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1. Introduction and notations

Structural matrix rings (a set of matrices in which certain entries are zero)
have been investigated since they provide examples and counterexamples in
Ring Theory, and for their connection to PI algebra. Structural matrix rings
include the rings of triangular matrices and the rings of blocked triangular ma-
trices, as well as the complete matrix-rings and is studied in [2] and [11]. Matrix
rings play a fundamental role in mathematics and its applications. Triangular
matrix rings appear naturally in Lie theory of both nilpotent and solvable Lie
algebras. Since then, they have become an important ring construction; indeed
a main tool in the description of semiprimary hereditary rings (for example,
[3]). For example, the automorphisms of structural matrix rings over certain
rings were described in [1] and [4], and a left Artinian CI-prime ring was char-
acterized as a complete blocked triangular matrix ring over a division ring in
[12].

A difficult question is to decide whether a given ring is isomorphic to a
matrix ring or one of its variants. Several “hidden matrix-rings” have been
shown in the literature (see [10] for the definition and more). These rings did
not appear to be matrix-rings at the first sight, nevertheless they turned out
to be isomorphic to matrix-rings.

In this paper, for any set S of subgroups of an additive group we set Σ(S) =∑
I∈S

I and S is called independent if
∑
I∈S

I is a direct sum.

For a class C of subgroups and a subgroup L of an additive group, the sum
of C-subgroups properly contained in L is denoted by TpC(L). If the group is
a module, and C is the class of submodules, then we use the notation Tp(L)
instead. Also, a group M is called C-Artinian if M satisfies the descending
chain condition on C-subgroups, in other words, if whose C-subgroups satisfy
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2 H. Khabazian

DCC and M is called C-ind.finite if every independent set of C-subgroups is
finite. Finally, the class of submodules is denoted by M. Through this paper
we heavily use the notations, the terminologies, and the results in [7].

2. Basic Facts

Let A be a nonempty set and for every i, j ∈ A, Dij be an additive group.
The set of maps A : A×A −→

⋃
i,j∈A Dij that for every i, j ∈ A, A(i, j) ∈ Dij

and for every j ∈ A, there exist only finitely many i ∈ A with A(i, j) ̸= 0, is
denoted by MA([D]), also for every i, j ∈ A, A(i, j) will be denoted by Aij . If
for every i, j, k ∈ A, Dij × Djk −→ Dik is a distributive multiplication map
such that for every i, j, k, l ∈ A,

Dij ×Djk ×Dkl - Dij ×Djl

?

Dik ×Dkl

?

- Dil

in other words, for every i, j, k, l ∈ A, x ∈ Dij , y ∈ Djk and z ∈ Dkl, x(yz) =
(xy)z, then we say that [D] is a ring. It is clear that using the multiplication,
MA([D])×MA([D]) −→ MA([D]) given by, (AB)ik =

∑
j∈A AijBjk. MA([D])

is a ring (the ring of row finite matrices).
Let H ⊆ A×A be a quasi-ordering and for every (i, j) ̸∈ H, Dij = 0. Also

let for every (i, j), (j, k) ∈ H, Dij×Djk −→ Dik be a distributive multiplication
map such that for every (i, j), (j, k), (k, l) ∈ H, x ∈ Dij , y ∈ Djk and z ∈ Dkl,
x(yz) = (xy)z. Considering the zero multiplication Dij × Djk −→ Dik for
every (i, j) ̸∈ H or (j, k) ̸∈ H, then for every i, j, k, l ∈ A, x ∈ Dij , y ∈ Djk

and z ∈ Dkl, x(yz) = (xy)z and so [D] is a ring.
Let [D] and [T ] be rings. If for every i, j ∈ A, ∆ij : Dij −→ Tij is a

