On graded A-2-absorbing submodules of graded modules over graded commutative rings

Saba Al-Kaseasbeh ${ }^{1}$ and Khaldoun Al-Zoubi ${ }^{2}$

Abstract

Let G be an abelian group with identity e. Let R be a G-graded commutative ring, M a graded R-module and $A \subseteq h(R)$ a multiplicatively closed subset of R. In this paper, we introduce the concept of graded A-2-absorbing submodules of M as a generalization of graded 2-absorbing submodules and graded A-prime submodules of M. We investigate some properties of this class of graded submodules.

AMS Mathematics Subject Classification (2010): 13A02; 16W50
Key words and phrases: graded A-2-absorbing submodules; graded A prime submodules; graded 2-absorbing submodules

1. Introduction and Preliminaries

Throughout this paper all rings are commutative with identity and all modules are unitary. Badawi in [16] introduced the concept of 2-absorbing ideals of commutative rings. The notion of 2 -absorbing ideals was extended to 2 absorbing submodules in [27] and [24. The concept of A-2-absorbing submodules, as a generalization of 2-absorbing submodules, was introduced in [26] and studied in 18 .

In [25], Refai and Al-Zoubi introduced the concept of graded primary ideal. The concept of graded 2-absorbing ideals, as a generalization of graded prime ideals, was introduced and studied by Al-Zoubi, Abu-Dawwas and Ceken in [4]. The concept of graded prime submodules was introduced and studied by many authors, see for example [1, 3, 10, 11, 12, 13, 14, 23]. The concept of graded 2 -absorbing submodules, as a generalization of graded prime submodules, was introduced by Al-Zoubi and Abu-Dawwas in [2] and studied in [8, 5]. Then many generalizations of graded 2 -absorbing submodules were studied such as graded 2 -absorbing primary (see [17), graded weakly 2 -absorbing primary (see [7]) and graded classical 2-absorbing submodule (see [6]).

Recently, Al-Zoubi and Al-Azaizeh in [9] introduced the concept of graded A-prime submodule over a commutative graded ring as a new generalization of graded prime submodule. The main purpose of this paper is to introduce the notion of graded A-2-absorbing submodules over a commutative graded ring as a new generalization of graded 2-absorbing submodules and graded

[^0]A-prime submodules. A number of results concerning these classes of graded submodules and their homogeneous components are given.

First, we recall some basic properties of graded rings and modules which will be used in the sequel. We refer to [19, [20, 21 and [22] for these basic properties and more information on graded rings and modules.

Let G be an abelian group with identity element e. A ring R is called a graded ring (or G-graded ring) if there exist additive subgroups R_{g} of R indexed by the elements $g \in G$ such that $R=\oplus_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. The elements of R_{g} are said to be homogeneous of degree g and all the homogeneous elements are denoted by $h(R)$, i.e. $h(R)=\cup_{g \in G} R_{g}$. If $r \in R$, then r can be written uniquely as $\sum_{g \in G} r_{g}$, where r_{g} is called a homogeneous component of r in R_{g}. Moreover, R_{e} is a subring of R and $1 \in R_{e}$ (see [22]).

Let $R=\oplus_{g \in G} R_{g}$ be a G-graded ring. An ideal I of R is said to be a graded ideal if $I=\oplus_{g \in G} I_{g}$ where $I_{g}=I \cap R_{g}$ for all $g \in G$ (see [22]).

Let $R=\oplus_{h \in G} R_{h}$ be a G-graded ring. A left R-module M is said to be a graded R-module (or G-graded R-module) if there exists a family of additive subgroups $\left\{M_{h}\right\}_{h \in G}$ of M such that $M=\oplus_{h \in G} M_{h}$ and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$. Also if an element of M belongs to $\cup_{h \in G} M_{h}=: h(M)$, then it is called homogeneous. Note that M_{h} is an R_{e}-module for every $h \in G$. Let $M=\oplus_{h \in G} M_{h}$ be a G-graded R-module. A submodule C of M is said to be a graded submodule of M if $C=\oplus_{h \in G} C_{h}$ where $C_{h}=C \cap M_{h}$ for all $h \in G$. In this case, C_{h} is called the h-component of C (see [22]).

Let R be a G-graded ring, M a graded R-module, C a graded submodule of M and I a graded ideal of R. Then $\left(C:_{R} M\right)$ is defined as $\left(C:_{R} M\right)=\{r \in$ $R: r M \subseteq C\}$. It is shown in 14 that if C is a graded submodule of M, then $\left(C:_{R} M\right)$ is a graded ideal of R. The graded submodule $\{m \in M: m I \subseteq C\}$ will be denoted by $\left(C:_{M} I\right)$. Also we use $\left(C:_{M} s\right)$ to denoted $\left(C:_{M} R s\right)$ for each $s \in R$.

2. RESULTS

Definition 2.1. Let R be a G-graded ring, M a graded R-module, $A \subseteq h(R)$ a multiplicatively closed subset of R and C a graded submodule of M such that $\left(C:_{R} M\right) \bigcap A=\emptyset$. We say that C is a graded A-2-absorbing submodule of M if there exists a fixed $a_{\alpha} \in A$ and whenever $r_{g} s_{h} m_{\lambda} \in C$, where $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$, implies that $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$. In particular, a graded ideal J of R is said to be a graded A-2-absorbing ideal if J is a graded A-2-absorbing submodule of the graded R-module R.

Recall from [2] that a proper graded submodule C of a G-graded R-module M is said to be a graded 2-absorbing submodule of M if whenever $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $r_{g} s_{h} m_{\lambda} \in C$, then either $r_{g} m_{\lambda} \in C$ or $s_{h} m_{\lambda} \in C$ or $r_{g} s_{h} \in\left(C:_{R} M\right)$.

Let $A \subseteq h(R)$ be a multiplicatively closed subset of R. It is easy to see that every graded 2 -absorbing submodule C of M with $\left(C:_{R} M\right) \bigcap A=\emptyset$ is a graded A-2-absorbing submodule. The following example shows that the converse is not true in general.

Example 2.2. Let $G=(\mathbb{Z},+)$ and $R=(\mathbb{Z},+,$.$) . Define$ $R_{g}=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } g=0 \\ 0 & \text { otherwise }\end{array}\right\}$. Then R is a G-graded ring. Let $M=\mathbb{Z} \times \mathbb{Z}_{6}$. Then M is a G-graded R-module with

$$
M_{g}=\left\{\begin{array}{cc}
\mathbb{Z} \times\{\overline{0}\} & \text { if } g=0 \\
\{0\} \times \mathbb{Z}_{6} & \text { if } g=1 \\
\{0\} \times\{\overline{0}\} & \text { otherwise }
\end{array}\right\} .
$$

Now, consider the zero graded submodule $C=\{0\} \times\{\overline{0}\}$ of M. Then C is not a graded 2-absorbing submodule of M since $2 \cdot 3 \cdot(0, \overline{1})=(0, \overline{0}) \in C$, but $2 \cdot 3 \notin(C: \mathbb{Z} M)=\{0\}, 2 \cdot(0, \overline{1})=(0, \overline{2}) \notin C$ and $3 \cdot(0, \overline{1})=(0, \overline{3}) \notin C$. Let $A=\mathbb{Z}-\{0\} \subseteq R_{0} \subseteq h(R)$ be a multiplicatively closed subset of R and put $a_{\alpha}=6 \in A$. An easy computation shows that C is a graded A-2-absorbing submodule of M.

