I

′
(u) , un − u⟩ = 0.

Since I
′
is of type (S+) (see Proposition 3.1), we deduce that un → u strongly

in X. This completes the proof.

Lemma 3.3. Assume that min (θ1, θ2) > q+, and (A4) , (A5) hold. Then there
exists e1 ∈ X such that

∥e1∥ > r, and Ψ(e1) < 0,

where r is given by Lemma 3.1.

Proof. By (A4) , (A5) , there exist m1 > 0,m2 > 0, such that

F (x, t) ≥ m1 |t|θ1 , (x, t) ∈ Ω× R(3.14)

and

G (x, t) ≥ m2 |t|θ2 , (x, t) ∈ ∂Ω× R(3.15)

Let e ∈ X, such that
∫
Ω
|e|θ1 dx > 0, and t > 1 large enough. Then we obtain

Ψ (te) =

∫
Ω

a (x) |∇ (te)|p(x) + |te|p(x)

p (x)
dx+

∫
∂Ω

b (x)
|te|q(x)

q (x)
dσ

−
∫
Ω

F (x, te) dx−
∫
∂Ω

G (x, te) dσ.

So, from (3.14) and (3.15), we get

Ψ (te) ≤ tp
+

p−

∫
Ω

a (x) |∇ (e)|p(x) + |e|p(x) dx+
tq

+

q−
b2

∫
∂Ω

|e|q(x) dσ

−m1t
θ1

∫
Ω

|e|θ1 dx−m2t
θ2

∫
∂Ω

|e|θ2 dσ.

Since min (θ1, θ2) > max (q+, p+) , we conclude that

Ψ (te) → −∞, as t → ∞.

Then, we can choose t1 > 0, e1 = t1e, such that ∥e1∥ > r and Ψ (e1) < 0.
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Proof of Theorem3.1 From Lemma 3.3, there exists e1 ∈ X with ∥e1∥ >
r, for some r > 0, and

(3.16) Ψ (e1) < 0 = Ψ (0) .

On the other hand, Lemma 3.1 implies that

(3.17) inf
∥u∥=r

Ψ(u) ≥ ρ > 0 = Ψ (0) .

By combining Equations (3.16), (3.17) with Lemma 3.2, we deduce that all
conditions of the mountain pass theorm are satisfied. So, from Theorem 2.1,
we deduce the existence of a critical point u of Ψ, which is a weak solution for
problem (1.1). Moreover, Equation (3.17) implies that u is a nontrivial solution
of problem (1.1). The proof of Theorem 3.1, is now completed.

4. Multiplicity of solutions via the fountain theorem

Through this section, we assume that γ ∈ C+

(
Ω
)
is such that

1 < γ− ≤ γ+ < p−.

Now, in order to prove the multiplicity of solutions for problem (1.2), we state
the following assumptions.

(A6) f (x,−u) = −f (x, u), for all (x, u) ∈ (Ω× R).
(A7) g (x,−u) = −g (x, u), for all (x, u) ∈ (∂Ω× R).
The energy functional Φλ : X → R associated with problem (1.2) is given

by:

Φλ (u) = Ψ (u)− λ

∫
Ω

|u|γ(x)

γ (x)
,

where Ψ is the functional associated with problem (1.1) which is introduced in
Section 3.

Remark 4.1. Φλ ∈ C1 (X,R) . Moreover, weak solutions of problem (1.2)
correspond to critical points of the functional Φλ.

Since X is a reflexive and separable Banach space, there exist {ei}∞i=1 ⊂ X
and {e∗j}∞j=1 ⊂ X∗ such that

(4.1) X = span{ei, i = 1, 2, . . . }, X∗ = span{e∗j , j = 1, 2, . . . }

and

(4.2) ⟨ei, e∗j ⟩ =
{

1 if i = j,
0 if i ̸= j.

For k = 1, 2 . . . , denote

(4.3) Xk = span{ek}, Yk =

k⊕
i=1

Xi, Zk =
⊕
i≥k

Xi.
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Proposition 4.1. (Fountain theorem, see [15,27]). Assume that
(H1)X is a Banach space, Ψ ∈ C1(X,R) is an even functional, subspaces

Xk, Yk and Zk are defined by (4.3). Suppose that, for every k ∈ N, there exist
ρk > γk > 0, such that

(H2) infu∈Zk,∥u∥=γk
Ψ(u) → ∞ as k → ∞,

(H3)maxu∈Yk,∥u∥=ρk
Ψ(u) ≤ 0,

(H4)Ψ satisfies (PS) condition for every c > 0.
Then Ψ has a sequence of critical values tending to +∞.