group homomorphism such that for every i, j, k ∈ A, x ∈ Dij and y ∈ Djk,
∆ij(x)∆jk(y) = ∆ik(xy), then it is clear that the map ∆ : MA([D]) −→
MA([T ]) given by ∆(A)ij = ∆ij(Aij) is a ring homomorphism. Moreover, if
for every i, j ∈ A, ∆ij is one to one (onto) then so is ∆ and conversely.
LetH ⊆ A×A be a quasi-ordering and for every (i, j) ̸∈ H, Dij = 0 = Tij . Also
let for every (i, j) ∈ H, ∆ij : Dij −→ Tij be a group homomorphism such that
for every (i, j), (j, k) ∈ H, x ∈ Dij and y ∈ Djk, ∆ij(x)∆jk(y) = ∆ik(xy). It is
easy to see that considering the zero map ∆ij : Dij −→ Tij for every (i, j) ̸∈ H,
then for every i, j, k ∈ A, x ∈ Dij and y ∈ Djk, ∆ij(x)∆jk(y) = ∆ik(xy).
Thus, the map ∆ : MA([D]) −→ MA([T ]) given by ∆(A)ij = ∆ij(Aij) for
every (i, j) ∈ H and ∆(A)ij = 0 for every (i, j) ̸∈ H, is a ring homomorphism
because. Moreover, if for every (i, j) ∈ H, ∆ij is one to one (onto) then so is
∆ and conversely.
Finally, let R be a ring and for every i ∈ A, Mi be an R-module. For every
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Rings Isomorphic to a Structural Matrix Ring Over a Division Ring 3

i, j ∈ A, setting Dij = HomR(Mi,Mj) and using the multiplication Dij ×
Djk −→ Dik, given by f ·g = g ◦ f , it is clear that [D] is a ring.

Let D be a ring, A be a nonempty set and H ⊆ A×A be a quasi-ordering
on A. We set MH(D) = {A ∈ MA×A(D) | ∀(i, j) ̸∈ H, Aij = 0}. We know that
it is called a structural matrix ring.

Lemma 2.1. Let A be a nonempty set, R be a ring and for every i ∈ A,
Mi and Ni be R-modules. Also, let for every i ∈ A, αi : Mi −→ Ni and
βi : Ni −→ Mi be homomorphisms such that βi ◦ αi = 1. For every i, j ∈
A we set Dij = HomR(Mi,Mj) and Tij = HomR(Ni, Nj). Then, the map
∆ : MA([D]) −→ MA([T ]) given by ∆(A)ij = βi ·Aij ·αj is a monomorphism.
Moreover, if for every i ∈ A, αi ◦ βi = 1, then ∆ is an isomorphism.

Proof. For each i, j ∈ A, consider the group homomorphism ∆ij : Dij −→ Tij

given by ∆ij(f) = βi ·f ·αj . For each i, j, k ∈ A, f ∈ Dij and g ∈ Djk we have

∆ij(f)·∆jk(g) = (βi ·f ·αj)·(βj ·g ·αk) = βi ·f ·g ·αk = βi ·(f ·g)·αk = ∆ik(f ·g)

On the other hand, ∆ij(Aij) = βi ·Aij ·αj = ∆(A)ij , consequently ∆ is a
homomorphism. Now let f ∈ Dij and ∆ij(f) = 0. Then, f = αi·(βi·f·αj)·βj = 0,
thus ∆ij is one to one. Thus, ∆ is a monomorphism. Finally, let g ∈ Tij . We
have ∆ij(αi ·g ·βj) = βi ·(αi ·g ·βj)·αj = g. Thus, ∆ij is onto. Consequently ∆
is an isomorphism.

Lemma 2.2. Let A be a nonempty set, R be a ring and {Mi | i ∈ A} be a
set of R-modules. For each i, j ∈ A we set Dij = HomR(Mi,Mj). The set of
R-modules F :

∑
k∈A Mk −→

∑
k∈A Mk such that for each i ∈ A there exist

only finitely many j ∈ A with πj ◦F ◦ ιi ̸= 0 is denoted by End∞(R(
∑

k∈A Mk))
or End∞(

∑
k∈A Mk) (πi is the canonical projection and ιi is the canonical

injection). The map Λ : End∞(
∑

k∈A Mk)
op −→ MA([D]) (the ring of column

finite matrices) given by Λ(F )ij = ιi ·F ·πj is an isomorphism.