Let R be a G-graded ring, M a graded R-module and $A \subseteq h(R)$ be a multiplicatively closed subset of R. Then, $A^{*}=\left\{a_{g} \in h(R): \frac{a_{g}}{1}\right.$ is a unit of $\left.A^{-1} R\right\}$ is a multiplicatively closed subset of R containing A.

Theorem 2.3. Let R be a G-graded ring, M a graded R-module and $A \subseteq h(R)$ a multiplicatively closed subset of R. Then the following statements hold:
(i) Suppose that $A_{1} \subseteq A_{2} \subseteq h(R)$ are two multiplicatively closed subsets of R. If C is a graded $A_{1}-2$-absorbing submodule and $\left(C:_{R} M\right) \bigcap A_{2}=\emptyset$, then C is a graded A_{2}-2-absorbing submodule of M.
(ii) A graded submodule C of M is a graded A-2-absorbing submodule of M if and only if it is a graded A^{*}-2-absorbing submodule of M.

Proof. (i) It is clear.
(ii) Assume that C is a graded A-2-absorbing submodule of M. First, we want to show that $\left(C:_{R} M\right) \bigcap A^{*}=\emptyset$. Suppose there exists $r_{g} \in\left(C:_{R}\right.$ $M) \bigcap A^{*}$. Then $\frac{r_{g}}{1}$ is a unit of $A^{-1} R$, it follows that there exist $s_{h} \in h(R)$ and $a_{i} \in A$ such that $\frac{r_{g}}{1} \frac{s_{h}}{a_{i}}=1$. Hence $b_{j} a_{i}=b_{j} r_{g} s_{h}$ for some $b_{j} \in A$. So $b_{j} a_{i}=b_{j} r_{g} s_{h} \in\left(C:_{R} M\right) \bigcap A$, a contradiction. Therefore $\left(C:_{R} M\right) \bigcap A^{*}=\emptyset$. Then by (i), we get C is a graded A^{*}-2-absorbing submodule of M since $A \subseteq A^{*}$. Conversely, suppose that C is a graded $A^{*}-2$-absorbing submodule of M. Let $r_{g} s_{k} m_{h} \in C$ for some $r_{g}, s_{k} \in h(R)$ and $m_{h} \in h(M)$. Then there is a fixed $a_{i}^{*} \in A^{*}$ such that $a_{i}^{*} r_{g} s_{k} \in\left(C:_{R} M\right)$ or $a_{i}^{*} r_{g} m_{h} \in C$ or $a_{i}^{*} s_{k} m_{h} \in C$. Since $\frac{a_{i}^{*}}{1}$ is a unit of $A^{-1} R$, there exist $t_{j} \in h(R)$ and $a_{k}, b_{l} \in A$ such that $b_{l} a_{k}=b_{l} a_{i}^{*} t_{j}$. It follows that either $\left(b_{l} a_{k}\right) r_{g} s_{k}=b_{l} a_{i}^{*} t_{j} r_{g} s_{k} \in\left(C:_{R} M\right)$ or $\left(b_{l} a_{k}\right) r_{g} m_{h}=b_{l} a_{i}^{*} t_{j} r_{g} m_{h} \in C$ or $\left(b_{l} a_{k}\right) s_{k} m_{h}=b_{l} a_{i}^{*} t_{j} s_{k} m_{h} \in C$. Therefore, C is a graded A-2-absorbing submodule of M.

Theorem 2.4. Let R be a G-graded ring, M a graded R-module and $A \subseteq h(R)$ a multiplicatively closed subset of R. If C is a graded A-2-absorbing submodule of M, then $A^{-1} C$ is a graded 2-absorbing submodule of $A^{-1} M$.

Proof. Assume that C is a graded A-2-absorbing submodule of M. Let $\frac{r_{g_{1}}}{a_{h_{1}}} \frac{s_{g_{2}}}{a_{h_{2}}} \in$ $h\left(A^{-1} R\right)$ and $\frac{m_{g_{3}}}{a_{h_{3}}} \in h\left(A^{-1} M\right)$ such that $\frac{r_{g_{1}}}{a_{h_{1}}} \frac{s_{g_{2}}}{a_{h_{2}}} \frac{m_{g_{3}}}{a_{h_{3}}} \in A^{-1} C$. Then, there exists $a_{h_{4}} \in A$ such that $\left(a_{h_{4}} r_{g_{1}}\right) s_{g_{2}} m_{g_{3}} \in C$. As C is a graded A-2-absorbing submodule of M, there is a fixed $a_{h_{5}} \in A$ such that $a_{h_{5}}\left(a_{h_{4}} r_{g_{1}}\right) s_{g_{2}} \in\left(C:_{R} M\right)$ or $a_{h_{5}}\left(a_{h_{4}} r_{g_{1}}\right) m_{g_{3}} \in C$ or $a_{h_{5}} s_{g_{2}} m_{g_{3}} \in C$. Hence, we get either $\frac{r_{g_{1}}}{a_{h_{1}}} \frac{s_{g_{2}}}{a_{h_{2}}}=$ $\frac{a_{h_{5}} a_{h_{4}} r_{g_{1}} s_{g_{2}}}{a_{h_{5}} a_{h_{4}} a_{h_{1}} a_{h_{2}}} \in A^{-1}\left(C:_{R} M\right) \subseteq\left(A^{-1} C:_{A^{-1} R} A^{-1} M\right)$ or $\frac{r_{g_{1}}}{a_{h_{1}}} \frac{m_{g_{3}}}{a_{h_{3}}}=\frac{a_{h_{5}} r_{g_{1} m_{2}} m_{g_{3}}}{a_{h_{5}} a_{h_{1}} a_{h_{3}}} \in$ $A^{-1} C$ or $\frac{s_{g_{2}}^{2}}{a_{h_{2}}} \frac{m_{g_{3}}}{a_{h_{3}}}=\frac{a_{h_{4}} s_{g_{2}} m_{g_{3}}}{a_{h_{4}} a_{h_{2}} a_{h_{3}}} \in A^{-1} C$. Therefore, $A^{-1} C$ is a graded 2absorbing submodule of $A^{-1} M$.