Proposition 4.2. (see [28]). If α(x) ∈ C+(Ω), α(x) < p∗(x), for all x ∈ Ω,
and q(x) ∈ C+(∂Ω), q(x) < p∗(x), for all x ∈ ∂Ω, denote

(4.4)
αk = sup{|u|Lα(x)(Ω) : ||u|| = 1, u ∈ Zk};
qk = sup{|u|Lq(x)(∂Ω) : ||u|| = 1, u ∈ Zk},

then limk→∞ αk = 0, limk→∞ qk = 0.

Let us introduce the following lemma that will be useful in the proof of our
main result.

Lemma 4.1. Let min(θ1, θ2) > q+ and assume that (A0) , (A1) , (A4) and (A5)
hold. Then, for all λ > 0,Φλ satisfies (PS) condition.

Proof. Let {un} ⊂ X be a sequence such that

Φλ (un) → c,Φ
′

λ (un) → 0, in X∗, as n → ∞,

where c is a positive constant.
As in the proof of Lemma 3.2, we can find two positive constants M1 and

M2, such that

(4.5) |Φλ (un)| ≤ M1,

and

(4.6)
∣∣∣⟨Φ′

λ (un) , un⟩
∣∣∣ ≤ M2.

We claim that the sequence {un} is bounded. If it is not true, by passing to a
subsequence if necessary, we may assume that ∥un∥ → ∞.
Without loss of generality, we assume that ∥un∥ ≥ 1.

From (4.5) and (4.6), we get

M1 ≥ Φλ (un) = I (un) + J (un)− ϕ (un)− λ

∫
Ω

|un|γ(x)

γ (x)
dx

≥ 1

p+
Γ (un) +

1

q+

∫
∂Ω

b (x) |un|q(x) dσ − ϕ (un)− λ

∫
Ω

|un|γ(x)

γ− dx

≥ 1

p+
Γ (un) +

1

θ

∫
∂Ω

b (x) |un|q(x) dσ − ϕ (un)− λ

∫
Ω

|un|γ(x)

γ− dx.(4.7)
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where θ = min (θ1, θ2) .
On the other hand, we have

M2 ≥ −⟨Φ
′

λ (un) , un⟩

= −Γ (un)−
∫
∂Ω

b (x) |un|q(x) dσ + ⟨ϕ
′
(un) , un⟩+ λ

∫
Ω

|un|γ(x) dx.(4.8)

So, by combining Equations (4.7), (4.8) with assumptions (A4) − (A5) and
Proposition 2.3, we obtain

θM1 +M2

≥
(

θ

p+
− 1

)
Γ (un)− θ

(
ϕ (un) + λ

∫
Ω

|u|γ(x)

γ− dx

)

+⟨ϕ
′
(un) , un⟩+ λ

∫
Ω

|un|γ(x) dx

≥
(

θ

p+
− 1

)
ξ1 ∥un∥p

−
+

∫
Ω

(f (x, un)un − θ1F (x, un)) dx

+

∫
∂Ω

(g (x, un)un − θ2G (x, un)) dσ + λ

∫
Ω

(
1− θ

γ−

)
|un|γ(x) dx

≥
(

θ

p+
− 1

)
ξ1 ∥un∥p

−
+ λ

∫
Ω

(
1− θ

γ−

)
|un|γ(x) dx.

Hence,

(4.9) θM1 +M2 ≥
(

θ

p+
− 1

)
ξ1 ∥un∥p

−
+ λ

(
1− θ

γ−

)∫
Ω

|un|γ(x) dx.

According to Proposition 2.2, there exists c > 0 such that

(4.10)

∫
Ω

|un|γ(x) dx ≤ |un|lLγ(x)(Ω) ≤ c ∥un∥l ,

where l = γ− or γ+.
Therefore, from (4.9) and (4.10), we deduce that

θM1 +M2 ≥
(

θ

p+
− 1

)
ξ1 ∥un∥p

−
− cλ

(
θ

γ− − 1

)
∥un∥l .

Since, θ > p+ ≥ p− > l, then, by letting n tend to infinity, we obtain a
contradiction. So, we conclude that {un} is bounded in X. Thus, there exists
u ∈ X such that, up to a subsequence, {un} converges weakly to u ∈ X. The
rest of the proof is very similar to the one in Lemma 3.2, so we omit it here.