Proof. Let F,G ∈ End∞(
∑

k∈A Mk)
op. For every i, k ∈ A we have

(Λ(F )Λ(G))ik =
∑
j∈A

Λ(F )ij ·Λ(G)jk =
∑
j∈A

(ιi ·F ·πj)·(ιj ·G·πk) =

ιi ·F ·(
∑
j∈A

πj ·ιj)·G·πk = ιi ·F ·G·πk = Λ(F ·G)ik

Notice that
∑

j∈A πj ·ιj = 1 element wise. Thus, Λ(F )Λ(G) = Λ(F ·G). Con-
sequently Λ is a homomorphism.
Now we show that the map is onto. Let for each i, j ∈ A, fij : Mi −→ Mj

be a homomorphism such that for each k ∈ A there exist only finitely many
l ∈ A with fkl ̸= 0. Consider i ∈ A. There exists a homomorphism θi :
Mi −→

∏
k∈A Mk such that for every j ∈ A, πj ◦ θi = fij . It is clear that

θi(Mi) ⊆
∑

k∈A Mk, so θi : Mi −→
∑

k∈A Mk. Thus, there exists a homomor-
phism F :

∑
k∈A Mk −→

∑
k∈A Mk such that for every i ∈ A, F ◦ ιi = θi,

consequently πj ◦ F ◦ ιi = fij . It is clear that F ∈ End∞(
∑

k∈A Mk) and
Λ(F )ij = πj ◦ F ◦ ιi, also it is clear that Λ is an injection.
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4 H. Khabazian

In the following, a set {Ni | i ∈ A} of fully invariant submodules of a
module N is called a 2-set if
• For each i ∈ A, every homomorphism Ni −→ Ni can be extended to a
homomorphism N −→ N .
• For every nonzero homomorphism f : N −→ N and every i ∈ A, f(Ni) ̸= 0.
• For every i, j ∈ A, either HomR(Ni, Nj) = 0 or Ni ⊆ Nj and for every
homomorphism f : Ni −→ Nj , f(Ni) ⊆ Ni.

Lemma 2.3. Let R be a ring, NR be a module and {Ni | i ∈ A} be a 2-set. For
every i, j ∈ A we set Tij = HomR(Ni, Nj). Then, MA([T ]) ∼= MH(End(NR)

op)
for a quasi-ordering H on A.

Proof. It is easy to see that H = {(i, j) ∈ A × A | Ni ⊆ Nj} is a quasi-
ordering. For every (i, j) ∈ H, we set Qij = End(RN)op and consider the map
∆ij : Qij −→ Tij given by ∆ij(f) = f |Ni

and for every (i, j) ̸∈ H, we set
Qij = 0. It is obvious that for every (i, j) ∈ H, ∆ij is a group isomorphism.
Let (i, j), (j, k) ∈ H, f ∈ Qij and g ∈ Qjk. Then, ∆ik(f ·g) = ∆ij(f)·∆jk(g).
Consequently, ∆ : MA([Q]) −→ MA([T ]) is an isomorphism. On the other
hand, MA([Q]) = MH(End(RN)op).

Lemma 2.4. Let R be a ring, MR be a module and {Mi | i ∈ A} be an
independent set of submodules of M such that M =

∑
k∈A Mk and for every

homomorphism F : M −→ M and every i ∈ A, there exist only finitely many
j ∈ A with πj ◦ F ◦ ιi ̸= 0. Also, let NR be a module such that for every
i ∈ A, Mi has an isomorphic copy Ni in N . If {Ni | i ∈ A} is a 2-set, then
End(MR)

op ∼= MH(End(NR)
op) for a quasi-ordering H on A.

Proof. For every i ∈ A, there exists an isomorphism αi : Mi −→ Ni. For every
i, j ∈ A we set Dij = HomR(Mi,Mj), βj = α−1

j and Tij = HomR(Ni, Nj).
Then, End(RM)op ∼= MA([D]) by Lemma 2.2 and MA([D]) ∼= MA([T ]) by
Lemma 2.1. On the other hand, MA([T ]) ∼= MH(End(NR)

op) for a quasi-
ordering H on A by Lemma 2.3.