Lemma 2.5. Let R be a G-graded ring, M a graded R-module, $A \subseteq h(R)$ be a multiplicatively closed subset of R and C a graded A-2-absorbing submodule of M. Let $K=\bigoplus_{\lambda \in G} K_{\lambda}$ be a graded submodule of M. Then there exists a fixed $a_{\alpha} \in A$ and whenever $r_{g}, s_{h} \in h(R)$ and $\lambda \in G$ such that $r_{g} s_{h} K_{\lambda} \subseteq C$, then $a_{\alpha} r_{g} K_{\lambda} \subseteq C$ or $a_{\alpha} s_{h} K_{\lambda} \subseteq C$ or $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$.
Proof. Let $r_{g}, s_{h} \in h(R)$, and $\lambda \in G$ such that $r_{g} s_{h} K_{\lambda} \subseteq C$. Since C is a graded A-2-absorbing submodule of M, there exists $a_{\alpha} \in A$ so that $r_{g} s_{h} m_{\lambda} \in$ C implies $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$ for each $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$. Now, we will show that $a_{\alpha} r_{g} K_{\lambda} \subseteq C$ or $a_{\alpha} s_{h} K_{\lambda} \subseteq C$ or $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$. Assume on the contrary that $a_{\alpha} r_{g} K_{\lambda} \nsubseteq C$, $a_{\alpha} s_{h} K_{\lambda} \nsubseteq C$ and $a_{\alpha} r_{g} s_{h} \notin\left(C:_{R} M\right)$. Then there exist $k_{\lambda}, k_{\lambda}^{\prime} \in K$ such that $a_{\alpha} r_{g} k_{\lambda} \notin C$ and $a_{\alpha} s_{h} k_{\lambda}^{\prime} \notin C$. Since C is a graded A-2-absorbing submodule of $M, r_{g} s_{h} k_{\lambda} \in C, a_{\alpha} r_{g} k_{\lambda} \notin C$ and $a_{\alpha} r_{g} s_{h} \notin\left(C:_{R} M\right)$, we get $a_{\alpha} s_{h} k_{\lambda} \in C$. In a similar manner, we get $a_{\alpha} r_{g} k_{\lambda}^{\prime} \in C$. By $k_{\lambda}+k_{\lambda}^{\prime} \in K_{\lambda} \subseteq h(M)$ it follows that $r_{g} s_{h}\left(k_{\lambda}+k_{\lambda}^{\prime}\right) \in C$. Since C is a graded A-2-absorbing submodule of M and $a_{\alpha} r_{g} s_{h} \notin\left(C:_{R} M\right)$, we have either $a_{\alpha} r_{g}\left(k_{\lambda}+k_{\lambda}^{\prime}\right) \in C$ or $a_{\alpha} s_{h}\left(k_{\lambda}+k_{\lambda}^{\prime}\right) \in C$. If $a_{\alpha} r_{g}\left(k_{\lambda}+k_{\lambda}^{\prime}\right)=a_{\alpha} r_{g} k_{\lambda}+a_{\alpha} r_{g} k_{\lambda}^{\prime} \in C$, then we get $a_{\alpha} r_{g} k_{\lambda} \in C$ since $a_{\alpha} r_{g} k_{\lambda}^{\prime} \in C$, a contradiction. If $a_{\alpha} s_{h}\left(k_{\lambda}+k_{\lambda}^{\prime}\right)=a_{\alpha} s_{h} k_{\lambda}+a_{\alpha} s_{h} k_{\lambda}^{\prime} \in C$, then we get $a_{\alpha} s_{h} k_{\lambda}^{\prime} \in C$ since $a_{\alpha} s_{h} k_{\lambda} \in C$, a contradiction. Therefore $a_{\alpha} r_{g} K_{\lambda} \subseteq C$ or $a_{\alpha} s_{h} K_{\lambda} \subseteq C$ or $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$.

Theorem 2.6. Let R be a G-graded ring, M a graded R-module, C a graded submodule of M and $A \subseteq h(R)$ be a multiplicatively closed subset of R with $\left(C:_{R} M\right) \bigcap A=\emptyset$. Let $I=\bigoplus_{g \in G} I_{g}$ and $J=\bigoplus_{h \in G} J_{h}$ be graded ideals of R and $K=\underset{\lambda \in G}{\bigoplus} K_{\lambda}$ a graded submodule of M. Then the following statements are equivalent:
(i) C is a graded A-2-absorbing submodule of M;
(ii) There exists a fixed $a_{\alpha} \in A$ such that $I_{g} J_{h} K_{\lambda} \subseteq C$ for some $g, h, \lambda \in G$ implies either $a_{\alpha} I_{g} K_{\lambda} \subseteq C$ or $a_{\alpha} J_{h} K_{\lambda} \subseteq C$ or $a_{\alpha} I_{g} J_{h} \subseteq\left(C:_{R} M\right)$.

Proof. $(i) \Rightarrow($ ii $)$ Assume that C is a graded A-2-absorbing submodule of M and $g, h, \lambda \in G$ such that $I_{g} J_{h} K_{\lambda} \subseteq C$. Since C is a graded A-2-absorbing
submodule of M, there exists a fixed $a_{\alpha} \in A$ so that $r_{g} s_{h} m_{\lambda} \in C$ implies $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$ for each $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$. Now, we will show that $a_{\alpha} I_{g} K_{\lambda} \subseteq C$ or $a_{\alpha} J_{h} K_{\lambda} \subseteq C$ or $a_{\alpha} I_{g} J_{h} \subseteq\left(C:_{R} M\right)$. Assume on the contrary that $a_{\alpha} I_{g} K_{\lambda} \nsubseteq C, a_{\alpha} J_{h} K_{\lambda} \nsubseteq C$ and $a_{\alpha} I_{g} J_{h} \nsubseteq\left(C:_{R} M\right)$. Then there exist $x_{g} \in I_{g}$ and $y_{h} \in J_{h}$ such that $a_{\alpha} x_{g} K_{\lambda} \nsubseteq C$ and $a_{\alpha} y_{h} K_{\lambda} \nsubseteq C$. Since $x_{g} y_{h} K_{\lambda} \subseteq C$, by Lemma 2.5 , we get $a_{\alpha} x_{g} y_{h} \in\left(C:_{R} M\right)$. Since $a_{\alpha} I_{g} J_{h} \nsubseteq\left(C:_{R} M\right)$, there exist $r_{g} \in I_{g}$ and $s_{h} \in J_{h}$ such that $a_{\alpha} r_{g} s_{h} \notin\left(C:_{R} M\right)$. Then by Lemma 2.5, we have $a_{\alpha} r_{g} K_{\lambda} \subseteq C$ or $a_{\alpha} s_{h} K_{\lambda} \subseteq C$ since $r_{g} s_{h} K_{\lambda} \subseteq C$. Consider the following three cases:

