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Spectral analysis of special perturbations of diagonal
operators on non-Archimedean Banach spaces

Aziz Blal{l, Abdelkhalek El amrani]| and Mohamed Amine Taybi]

Abstract. In this paper we are concerned with the spectrum of the

oo
operator T' = D + T}, where D is a diagonal operator and T, = Z wi P;
i=1
is a compact and self-adjoint operator in the non-Archimedean Banach
space co, where = (ui)ien € co and for each i > 1, P = 2%y, is
the normal projection defined by (y;)ien € co. Using Fredholm theory in
the non-Archimedean setting and the concept of essential spectrum for

linear operator, we compute the spectrum of 7.
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1. Introduction

Non-Archimedean analysis is a well-developed branch of mathematics com-
parable to its classical counterpart, dealing over R and C, see for example the
monographs [7], [3] and [I1]. The previous references includes some basic infor-
mation on non-archimedean Banach spaces and operator theory and a rather
complete theory of compact operators, see [9]. Moreover, a characterization of
compact and self-adjoint operators on free Banach spaces is given in [3].

The problem of perturbation of p-adic linear operator has been long studied
through several steps. A first approach was carried out by Serre in [9], where
he dealt with compact perturbation of identity on Banach space having an
orthogonal base. A step further was taking by Gruson [5] for more general
class of Banach spaces, always working on perturbation of the identity. A
complete study of perturbation of the identity was finally done by Schikhof in
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Let K denote a non trivial field which is complete with respect to a non
archimedean valuation denoted [.| and its residue class fields is formally real,
n

i.e., for any finite subset {ay,...,a,} of K, Zai = 0 implies that each a; = 0,

i=1
see [0]. For a given sequence (\;)jeny with A; € K for all j € N, we set
A={)\ € K:je N} Foreach Ain A, I, = {j € N: \; = A}. Further,
rx = cardinality of I,. Moreover A* = {\ € A : ry < oo}. The set A is the
closure of A in K and A’ = {X € A : X is an accumulation point of A}. Then
the essential spectrum o, (D) of D is characterized by T. Diagana in [4] and is
given by
oe(D) = (A\A*) U (A* N A).
In this paper, we introduce a spectral analysis for compact and self-adjoint

perturbation of diagonal operator in non-Archimedean Banach space of count-
able type. Namely we study the spectral analysis for operator T" of the form:

T=D+T,,

where D = Zai < ., e; > ¢, (a;)ien € co, is a bounded diagonal operator
€N
= < .,Y; >
and T, = Z i —""9;; is compact and self-adjoint operator. Under some
i=1 <Y, Yi >
suitable assumptions, we will show that the spectrum o(T) of the bounded
linear operator T is given by

o(T) = oe(D) Uy (T),

where o (D) is the essential spectrum of D and 0,(T) is the point spectrum of
T, that is the set of eigenvalues of T given by 0,(T) = {a, + p, : n € N}.

2. Preliminaries

Define the space ¢q as the collection of all A = (\;);en, As € K for all i € N
such that A; tends to 0 in K as ¢« — oo. Namely, ¢y is given by

co={A=A)n CK : liTILn)\n:O}.

It is known that the space ¢y equipped with the norm defined by for each
A= (Ai)ien € co
[Alloe = sup [ As]
ieN

is a non-Archimedean Banach space see [7]. The bilinear form (.,.) : ¢oxcyg — K

defined by (x,y) = leyl with = (z;) , y = (y;) € co, is an inner product in

i=1
the non-archimedean sense. Since the residue class field of K is formally real,

then ||z||2, = (z,z). The non archimedean Banach space ¢y has a special base
denoted by (€;)ien = (0i;)ien Where §;; is the usual Kronecker symbol.
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Recall that a topological space is called separable if it has a countable dense
subset. Now let F be a non trivial normed space over K, E # {0} and suppose
that F' is separable, then its one-dimensional subspaces are homeomorphic to
K, so K must be separable as well. Thus, for normed space the concept of
separability is of no use if K is not separable, however linearizing the notion of
separability we obtain a generalization useful for every scalar field K. A normed
space E is of countable type if it contains a countable set whose linear hull is
dense in E. Clearly if the span of unit vectors e; = (1,0,...),ea = (0,1,0,...), ...
is dense in ¢y, then ¢y is a Banach space of countable type. Each normed
space is linearly heomeorphic to a subspace of ¢y. Each infinite-dimensional
Banach space of countable type is linearly heomeorphic to ¢y see [7]. This
result shows that, up to linear homeomorphisms, there exists, for given K, only
one infinite-dimensional Banach space of countable type viz cg.