Lemma 2.5. Let R be a ring with identity and {Ji | 1 ≤ i ≤ n} be an
independent set of right ideals with R =

⊕n
i=1 Ji. Also, let NR be a module

such that for every i ∈ A = {1, 2, · · · , n}, Ji has an isomorphic copy Ni in N .
If {Ni | i ∈ A} is a 2-set, then R ∼= MH(End(NR)) for a quasi-ordering H on
A.

Proof. Set D = End(NR). Applying Lemma 2.4 for M = R, we have
End(RR)

op ∼= MH(Dop). On the other hand, ϕ : R −→ End(RR) given by
ϕ(r)(x) = rx is a ring isomorphism, so R ∼= End(RR). Also, it is easy to see
that MH−1(D)op ∼= MH(Dop). Thus, R ∼= MH−1(D).

3. Sufficiency of The Conditions

Definition 3.1. A module M is called summand-form if for every submod-
ule L, the kernel of any homomorphism L −→ M is a direct summand of L
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Rings Isomorphic to a Structural Matrix Ring Over a Division Ring 5

and it is called well behaved if isomorphic submodules are identical. Thus,
M is well behaved and summand-form iff for every submodule L and every
homomorphism θ : L −→ M , L = Ker(θ) ⊕ Img(θ). It is easy to see that for
any indecomposable well behaved and summand-form module M , End(M) is a
division ring. Finally, every well behaved and summand-form module is a Duo
module.

Definition 3.2. For any set B, a set A is called B-within if A ⊆ B.

Definition 3.3. For a class C of subgroups and a subgroup K,

1. K is called C-minimal-like if for every C-subgroups J , either K ∩ J = 0
or K ⊆ J .

2. K is called C-hole if TpC(K) ̸= K.

3. We say that K is C-summand if there is a C-subgroup J such that
M = K ⊕ J .

4. We say that K is C-indecomposable if for any C-subgroups I and J ,
K = I ⊕ J implies I = 0 or J = 0.

If the group is a module, and C is the class of submodules, then we use
minimal-like, hole (or local module if L is a submodule) and co-hole
and we drop the C sign in TpC(). Furthermore, the class of C-hole subgroups is
denoted by Chs and the class of C-summand subgroups is denoted by C⊕. Thus,
according to notations in [6] and [8], the class of C-hole C-subgroups is denoted
by C ∩ Chs, the class of C-summand C-subgroups is denoted by C ∩ C⊕, and the
class of minimal C-summand C-subgroups is denoted by (C ∩ C⊕)mn, also the
class of hole subgroups is denoted by Mhs and the class of hole submodules is
denoted by M ∩Mhs.

Definition 3.4. Let R be a ring.

1. I ⊆ R is called left component, if I = Re for an idempotent e ∈ R.

2. I ⊆ R is called left annihilator, if annl(annr(I)) = I.

3. I ⊆ R is called left inner-faithful, if I ∩ annl(I) = 0.

Furthermore, the class of left annihilators is denoted by lA and the class of
right annihilators is denoted by rA. Thus, according to notations in [6] and [8],
the class of lA-summand left annihilators is denoted by lA ∩ lA⊕.

Let R be a ring and M be a left R-module. In the following, a hole sub-
module K for which Tp(K) = P(R)K, is called *-hole and ⟨lI∼=:M⟩ is the set
of submodules which are isomorphic to a left ideal of R. In the following, P(R)
is the prime radical of R.

Lemma 3.5. Let R be a ring with identity.
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6 H. Khabazian

1. For any left ideals I and J with R = I ⊕ J , there exists an idempotent
e ∈ R such that I = Re and J = R(1− e).

2. for any idempotent e ∈ R we have R = Re⊕R(1−e), R = eR⊕ (1−e)R,
annl(e) = R(1− e) and annr(e) = (1− e)R.

Proof. Straightforward.