Case1: $a_{\alpha} r_{g} K_{\lambda} \subseteq C$ and $a_{\alpha} s_{h} K_{\lambda} \nsubseteq C$. Since $x_{g} s_{h} K_{\lambda} \subseteq C, a_{\alpha} s_{h} K_{\lambda} \nsubseteq C$ and $a_{\alpha} x_{g} K_{\lambda} \nsubseteq C$, by Lemma 2.5, we get $a_{\alpha} x_{g} s_{h} \in\left(C:_{R} M\right)$. As $a_{\alpha} x_{g} K_{\lambda} \nsubseteq C$ and $a_{\alpha} r_{g} K_{\lambda} \subseteq C$, we have $a_{\alpha}\left(x_{g}+r_{g}\right) K_{\lambda} \nsubseteq C$. By $\left(x_{g}+r_{g}\right) \in I_{g}$ it follows that $\left(x_{g}+r_{g}\right) s_{h} K_{\lambda} \subseteq C$. Since $\left(x_{g}+r_{g}\right) s_{h} K_{\lambda} \subseteq C, a_{\alpha}\left(x_{g}+r_{g}\right) K_{\lambda} \nsubseteq C$ and $a_{\alpha} s_{h} K_{\lambda} \nsubseteq C$, by Lemma 2.5, we get $a_{\alpha}\left(x_{g}+r_{g}\right) s_{h} \in\left(C:_{R} M\right)$. By $a_{\alpha}\left(x_{g}+r_{g}\right) s_{h} \in\left(C:_{R} M\right)$ and $a_{\alpha} x_{g} s_{h} \in\left(C:_{R} M\right)$ it follows that $a_{\alpha} r_{g} s_{h} \in$ $\left(C:_{R} M\right)$ which is a contradiction.

Case2: $a_{\alpha} r_{g} K_{\lambda} \nsubseteq C$ and $a_{\alpha} s_{h} K_{\lambda} \subseteq C$. The proof is similar to that of Case 1.

Case 3: $a_{\alpha} r_{g} K_{\lambda} \subseteq C$ and $a_{\alpha} s_{h} K_{\lambda} \subseteq C$. Since $a_{\alpha} y_{h} K_{\lambda} \nsubseteq C$ and $a_{\alpha} s_{h} K_{\lambda} \subseteq$ C, we get $a_{\alpha}\left(s_{h}+y_{h}\right) K_{\lambda} \nsubseteq C$. By $\left(s_{h}+y_{h}\right) \in J_{h}$ it follows that $x_{g}\left(s_{h}+y_{h}\right) K_{\lambda} \subseteq$ C. Since $x_{g}\left(s_{h}+y_{h}\right) K_{\lambda} \subseteq C, a_{\alpha}\left(s_{h}+y_{h}\right) K_{\lambda} \nsubseteq C$ and $a_{\alpha} x_{g} K_{\lambda} \nsubseteq C$, by Lemma 2.5, we get $a_{\alpha} x_{g}\left(s_{h}+y_{h}\right) \in\left(C:_{R} M\right)$. Then we get $a_{\alpha} x_{g} s_{h} \in\left(C:_{R} M\right)$ since $a_{\alpha} x_{g}\left(s_{h}+y_{h}\right) \in\left(C:_{R} M\right)$ and $a_{\alpha} x_{g} y_{h} \in\left(C:_{R} M\right)$. As $a_{\alpha} x_{g} K_{\lambda} \nsubseteq C$ and $a_{\alpha} r_{g} K_{\lambda} \subseteq C$, we have $a_{\alpha}\left(r_{g}+x_{g}\right) K_{\lambda} \nsubseteq C$. Then by Lemma 2.5, $a_{\alpha}\left(r_{g}+x_{g}\right) y_{h} \in$ $\left(C:_{R} M\right)$ since $\left(r_{g}+x_{g}\right) y_{h} K_{\lambda} \subseteq C, a_{\alpha}\left(r_{g}+x_{g}\right) K_{\lambda} \nsubseteq C$ and $a_{\alpha} y_{h} K_{\lambda} \nsubseteq C$. Since $a_{\alpha}\left(r_{g}+x_{g}\right) y_{h} \in\left(C:_{R} M\right)$ and $a_{\alpha} x_{g} y_{h} \in\left(C:_{R} M\right)$, we get $a_{\alpha} r_{g} y_{h} \in$ $\left(C:_{R} M\right)$. Thus by Lemma 2.5, we get $a_{\alpha}\left(r_{g}+x_{g}\right)\left(s_{h}+y_{h}\right) \in\left(C:_{R} M\right)$ since $\left(r_{g}+x_{g}\right)\left(s_{h}+y_{h}\right) K_{\lambda} \subseteq C, a_{\alpha}\left(r_{g}+x_{g}\right) K_{\lambda} \nsubseteq C$ and $a_{\alpha}\left(s_{h}+y_{h}\right) K_{\lambda} \nsubseteq C$. As $a_{\alpha}\left(r_{g}+x_{g}\right)\left(s_{h}+y_{h}\right)=a_{\alpha} r_{g} s_{h}+a_{\alpha} r_{g} y_{h}+a_{\alpha} x_{g} s_{h}+a_{\alpha} x_{g} y_{h} \in\left(C:_{R} M\right)$ and $a_{\alpha} r_{g} y_{h}, a_{\alpha} x_{g} s_{h}, a_{\alpha} x_{g} y_{h} \in\left(C:_{R} M\right)$, we have $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$, a contradiction.
(ii) \Rightarrow (i) Assume that (ii) holds. Let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ such that $r_{g} s_{h} m_{\lambda} \in C$. Let $I=r_{g} R$ and $J=s_{h} R$ be a graded ideals of R generated by r_{g} and s_{h}, respectively and $K=m_{\lambda} R$ a graded submodule of M generated by m_{λ}. Then $I_{g} J_{h} K_{\lambda} \subseteq C$. By our assumption, there exists $a_{\alpha} \in A$ such that either $a_{\alpha} I_{g} K_{\lambda} \subseteq C$ or $a_{\alpha} J_{h} K_{\lambda} \subseteq C$ or $a_{\alpha} I_{g} J_{h} \subseteq\left(C:_{R} M\right)$. This yields that either $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$ or $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$. Therefore, C is a graded A-2-absorbing submodule of M.

Corollary 2.7. Let R be a G-graded ring, P a graded ideal of R and $A \subseteq h(R)$ be a multiplicatively closed subset of R with $P \bigcap A=\emptyset$. Let $I=\bigoplus_{g \in G} I_{g}, J=$
$\bigoplus_{h \in G} J_{h}$ and $L=\bigoplus_{\lambda \in G} L_{\lambda}$ be graded ideals of R. Then the following statements are equivalent:
(i) P is a graded A-2-absorbing ideal of R;
(ii) There exists $a_{\alpha} \in A$ such that $I_{g} J_{h} L_{\lambda} \subseteq P$ for some $g, h, \lambda \in G$ implies either $a_{\alpha} I_{g} L_{\lambda} \subseteq P$ or $a_{\alpha} J_{h} L_{\lambda} \subseteq P$ or $a_{\alpha} I_{g} J_{h} \subseteq P$.