A mapping T : ¢y — ¢g is said to be a bounded linear operator on ¢y when
it is linear and bounded. That is, there exists C' > 0 such that

[Tullc < Cllulloo
for all u € ¢y.

B(co) denotes the collection of all bounded linear operators on cg, B(cp) is
p ITulloo

o Tl

For all T € B(cy), its kernel and range are, respectively, defined by N(T') =
{u€cy:Tu=0} and R(T) ={Tu:u € cp}.

A linear operator T : ¢y — ¢ is said to be a compact operator if T'(Bg,)
is compactoid, where B, = {= € ¢y : ||#]|co < 1} is the unit ball of ¢o. It was
proved in [I1], that 7 is compact if and only if, for each € > 0, there exist a
linear operator of finite dimensional range S in B(cg) such that ||T— S| < e.

An operator T' € B(co) is said to be a Fredholm operator if it satisfies the
following conditions:

1. 9(T) =dim N(T) is finite;
2. R(T) is closed;
3. 0(T) =dim(co/R(T)) is finite.

The collection of all Fredholm linear operators on ¢y will be denoted by
D(cg). U T € ®(cp), then we define its index by setting x(T') = n(T) — §(T).
An example of a Fredholm operator is an invertible bounded linear operator, in
particular, the identity operator I : ¢ — ¢g,I(z) = x is a Fredholm operator
with index x(I) =0 as §(I) =n(I) = 0.

The adjoint T* of T € B(cp), if it exists, is defined by < Tu,v >=<
u, T*v > for all u,v € cg. In contrast with the classical case, the adjoint of
an operator may or may not exist. Note that if it exists, the adjoint T of an
operator 7' is unique and has the same norm as A, and hence, lies in B(cp)
as well. Since ¢y is not orthomodular, there exist operator in B(cg) which do
not admit an adjoint; for example the linear operator T : ¢y — ¢ defined by

a Banach space with the norm ||T|| = s

o0
Z x;)er, ¢ = (x;)en € co, does not admit an adjoint. We will denote
i=1
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by Ag ={T € B(cp) : lim < Te;,y >=0, for all y € ¢p} the collection of all
11— 00
element of B(cp) which admit an adjoint.

Set
Ay ={T € B(c) : le Te, =0},

and note that A; & Ay, because | < Te,,y > | < |[|[Tenlloollylloo, for all
n € Nand y € ¢y and Iy doesn’t in A;. We know that each T' € B(cg) can be

represented by:
o0
T = Z aije3 ® €,
5,5=1

where lim a;; = 0 for each j € N. Also,
1— 00

1T} = sup{[|T(e:)l|0 : # € N}
=sup{| < T'(e;),e; >|:4,5 € N}.
And T is compact if and only if : limsup{la;;| : i € N} = 0.

J]—00

Now, note that for all n € N|

ITenlloo = 10D aije; ®ei)(en) oo

i,j=1

o0
!
=1 Y aizeslen)eillo

i,j=1

oo
= ”Zainei”oo
i=1
= sup{|a;n| : i € N}.

Thus
TeA < Te Ay and T is compact.

We will call a normal projection any projection P : ¢y — ¢g such that < z,y >=
0 for each pair (z,y) € N(P) x R(P). An example of a normal projection is
P()= %y, for a fixed y € ¢o\{0}.

Let us take a fixed orthonormal sequence (y;);en € ¢ that is, < y;,y; >= 0,
for all 4,55 4 # j and ||yi|lco = 1.