Lemma 3.6. Let R be a ring. For every lA-minimal-like left component I and
left ideal J , every nonzero left R-module homomorphism I −→ J is one to one
and can be extended to a module homomorphism R −→ J .

Proof. There exists an idempotent e ∈ R with I = Re. Then, Ie = I. Now
let f : I −→ J be a nonzero module homomorphism. Set v = f(e). Then,
for every x ∈ I, f(x) = f(xe) = xf(e) = xv. Also, I ∩ annl(v) = 0 because
otherwise, I ⊆ annl(v), then f(I) = f(Ie) = If(e) = Iv = 0 which is a
contradiction. Thus, if x ∈ I and f(x) = 0, then xv = 0, so x ∈ I ∩ annl(v),
implying x = 0.

Lemma 3.7. Let R be a ring with identity.

1. Every nonzero lI-summand left ideal contained in a lI-indecomposable left
ideal I is equal to I.

2. Every minimal lI-summand left ideal is lI-indecomposable.

3. Every left component is an idempotent, left annihilator and left inner-
faithful left ideal.

4. For every left component I and every ideal P , P ∩ I = PI.

Proof. (1) Let K be a nonzero lI-summand left ideal contained in I. There
exists a left ideal L such that R = K ⊕ L, then I = K ⊕ (I ∩ L), implying
I = K.
(2) Let I be a minimal lI-summand left ideal. Now let K and L be left ideals
with I = K ⊕ L and K ̸= 0. There exists an ideal J with R = I ⊕ J . Then
R = K ⊕ (L⊕ J). Thus, K is a nonzero lI-summand left ideal contained in I,
implying I = K.
(3) Let I be a left component. There exists an idempotent e ∈ R with I = Re.
Then, e ∈ I2, implying I2 = I. Also, I ∩ annl(e) = 0 by Lemma 3.5. On
the other hand, annl(I) ⊆ annl(e). Thus, I ∩ annl(I) = 0. Furthermore,
I = annl(1− e) by Lemma 3.5, so I is a left annihilator.
(4) There exists an idempotent e ∈ R with I = Re. Clearly PI ⊆ P ∩ I. Now
let x ∈ P ∩ I. Then, x = xe ∈ Pe ⊆ PI. Thus, P ∩ I ⊆ PI.

Lemma 3.8. Let R be a ring with identity and I be a left ideal. The following
are equivalent.

1. I is a lI-summand.

2. I is a lA-summand.
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3. I is a left component.

Proof. (1⇒3) There exists a left ideal J with R = I ⊕ J . Thus, I = Re for an
idempotent e ∈ R by Lemma 3.6.
(3⇒2) There exists an idempotent e ∈ R with I = Re. Then, R = I ⊕ annl(e)
by Lemma 3.6. Thus, I is a lA-summand.
(2⇒1) It is obvious.

Lemma 3.9. Let R be a ring. A nonzero left ideal is lI-summand and lI-
indecomposable iff it is a minimal lI-summand left ideal.

Proof. By Lemma 3.7.

Lemma 3.10. Let R be a ring. For a proper left ideal P , a left ideal J is a
minimal non P -within left ideal iff J is lI-hole and TplI(J) = J ∩ P .

Proof. Straightforward.

Lemma 3.11. Let R be a lI-Artinian ring with identity. For every left ideal
I, the following are equivalent.