Lemma 2.8. [15, Lemma 2.2] Let R be a G-graded ring and N, K, L graded R-submodules of a graded R-module M with $N \subseteq K \cup L$. Then $N \subseteq K$ or $N \subseteq L$.

Theorem 2.9. Let R be a G-graded ring, M a graded R-module, C a graded submodule of M and $A \subseteq h(R)$ be a multiplicatively closed subset of R with $\left(C:_{R} M\right) \bigcap A=\emptyset$. Then the following statements are equivalent:
(i) C is a graded A-2-absorbing submodule of M;
(ii) There is a fixed $a_{\alpha} \in A$ such that for every $r_{g}, s_{g} \in h(R)$, we have either $\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)=\left(C:_{M} a_{\alpha}^{2} r_{g}\right)$ or $\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)=\left(C:_{M} a_{\alpha}^{2} s_{h}\right)$ or $\left(C:_{M} a_{\alpha}^{3} r_{g} s_{h}\right)=M$.

Proof. $(i) \Rightarrow($ ii) Assume that C is a graded A-2-absorbing submodule of M. Then there exists a fixed $a_{\alpha} \in A$ such that whenever $r_{g} s_{h} m_{\lambda} \in C$, where r_{g}, $s_{g} \in h(R)$ and $m_{\lambda} \in h(M)$, then either $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$. Now let $m_{\lambda} \in\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right) \cap h(M)$. Hence $\left(a_{\alpha} r_{g}\right)\left(a_{\alpha} s_{h}\right) m_{\lambda} \in C$. Then either $a_{\alpha}^{2} r_{g} m_{\lambda} \in C$ or $a_{\alpha}^{2} s_{h} m_{\lambda} \in C$ or $a_{\alpha}^{3} r_{g} s_{h} \in\left(C:_{R} M\right)$ as C is a graded A-2-absorbing submodule of M. If for every $m_{\lambda} \in\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right) \cap h(M)$, it holds that $a_{\alpha}^{2} r_{g} m_{\lambda} \in C$ or $a_{\alpha}^{2} s_{h} m_{\lambda} \in C$, then $\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right) \subseteq\left(C:_{M}\right.$ $\left.a_{\alpha}^{2} r_{g}\right) \cup\left(C:_{M} a_{\alpha}^{2} s_{h}\right)$. Clearly $\left(C:_{M} a_{\alpha}^{2} r_{g}\right) \cup\left(C:_{M} a_{\alpha}^{2} s_{h}\right) \subseteq\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)$. So $\left(C:_{M} a_{\alpha}^{2} r_{g}\right) \cup\left(C:_{M} a_{\alpha}^{2} s_{h}\right)=\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)$. By Lemma 2.8, $\left(C:_{M}\right.$ $\left.a_{\alpha}^{2} r_{g}\right)=\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)$ or $\left(C:_{M} a_{\alpha}^{2} s_{h}\right)=\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)$. If there exists $m_{\lambda} \in\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right) \cap h(M)$ such that $a_{\alpha}^{2} r_{g} m_{\lambda} \notin C$ and $a_{\alpha}^{2} s_{h} m_{\lambda} \notin C$, then $a_{\alpha}^{3} r_{g} s_{h} \in\left(C:_{R} M\right)$, and therefore $\left(C:_{M} a_{\alpha}^{3} r_{g} s_{h}\right)=M$.
(ii) $\Rightarrow(i)$ Let $r_{g} s_{h} m_{\lambda} \in C$, where $r_{g}, s_{g} \in h(R)$ and $m_{\lambda} \in h(M)$. Thus $m_{\lambda} \in\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)$. By given hypothesis, we have $\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)=\left(C:_{M}\right.$ $\left.a_{\alpha}^{2} r_{g}\right)$ or $\left(C:_{M} a_{\alpha}^{2} r_{g} s_{h}\right)=\left(C:_{M} a_{\alpha}^{2} s_{h}\right)$ or $\left(C:_{M} a_{\alpha}^{3} r_{g} s_{h}\right)=M$. Then $a_{\alpha}^{2} r_{g} m_{\lambda} \in$ C or $a_{\alpha}^{2} s_{h} m_{\lambda} \in C$ or $a_{\alpha}^{3} r_{g} s_{h} \in\left(C:_{R} M\right)$. This yields that either $a_{\alpha}^{3} r_{g} m_{\lambda} \in C$ or $a_{\alpha}^{3} s_{h} m_{\lambda} \in C$ or $a_{\alpha}^{3} r_{g} s_{h} \in\left(C:_{R} M\right)$. By setting $s^{*}=a_{\alpha}^{3}, C$ is a graded A-2-absorbing submodule of M.

Lemma 2.10. Let R be a G-graded ring, M a graded R-module, $A \subseteq h(R)$ be a multiplicatively closed subset of R and C a graded A-2-absorbing submodule of M. Then the following statements hold:
(i) There exists a fixed $a_{\alpha} \in A$ such that $\left(C:_{M} a_{\alpha}^{3}\right)=\left(C:_{M} a_{\alpha}^{n}\right)$ for all $n \geqslant 3$.
(ii) There exists a fixed $a_{\alpha} \in A$ such that $\left(C:_{R} a_{\alpha}^{3} M\right)=\left(C:_{R} a_{\alpha}^{n} M\right)$ for all $n \geqslant 3$.