The second main result of this paper is as follows.

Theorem 4.1. If min(α−, β−) > p+,min(θ1, θ2) > q+, (A0)−(A1) and (A4)−
(A7) are satisfied, then Φλ has a sequence of critical points {±un} such that
Φλ(±un) → ∞ as n → ∞.
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Proof. Obviously, assumptions (A6) and (A7) imply that Φλ is an even func-
tional and satisfies the (PS) condition (see Lemma 3.2). We will prove that if
k is large enough, then there exist ρk > γk > 0 such that (H2) and (H3) hold.

Let u ∈ Zk with ∥u∥ > 1, by conditions (A0) and (A1), we have

Φλ (u) ≥ 1

p+
Γ (u)−

∫
Ω

C1(1 + |u|α(x))dx−
∫
∂Ω

C2(1 + |u|β(x))dσ

− λ

γ−

∫
Ω

|u|γ(x)dx

≥ ξ1
p+

||u||p
−
− C1 max

(
|u|α

−

Lα(x)(Ω) , |u|
α+

Lα(x)(Ω)

)
−C2 max

(
|u|β

−

Lβ(x)(∂Ω)
, |u|β

+

Lβ(x)(∂Ω)

)
− c1

− λ

γ− max
(
|u|γ

−

Lγ(x)(Ω)
, |u|γ

+

Lγ(x)(Ω)

)
.

If max{|u|α
−

Lα(x)(Ω) , |u|
α+

Lα(x)(Ω) , |u|
β−

Lβ(x)(Ω)
, |u|β

+

Lβ(x)(Ω)
, |u|γ

−

Lγ(x)(Ω)
, |u|γ

+

Lγ(x)(Ω)
} =

|u|α
+

Lα(x)(Ω) . Then, by Proposition 4.2, we have

Φλ (u) ≥ ξ1
p+

||u||p
−
− c2(λ, γ

−) |u|α
+

Lα(x)(Ω) − c1

≥ ξ1
p+

||u||p
−
− c2(λ, γ

−)αα+

k ||u||α
+

− c1.

Choose γk = (
c2(λ,γ

−)α+αα+

k

ξ1
)

1

p−−α+ . For u ∈ Zk with ||u|| = γk, we have

(4.11) Φλ(u) ≥ ξ1(
1

p+
− 1

α+
)γp−

k − c1.

Since αk → 0 as k → ∞ and p+ < α− ≤ α+, we have 1/p+ − 1/α+ > 0 and
γk → ∞. Thus, for sufficiently large k, we have Φλ(u) → ∞ with u ∈ Zk and
||u|| = γk as k → ∞. In other cases, similarly, we can deduce

(4.12) Φλ(u) → ∞, since qk → 0, αk → 0, k → ∞.

So, (H2) holds.
Let u ∈ Yk such that ||u|| = ρk > γk > 1, then from (3.14) and (3.15), we have

Φλ(u) ≤ 1

p−
Γ(u) +

b2
q−

∫
∂Ω

|u|q(x) dσ −
∫
Ω

F (x, u)dx− λ

γ−

∫
Ω

|u|γ(x) dx

−
∫
∂Ω

G(x, u)dσ

≤ ξ1
p−

||u||p
+

+
b2
q−

max{|u|q
−

Lq(x)(∂Ω)
, |u|q

+

Lq(x)(∂Ω)
}

−m1

∫
Ω

|u|θ1 dx−m2

∫
∂Ω

|u|θ2 dσ.
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If max{|u|q
−

Lq(x)(∂Ω)
, |u|q

+

Lq(x)(∂Ω)
} = |u|q

+

Lq(x)(∂Ω)
, then we have

Ψ(u) ≤ ξ1
p−

||u||p
+

+
b2
q−

|u|q
+

Lq(x)(∂Ω)
−m1

∫
Ω

|u|θ1 dx−m2

∫
∂Ω

|u|θ2 dσ.

Since dim Yk < ∞, all norms are equivalent in Yk. So, we get

(4.13) Ψ(u) ≤ ξ1
p−

||u||p
+

+
b2
q−

c2||u||q
+

− c3||u||θ1 − c4||u||θ2 .

also, since max(q+, p+) < min(θ1, θ2), then we get Ψ(u) → −∞ as ||u|| → ∞.
For the other case, the proof is similar, so, H3 holds. Thus, we complete the
proof.
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