1. I is a minimal non P(R)-within left ideal.

2. I is a minimal non P(R)-within left annihilator.

3. I is a minimal left inner-faithful left annihilator.

4. I is a minimal left component.

Proof. (1⇒4) I contains a nonzero idempotent e by [9, (21.29)]. Re is a non
P(R)-within left ideal contained in I, so I = Re. Thus, I is a nonzero left
component. Now let J be a nonzero left component contained in I. Then,
J ̸⊆ P(R), implying J = I.
(4⇒1) I contains a minimal non P(R)-within left ideal N because I ̸⊆ P(R).
Then, N is a minimal left component by the above argument, implying N = I.
Thus, I is a minimal non P(R)-within left ideal.
(1⇒2) I = Re for a nonzero idempotent e by the above argument. Thus, I is
a non P(R)-within left annihilator by Lemma 3.7. Now let J be a non P(R)-
within left annihilator contained in I. Then, J = I.
(2⇒1) I contains a minimal non P(R)-within left ideal N . Then, N is a
minimal non P(R)-within left annihilator by the above argument, implying
N = I. Thus, I is a minimal non P(R)-within left ideal.
(1⇒3) I = Re for a nonzero idempotent e by the above argument. Thus, I
is a nonzero left inner-faithful left annihilator by Lemma 3.7. Now let J be
a nonzero left inner-faithful left annihilator contained in I. Then, J ̸⊆ P(R),
implying J = I.
(3⇒1) I contains a minimal non P(R)-within left ideal N because I ̸⊆ P(R).
Then, N is a minimal left inner-faithful left annihilator by the above argument,
implying N = I. Thus, I is a minimal non P(R)-within left ideal.

Lemma 3.12. Let R be a ring.
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8 H. Khabazian

1. Every nilpotent lA-minimal-like left ideal is with zero square.

2. If P(R) is nilpotent, then every nonzero square minimal left annihilator
is a minimal non P(R)-within left annihilator.

Proof. (1) Let I be a nonzero nilpotent lA-minimal-like left ideal and n be the
smallest integer that In = 0. Then, n ≥ 2 and 0 ̸= In−1 ⊆ I∩annl(I), implying
I ⊆ annl(I). Thus, I

2 = 0.
(2) By (1).

Lemma 3.13. Let R be a ring. The following are equivalent.

1. Zero is the only zero square left annihilator (left annihilator ideal).

2. Zero is the only nilpotent left annihilator (left annihilator ideal).

3. Every left annihilator (left annihilator ideal) is left inner-faithful.

In this case R is called lA-semiprime (lAI-semiprime). Also, R is called left
healthy if every minimal non P(R)-within left annihilator is a minimal left
annihilator. Clearly semiprime ⇒ lA-semiprime ⇒ lAI-semiprime. Also, right
nonsingular ⇒ lAI-semiprime by [5, Theorem 2.8]. Moreover, in a rI-Artinian
ring, lAI-semiprime ⇒ right nonsingular by [5, Theorem 2.8]. Furthermore,
lA-semiprime ⇒ there is no zero square minimal left annihilator and if the ring
is lA-Artinian, the converse also holds. Structural matrix rings over a division
ring are left healthy, right healthy, lAI-semiprime and rAI-semiprime but not
necessarily lA-semiprime or rA-semiprime

Proof. Straightforward.

Lemma 3.14. Let R be a lA-Artinian ring. If P(R) is nilpotent and R has no
zero square minimal left annihilator, then R is left healthy (The converse does
not hold).

Proof. By Let I be a minimal non P(R)-within left annihilator. I contains a
minimal left annihilator J . J is nonzero square, so J ̸⊆ P(R) by Lemma 3.12,
implying J = I. Thus, I is a minimal left annihilator.

Lemma 3.15. Let R be a nonzero ring with identity. If R is either lA ∩ lA⊕-
Artinian or lA ∩ lA⊕-ind.finite, then there exists a finite independent set T of
minimal left components such that R = Σ(T ).

Proof. By Lemma 3.8, ⟨lI ∩ lI⊕ : R⟩ = ⟨lA ∩ lA⊕ : R⟩, so by [9, (19.20)], RR
can be decomposed into a finite direct sum of indecomposable submodules.
On the other hand, every indecomposable summand submodule is a minimal
lA-summand left annihilator and conversely by Lemma 3.9.

Lemma 3.16. Let RN be a module isomorphic to a left ideal of R. For every
lA-minimal-like left ideal of R and n ∈ N , either In = 0 or In ∼= I.

Proof. In ̸= 0, implies I ̸⊆ annR(n). On the other hand, annR(n) is a left
annihilator, so I ∩ annR(n) = 0. Thus I ∼= In.
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Lemma 3.17. Let RM be a module and S ⊆ ⟨lI∼=:M⟩. If Σ(S) is faithful, then
every nonzero lA-minimal-like left ideal has a copy in a N ∈ S.