The next theorem involves normal projections with compact and self-adjoint
operators. The proof can be found in [IJ.

Theorem 2.1. If the linear operator T : cg — co is compact and self-adjoint,
then there exist an element X = (\;);en € co such that:

o0
T = Z NP
i=1

Where for alli € N, P; = %yl is the normal projection defined by (y;)ien €

co. Moreover ||T|| = [|A\||oo-
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3. Main Results

From now we will consider a fixed orthonormal sequence Y = (y;):en € ¢o.
We will denote by C'y the collection of all compact operator 1}, i € co, where

=1
The adjoint 7); of T, is itself and lim 7),(e,) = 0. On the other hand, since
n—oo

Y is orthonormal for all i € N, T),(y;) = p;ys, then p; is eigenvalues of T),. Let
us denote by ¢,(7),) the set of eigenvalues of T),.
Now, the collection Cy is a linear space with the operations

T +T,u = T>\+u; ady = Tyx.

On the other hand, since ¢q is a commutative algebra with the operation \.u =
(Ai-p;), we have
T)\ OT# = T)\_# = T/_L OT,\.

In order to simplify the notation, T\ o T}, will be denoted by T.T},.
With the operations described above, Cy becomes a commutative algebra
without unit. Even more, by the fact that T\ = T}, implies A = u, the map

T:icg—=Cy; A=T(N\) =Ty

is an isometric isomorphism of algebras.

The resolvent of a bounded linear operator T : ¢g — ¢ is defined by p(T') =
{NeK: M —T isabijection and (AN —T)~1 € B(co)}. The spectrum o (T') of
T is then defined by o(T') = K\ p(T'). A scalar A € K is called an eigenvalue of
T € B(cp), whenever there exists a nonzero u € ¢g (called eigenvector associated
with \) such that Tu = Au.

Clearly, eigenvalues of T' consist of all A € K, for with AI — T is not one-to-
one, that is N(AI —T') # {0}. The collection of all eigenvalues of T is denoted
by 0,(T") (called punctual Spectrum) and is defined by

op(T)={A€o(T): NA -T) # {0}}.

Example 3.1. Consider the diagonal operator D : ¢y — ¢o defined by
Du = Z)\jujej for all u = (uj)jen € co
j=0
where sup |A;| < +00. Then o(D) = {A : k € N} the closure of {\; : k € N},
JEN
ie:
o(D)={XxeK:inf |\ = X;| =0}.
JjEN

Definition 3.2. Define the essential spectrum o.(T") of a bounded linear op-
erator T : cg — cg as follows

0e(T) ={X € K: A — T is not Fredholm operator of index 0}.
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Clearly, if A € K does not belong to neither o,(T") nor o.(T), then (A —
T) must be injective. N(AI —T) = {0} and R(AI — T) is closed with 0 =
dim N(AI —T) = dim(co/R(AI —T)). Consequently (Al —T') must be bijective
(injective and surjective) which yields that A € p(T'). In view of the previous
fact, we have
o(T) =0p(T)Uo(T).

Theorem 3.3. 1. Let T € Cy be a compact and self-adjoint operator and let
we K, u#0 be an eigenvalue of Tx. Then u = \; for some i.
2. If T € B(co), then for all T, € Cy, we have

oe(T+T,) =o0.(T).

3. If T'= D +1T,, where T, € Cy and D is a diagonal operator, then its
spectrum o (T') is given by o(T) = 0.(D) Uop(T).
4. The punctual Spectrum of T'= D + 1T}, is given by:

op(T) = {ptn + a,, : n € N}.
We use the following lemma to show the second assertion of the theorem.

Lemma 3.4. IfT € ®(co) and T, € Cy, then T+T,, € ®(co), with x(T+T),) =
xX(T).

Proof. see [10] and [2]. O

Proof of Theorem [3.3]
1. Let x € ¢y an eigenvector corresponding to p. Then

< ZT,Y; >
Thoe = Ni—————;
g z; <viyi >

Th(Thx) = Ta(ux) = pThe.