Proof. (i) Since C a graded A-2-absorbing submodule of M, there exists a fixed $a_{\alpha} \in A$ such that whenever $r_{g} s_{h} m_{\lambda} \in C$, where $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$, then either $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$. Let $m_{\lambda} \in$ $\left(C:_{M} a_{\alpha}^{4}\right) \cap h(M)$, it follows that $a_{\alpha}^{4} m_{\lambda}=a_{\alpha}^{2}\left(a_{\alpha}^{2} m_{\lambda}\right) \in C$. Since C is a graded A-2-absorbing submodule of M, then either $a_{\alpha}^{3} m_{\lambda} \in C$, or $a_{\alpha}^{5} \in\left(C:_{R} M\right)$. But $a_{\alpha}^{5} \in\left(C:_{R} M\right)$ is impossible, since $a_{\alpha}^{5} \in A$, therefore $a_{\alpha}^{3} m_{\lambda} \in C$ must hold, it follows that $m_{\lambda} \in\left(C:_{M} a_{\alpha}^{3}\right)$. Hence $\left(C:_{M} a_{\alpha}^{4}\right) \subseteq\left(C:_{M} a_{\alpha}^{3}\right)$. Since the other inclusion is always satisfied, we get $\left(C:_{M} a_{\alpha}^{4}\right)=\left(C:_{M} a_{\alpha}^{3}\right)$. Assume that $\left(C:_{M} a_{\alpha}^{3}\right)=\left(C:_{M} a_{\alpha}^{k}\right)$ for all $k<n$. We will show that $\left(C:_{M} a_{\alpha}^{3}\right)=\left(C:_{M}\right.$ $\left.a_{\alpha}^{n}\right)$. Let $m_{\lambda}^{\prime} \in\left(C:_{M} a_{\alpha}^{n}\right) \cap h(M)$, it follows that $a_{\alpha}^{n} m_{\lambda}^{\prime}=a_{\alpha}^{2}\left(a_{\alpha}^{n-2} m_{\lambda}^{\prime}\right) \in C$. Since C is a graded A-2-absorbing submodule of M, then either $a_{\alpha}^{3} m_{\lambda}^{\prime} \in C$ or $a_{\alpha}^{n-1} m_{\lambda}^{\prime} \in C$ or $a_{\alpha}^{n+1} \in\left(C:_{R} M\right)$. But $a_{\alpha}^{n+1} \in\left(C:_{R} M\right)$ is impossible, since $a_{\alpha}^{n+1} \in A$, it follows that $m_{\lambda}^{\prime} \in\left(C:_{M} a_{\alpha}^{3}\right) \cup\left(C:_{M} a_{\alpha}^{n-1}\right)=\left(C:_{M} a_{\alpha}^{3}\right)$ by induction hypothesis. Therefore $\left(C:_{M} a_{\alpha}^{3}\right)=\left(C:_{M} a_{\alpha}^{n}\right)$ for every $n \geqslant 3$.
(ii) Follows directly from (i).

Theorem 2.11. Let R be a G-graded ring, M a graded R-module, $A \subseteq h(R)$ be a multiplicatively closed subset of R and C a graded submodule of M with $\left(C:_{R} M\right) \cap A=\emptyset$. Then the following statements are equivalent:
(i) C is a graded A-2-absorbing submodule.
(ii) $\left(C:_{M} a_{\alpha}\right)$ is a graded 2-absorbing submodule of M for some $a_{\alpha} \in A$.

Proof. $(i) \Rightarrow($ ii $)$ Assume that C is a graded A-2-absorbing submodule. Then there exists a fixed $a_{\alpha} \in A$ such that whenever $r_{g} s_{h} m_{\lambda} \in C$, where $r_{g}, s_{h} \in$ $h(R)$ and $m_{\lambda} \in h(M)$, then either $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$. By Lemma 2.10, we have $\left(C:_{M} a_{\alpha}^{3}\right)=\left(C:_{M} a_{\alpha}^{n}\right)$ and $\left(C:_{R} a_{\alpha}^{3} M\right)=\left(C:_{R} a_{\alpha}^{n} M\right)$ for all $n \geqslant 3$. We show that $\left(C:_{M} a_{\alpha}^{6}\right)=$ $\left(C:_{M} a_{\alpha}^{3}\right)$ is a graded 2-absorbing submodule of M. Let $r_{g} s_{h} m_{\lambda} \in\left(C:_{M}\right.$ a_{α}^{6}) for some $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$. It follows that, $a_{\alpha}^{6}\left(r_{g} s_{h} m_{\lambda}\right)=$ $\left(a_{\alpha}^{2} r_{g}\right)\left(a_{\alpha}^{2} s_{h}\right)\left(a_{\alpha}^{2} m_{\lambda}\right) \in C$. Then either $a_{\alpha}\left(a_{\alpha}^{2} r_{g}\right)\left(a_{\alpha}^{2} s_{h}\right)=a_{\alpha}^{5} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha}\left(a_{\alpha}^{2} r_{g}\right)\left(a_{\alpha}^{2} m_{\lambda}\right)=a_{\alpha}^{5} r_{g} m_{\lambda} \in C$ or $a_{\alpha}\left(a_{\alpha}^{2} s_{h}\right)\left(a_{\alpha}^{2} m_{\lambda}\right)=a_{\alpha}^{5} s_{h} m_{\lambda} \in C$ as C is a graded A-2-absorbing submodule of M. It follows that either $r_{g} s_{h} \in\left(C:_{R}\right.$ $\left.a_{\alpha}^{5} M\right)=\left(C:_{R} a_{\alpha}^{6} M\right)=\left(\left(C:_{M} a_{\alpha}^{6}\right):_{R} M\right)$ or $r_{g} m_{\lambda} \in\left(\begin{array}{ll}C & :_{M} \\ a_{\alpha}^{5}\end{array}\right)=\binom{C:_{M}}{a_{\alpha}^{6}}$ or $s_{h} m_{\lambda} \in\left(C:_{M} a_{\alpha}^{5}\right)=\left(C:_{M} a_{\alpha}^{6}\right)$. Thus $\left(C:_{M} a_{\alpha}^{6}\right)$ is a graded 2-absorbing submodule of M.
(ii) $\Rightarrow(i)$ Assume that $\left(C:_{M} a_{\alpha}\right)$ is a graded 2-absorbing submodule of M for some $a_{\alpha} \in A$. Let $r_{g} s_{h} m_{\lambda} \in C \subseteq\left(C:_{M} a_{\alpha}\right)$, where $r_{g}, s_{g} \in h(R)$ and $m_{\lambda} \in h(M)$. Since $\left(C:_{M} a_{\alpha}\right)$ is a graded 2-absorbing submodule of M, we get either $r_{g} s_{h} \in\left(\left(C:_{M} a_{\alpha}\right):_{R} M\right)$ or $r_{g} m_{\lambda} \in\left(C:_{M} a_{\alpha}\right)$ or $s_{h} m_{\lambda} \in\left(C:_{M} a_{\alpha}\right)$. Thus $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$. Therefore, C is a graded A-2-absorbing submodule.

Let M and M^{\prime} be two graded R-modules. A graded homomorphism of graded R-modules $f: M \rightarrow M^{\prime}$ is a homomorphism of R-modules verifying $f\left(M_{g}\right) \subseteq M_{g}^{\prime}$ for every $g \in G$, (see [22]).

The following result studies the behavior of graded A-2-absorbing submodules under graded homomorphism.