Proof. Let I be a nonzero lA-minimal-like left ideal. There exists N ∈ S with
IN ̸= 0. Then, there exists n ∈ N with In ̸= 0, implying I ∼= In by Lemma
3.16.

Lemma 3.18. Let RM be a module and N and L be submodules. If N is
isomorphic to a lA-minimal-like left component and L is isomorphic to a left
ideal, then every nonzero homomorphism N −→ L is one to one.

Proof. Let f : N −→ L be a nonzero homomorphism. There exists a lA-
minimal-like left component N0 and an isomorphism p : N0 −→ N . Also, there
exists a left ideal L0 and an isomorphism p : L0 −→ L. Then, the nonzero
homomorphism q−1 ◦ f ◦ p : N0 −→ L0 is one to one by Lemma 3.6. Thus, f
is one to one.

Lemma 3.19. Let R be a nonzero ring with identity and {Ji | 1 ≤ i ≤ n} be a
set of minimal left annihilators with R =

⊕n
i=1 Ji. Also, let M be a left module

such that for each 1 ≤ i ≤ n, Ni is the unique submodule of M which is an
isomorphic copy of Ji.

1. If M is indecomposable, then M is unitary.

2. If M is unitary, then every submodule N which is isomorphic to a left
ideal is a sum of a set of members of {Ni | 1 ≤ i ≤ n}.

3. If M is unitary and Σ⟨lI∼=:M⟩ = M , then M =
∑n

i=1 Ni.

4. If M is unitary and Σ⟨lI∼= :M⟩ = M , and R is lI-Artinian, then M is
Artinian.

5. If M is unitary, distributive, and Σ⟨lI∼= : M⟩ = M ,then for every left
module P which is isomorphic to a left ideal, for every homomorphism
f : M −→ P , Ker(f) is direct summand.

Proof. (1) Because M = {m ∈ M | 1m = 0} ⊕ {m ∈ M | 1m = m}.
(2) For m ∈ N , m ∈ Rm =

∑n
i=1 Jim, on the other hand Jim = 0 or Jim ∼= Ji

Lemma 3.16, implying Jim = Ni.
(3) By (2).
(4) By (3).
(5) For each 1 ≤ i ≤ n, Ji is a left component by Lemma 3.7, thus either
Ni ⊆ Ker(f) or Ni ∩ Ker(f) = 0 by Lemma 3.18. Thus, setting L as the sum
of Ni’s with Ni ∩Ker(f) = 0 we have Ker(f)⊕ L = M .

Theorem 3.20. Let R be a nonzero right healthy rI-Artinian ring with identity.
If R admits a faithful right module M with Σ⟨lI∼=:M⟩ = M such that End(MR)
is a division ring, isomorphic *-hole submodules are identical and for every
*-hole submodule N , every homomorphism N −→ N can be extended to a
homomorphism M −→ M , then R is isomorphic to a structural matrix ring
over a division ring.
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Proof. There exists an independent set {Ji | 1 ≤ i ≤ n} of minimal right
component with R =

⊕n
i=1 Ji by Lemma 3.15. On the other hand, for every

i ∈ A = {1, 2, · · · , n}, Ji is a minimal right annihilator by Lemma 3.11, so has
an isomorphic copy Ni in M by Lemma 3.17. For every i ∈ A, Ni is a *-hole
submodule by Lemma 3.7, Lemma 3.10 and Lemma 3.11, so {Ni | i ∈ A} is a
2-set by Lemma 3.18. Thus, R ∼= MH(End(MR)) for a quasi-ordering H on A
by Lemma 2.5.

Theorem 3.21. Let R be a nonzero right healthy rI-Artinian ring with identity.
If R admits a faithful indecomposable well behaved and summand-form right
module M with Σ⟨lI∼=:M⟩ = M such that for every hole submodule N , every
homomorphism N −→ N can be extended to a homomorphism M −→ M , then
R is isomorphic to a structural matrix ring over a division ring.
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