It follows from the last equation that

o~ < T,y > o~ < T,y >
T i) = u(Y S ),

= <VYi.Y > = <VYi:Y>
Thus
o0
a2 S DY > <Z,Y; > Z <z,Yi > N
P <Yi,Yi > - < Yi> Yi >
Since Thx = px # 0, it follows that < x,y; >7# 0 for some i. Hence
o0
i=1
Thus
> < T,Y; >
il —p)———="—y; =0 for <umx,y; >#0.
Z i(Ag ,Uf)<yi’yi>yz / Yi >#
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The normality of the sequence {y;} implies that

<x,y; >

oralli e N, \j(\; —
f ( u)<yi7yi>

=0; <uxz,y; >#0.
Since the eigenvectors corresponding to different eigenvalues are normal and
since z # 0, it follows that A; # 0 for some ¢ € N, then A\; — u =0 for ¢ € N.
Hence A\; = u for some 3.
2. If X does not belong to o.(T), then AI — T belongs to ®(cp) with x (Al —
A) =0, therefore A\I — T — T, belongs to ®(co) with x(A — (T +1T},)) =0 for
all T, € Cy. Then X does not belong to o.(T" + T},).
3. We have o(T") = 0.(T")Uo,(T). In view of the second assertion of theorem,
we have 0. (T') = 0.(D+1T),) = 0.(D). So, it follows that o(T) = c.(D)Uoc,(T).
4. Let y = (yYn)nen be an orthonormal sequence in ¢ then:

Ty= (D +1Tu)(y);

since y is orthonormal, we have: Dy = a, < Yn,en > e, and T,y = lpYn.
Then:

Ty =Tyn, = an < Yn,€n > €n + Unln- (*)
Taking the inner product of equality (*) with the canonical basis of ¢y we
obtain:

< Tynaen >=an < Yn,n > +Hp < Yn,En >= (Nn +a'n) < Yn,€n > .

Then < Ty, — (tn + an)Yn, €n >= 0 it follows that Ty, — (tn + an)yn = 0, if
not, there exists a nonzero (o );eny C K such that Ty, — (tbn +an)yn = Z e,
ieN
then < Z e, en >= an, absurd because a,, # 0. Consequently p,, + a,, is
ieN
an eigenvalue of 7.

Corollary 3.5. For every T, € Cy, we have o.(D +1T,,) = 0.(D), where D is
a bounded diagonal operator in cg.

Corollary 3.6. The spectrum of T'= D +T), is
o(T) = {tn + an :n € N}U(A\A*) U (A* N AY).

Proposition 3.7. Let T' = D + T, where D is diagonal operator and T}, is
compact and self-adjoint, then o,(T) No,(D) = 0.

Proof. Suppose A € 0,(T'), thus there exists u # 0, u € ¢o such that Tu = Au.
Equivalently,

) <u,y; >
"<y >

7.

(Ml —D)u=T,u= Zu
i=1
Clearly, all expressions < u,y; ># 0 for ¢ € N. If not, we will get (Al —D)u =0

with u # 0. That is, A € 0,(D) and hence there exists jo € N such that A = \;,
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u = aej,, a € K\{0}. Then for i = jy, we have: 0 =< u,y;, >=< aej,, y;, >=
a < ej,,Yj, ># 0. Absurd, consequently A doesn’t belong to ¢,(D).

Conversely, suppose that A € 0,(D). Thus there exists u # 0, u € ¢g such
that Du = Au, hence there exists i € N and oy, € K\{0} such that A = X;,
and u = oy, €;,- On the other hand, we have

< Yio» Cip >
Tu = Du+ T, u= A+ phigQtig —————"Yig-
: 'u7'0 0 < yigvyio > "
Then A\u —Tu = —uioaio%yio # 0, if not we will have p;,y;, = 0 =
T,(yi,), absurd. Then X doesn’t belong to o,(T). O

Remark 3.8. T and T, have the same eigenvectors corresponding to pu; + a;
and p;, respectively.
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