Theorem 2.12. Let R be a G-graded ring and M, M^{\prime} be two graded R-modules and $f: M \rightarrow M^{\prime}$ be a graded homorphism. Let $A \subseteq h(R)$ be a multiplicatively closed subset of R.
(i) If C^{\prime} is a graded A-2-absorbing submodule of M^{\prime} and $\left(f^{-1}\left(C^{\prime}\right):_{R} M\right) \cap$ $A=\emptyset$, then $f^{-1}\left(C^{\prime}\right)$ is a graded A-2-Absorbing submodule of M.
(ii) If moreover, f is surjective and C is a graded A-2-absorbing submodule of M with $\operatorname{Kerf} \subseteq C$, then $f(C)$ is a graded A-2-absorbing submodule of M^{\prime}.
Proof. (i) Assume that C^{\prime} is a graded $A-2$-absorbing submodule of M^{\prime}. Now, let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ such that $r_{g} s_{h} m_{\lambda} \in f^{-1}\left(C^{\prime}\right)$. Hence $f\left(r_{g} s_{h} m_{\lambda}\right)$ $=r_{g} s_{h} f\left(m_{\lambda}\right) \in C^{\prime}$. Since C^{\prime} is a graded A-2-absorbing submodule, there exists $a_{\alpha} \in A$ such that either $a_{\alpha} r_{g} s_{h} \in\left(C^{\prime}:_{R} M^{\prime}\right)$ or $a_{\alpha} r_{g} f\left(m_{\lambda}\right)=f\left(a_{\alpha} r_{g} m_{\lambda}\right) \in C^{\prime}$ or $a_{\alpha} s_{h} f\left(m_{\lambda}\right)=f\left(a_{\alpha} s_{h} m_{\lambda}\right) \in C^{\prime}$. It follows that either $a_{\alpha} r_{g} s_{h} \in\left(C^{\prime}:_{R}\right.$ $\left.M^{\prime}\right) \subseteq\left(f^{-1}\left(C^{\prime}\right):_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in f^{-1}\left(C^{\prime}\right)$ or $a_{\alpha} s_{h} m_{\lambda} \in f^{-1}\left(C^{\prime}\right)$. Therefore, $f^{-1}\left(C^{\prime}\right)$ is a graded A-2-absorbing submodule of M.
(ii) Assume that C is a graded A-2-absorbing submodule of M containing Kerf. First, we want to show that $\left(f(C):_{R} M^{\prime}\right) \bigcap A=\emptyset$. Suppose on the contrary that there exists $a_{g} \in\left(f(C):_{R} M^{\prime}\right) \bigcap A$. Hence $a_{g} M^{\prime} \subseteq f(C)$, this implies that $f\left(a_{g} M\right)=a_{g} f(M) \subseteq a_{g} M^{\prime} \subseteq f(C)$. It follows that, $a_{g} M \subseteq$ $a_{g} M+\operatorname{Kerf} \subseteq C+\operatorname{Kerf}=C$. Hence $a_{g} M \subseteq C$ and so, $a_{g} \in\left(C:_{R} M\right)$, which is a contradiction since $\left(C:_{R} M\right) \bigcap A=\emptyset$. Now, let $r_{g} s_{h} m_{\lambda}^{\prime} \in f(C)$ for some $r_{g}, s_{h} \in h(R)$ and $m_{\lambda}^{\prime} \in h\left(M^{\prime}\right)$. Then, there exists $c_{\beta} \in C \bigcap h(M)$ such that $r_{g} s_{h} m_{\lambda}^{\prime}=f\left(c_{\beta}\right)$. Since f is a graded epimorphism and $m_{\lambda}^{\prime} \in h\left(M^{\prime}\right)$, there exists $m_{\lambda} \in h(M)$ such that $m_{\lambda}^{\prime}=f\left(m_{\lambda}\right)$. Then $f\left(c_{\beta}\right)=r_{g} s_{h} m_{\lambda}^{\prime}=$ $r_{g} s_{h} f\left(m_{\lambda}\right)=f\left(r_{g} s_{h} m_{\lambda}\right)$, and so $c_{\beta}-r_{g} s_{h} m_{\lambda} \in \operatorname{Ker} f \subseteq C$, it follows that $r_{g} s_{h} m_{\lambda} \in C$. Since C is a graded A-2-absorbing submodule of M, there exists $a_{\alpha} \in A$ such that $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\alpha} r_{g} m_{\lambda} \in C$ or $a_{\alpha} s_{h} m_{\lambda} \in C$. Then we have either $a_{\alpha} r_{g} s_{h} \in\left(C:_{R} M\right) \subseteq\left(f(C):_{R} M^{\prime}\right)$ or $a_{\alpha} r_{g} m_{\lambda}^{\prime}=a_{\alpha} r_{g} f\left(m_{\lambda}\right)=$ $f\left(a_{\alpha} r_{g} m_{\lambda}\right) \in f(C)$ or $a_{\alpha} s_{h} m_{\lambda}^{\prime}=a_{\alpha} s_{h} f\left(m_{\lambda}\right)=f\left(a_{\alpha} s_{h} m_{\lambda}\right) \in f(C)$. Thus $f(C)$ is a graded A-2-absorbing submodule of M^{\prime}.

Let R be a G-graded ring, M a graded R-module, $A \subseteq h(R)$ a multiplicatively closed subset of R and C a graded submodule of M with $\left(C:_{R} M\right) \bigcap A=$ \emptyset. We say that C is a graded A-prime submodule of M if there exists a fixed $a_{\alpha} \in A$ and whenever $r_{g} m_{\lambda} \in C$ where $r_{g} \in h(R)$ and $m_{\lambda} \in h(M)$, implies that either $a_{\alpha} r_{g} \in\left(C:_{R} M\right)$ or $a_{\alpha} m_{\lambda} \in C$ (see [9]).

It is easy to see that every graded A-prime submodule of M is a graded A-2-absorbing submodule. The following example shows that the converse is not true in general.

Example 2.13. Let $G=\mathbb{Z}_{2}$ and $R=\mathbb{Z}$ be a G-graded ring with $R_{0}=\mathbb{Z}$ and $R_{1}=\{0\}$. Let $M=\mathbb{Z}_{6}$ be a graded R-module with $M_{0}=\mathbb{Z}_{6}$ and $M_{1}=\{\overline{0}\}$. Now, consider the graded submodule $C=\{\overline{0}\}$ of M, then C is not a graded prime submodule since $2 \cdot \overline{3} \in C$ where $2 \in R_{0}$ and $\overline{3} \in M_{0}$ but $\overline{3} \notin C$ and $2 \notin(C: \mathbb{Z} \quad M)=6 \mathbb{Z}$. However an easy computation shows that C is a graded 2-absorbing submodule of M. Now let A be the set of units in R. Then C is a graded A-2-absorbing of M but not a graded A-prime submodule.

Theorem 2.14. Let R be a G-graded ring, M a graded R-module and $A \subseteq$ $h(R)$ be a multiplicatively closed subset of R. Then the intersection of two graded A-prime submodules of M is a graded A-2-absorbing submodule of M.

Proof. Let C_{1} and C_{2} be two graded A-prime submodules of M and $C=$ $C_{1} \cap C_{2}$. Let $r_{g} s_{h} m_{\lambda} \in C$ for some $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$. Since C_{1} is a graded A-prime submodule of M and $r_{g}\left(s_{h} m_{\lambda}\right) \in C_{1}$, there exists $a_{1_{\alpha}} \in A$ such that $a_{1_{\alpha}} r_{g} \in\left(C_{1}:_{R} M\right)$ or $a_{1_{\alpha}} s_{h} m_{\lambda} \in C_{1}$. If $a_{1_{\alpha}} s_{h} m_{\lambda}=$ $s_{h}\left(a_{1_{\alpha}} m_{\lambda}\right) \in C_{1}$, then either $a_{1_{\alpha}} s_{h} \in\left(C_{1}:_{R} M\right)$ or $a_{1_{\alpha}}^{2} m_{\lambda} \in C_{1}$ since C_{1} is a graded A-prime submodule of M and hence either $a_{1_{\alpha}} s_{h} \in\left(C_{1}:_{R} M\right)$ or $a_{1_{\alpha}} m_{\lambda} \in C_{1}$. In a similar manner, since C_{2} is a graded A-prime submodule of M and $r_{g} s_{h} m_{\lambda} \in C_{2}$, there exists $a_{2_{\alpha}} \in A$ such that $a_{2_{\alpha}} r_{g} \in\left(C_{2}:_{R} M\right)$ or $a_{2_{\alpha}} s_{h} \in\left(C_{2}:_{R} M\right)$ or $a_{2_{\alpha}} m_{\lambda} \in C_{2}$. Now put $a_{\beta}=a_{1_{\alpha}} a_{2_{\alpha}} \in A$. Then either $a_{\beta} r_{g} s_{h} \in\left(C:_{R} M\right)$ or $a_{\beta} r_{g} m_{\lambda} \in C$ or $a_{\beta} s_{h} m_{\lambda} \in C$. Therefore, C is a graded A-2-absorbing submodule of M.

Acknowledgement

The authors wish to thank sincerely the referees for their valuable comments and suggestions.

References

[1] Al-Zoubi, K. Some properties of graded 2-prime submodules. Asian-Eur. J. Math. 8, 2 (2015), 1550016, 5.
[2] Al-Zoubi, K., And Abu-Dawwas, R. On graded 2-absorbing and weakly graded 2-absorbing submodules. J. Math. Sci. Adv. Appl. 28 (2014).
[3] Al-Zoubi, K., and Abu-Dawwas, R. On graded quasi-prime submodules. Kyungpook Math. J. 55, 2 (2015), 259-266.
[4] Al-Zoubi, K., Abu-Dawwas, R., and Çeken, S. On graded 2-absorbing and graded weakly 2-absorbing ideals. Hacet. J. Math. Stat. 48, 3 (2019), 724-731.
[5] Al-Zoubi, K., AL-AYYOUB, I., And AL-DOLAT, M. On graded 2-absorbing compactly packed modules. Adv. Stud. Contemp. Math. (Kyungshang) 28, 3 (2018), 479-486.
[6] Al-Zoubi, K., and Al-Azaizeh, M. On graded classical 2-absorbing submodules of graded modules over graded commutative rings. Rend. Istit. Mat. Univ. Trieste 50 (2018), 37-46.
[7] Al-Zoubi, K., and Al-Azaizeh, M. On graded weakly 2-absorbing primary submodules. Vietnam J. Math. 47, 2 (2019), 297-307.
[8] Al-Zoubi, K., And Al-Azaizeh, M. Some properties of graded 2-absorbing and graded weakly 2-absorbing submodules. J. Nonlinear Sci. Appl. 12, 8 (2019), 503-508.
[9] Al-Zoubi, K., and Al-Azaizeh, M. On graded s-prime submodules of graded modules over graded commutative rings. Adv. Math. Sci. 10, 11 (2021), 34793489.
[10] Al-Zoubi, K., Jaradat, M., and Abu-Dawwas, R. On graded classical prime and graded prime submodules. Bull. Iranian Math. Soc. 41, 1 (2015), 217-225.
[11] Al-Zoubi, K., and Paseka, J. On graded coprimely packed modules. Adv. Stud. Contemp. Math., Kyungshang 29, 2 (2019), 271-279.
[12] Al-Zoubi, K., and Qarqaz, F. An intersection condition for graded prime submodules in $G r$-multiplication modules. Math. Rep. (Bucur.) 20, 3 (2018), 329-336.
[13] Al-Zoubi, K., and Rabab'a, B. Some properties of graded prime and graded weakly prime submodules. Far East J. Math. Sci. (FJMS) 102 (2017), 16131624.
[14] Atani, S. E. On graded prime submodules. Chiang Mai J. Sci 33, 1 (2006), 3-7.
[15] Atani, S. E., and Tekir, U. On the graded primary avoidance theorem. Chiang Mai J. Sci. 34, 2 (2007), 161-164.
[16] Badawi, A. On 2-absorbing ideals of commutative rings. Bull. Austral. Math. Soc. 75, 3 (2007), 417-429.
[17] Celikel, E. Y. On graded 2-absorbing primary submodules. Int. J. Pure Appl. Math. 109, 4 (2016), 869-879.
[18] Farshadifar, F. s-2-absorbing submodules and s - 2 -absorbing second submodules. arXiv preprint arXiv:2004.02875 (2020).
[19] Hazrat, R. Graded rings and graded Grothendieck groups, vol. 435 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2016.
[20] Năstăsescu, C., and Van Oystaeyen, F. Graded and filtered rings and modules, vol. 758 of Lecture Notes in Mathematics. Springer, Berlin, 1979.
[21] Năstăsescu, C., and van Oystaeyen, F. Graded ring theory, vol. 28 of NorthHolland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York, 1982.
[22] Năstăsescu, C., and Van Oystaeyen, F. Methods of graded rings, vol. 1836 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.
[23] Oral, K. H., Tekir, U., and Ağargün, A. G. On graded prime and primary submodules. Turkish J. Math. 35, 2 (2011), 159-167.
[24] Payrovi, S., and Babaei, S. On 2-absorbing submodules. Algebra Colloq. 19, Special Issue 1 (2012), 913-920.
[25] Refai, M., and Al-Zoubi, K. On graded primary ideals. Turkish J. Math. 28, 3 (2004), 217-229.
[26] Ulucak, G., Tekir, U., and Koç, S. On S-2-absorbing submodules and vnregular modules. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 28, 2 (2020), 239-257.
[27] Yousefian Darani, A., and Soheilnia, F. 2-absorbing and weakly 2absorbing submodules. Thai J. Math. 9, 3 (2011), 577-584.

Received by the editors January 24, 2021
First published online July 18, 2022

[^0]: ${ }^{1}$ Department of Mathematics, Tafila Technical University, e-mail: saba.alkaseasbeh@gmail.com
 ${ }^{2}$ Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, e-mail: kfzoubi@just.edu.jo
 ${ }^{3}$ Corresponding author

