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Sequential fractional differential equations with nonlocal
integro-multipoint boundary conditions

Bashir Ahmad'P}, Ymnah Alruwailyf, Ahmed Alsaedi]and Sotiris
K. Ntouyasﬂ

Abstract. This paper is concerned with the existence and uniqueness of
solutions for sequential Caputo fractional differential equation equipped
with integro multipoint boundary conditions. In the proposed problem,
the nonlinearity depends on the unknown function as well as its lower
order fractional derivatives. We apply standard fixed point theorems to
obtain the desired results, which are well-illustrated with the aid of ex-
amples.
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1. Introduction

Fractional-order boundary value problems have been extensively studied by
many authors during the last few years. In particular, the study of fractional
differential equations complemented with nonlocal and integral boundary con-
ditions gained much popularity. It has been mainly due to the importance of
the nonlocal conditions in describing some peculiar phenomena taking place at
interior points or sub-intervals of the given domain [8]. On the other hand,
integral boundary conditions help to model blood flow problems [3] and regu-
larizing ill-posed parabolic backward problems [25].

Fractional calculus is found to be of great value in appropriate modelling
of many real-world problems arising in several fields of physical and applied
sciences, for examples and details, see [16], [18], [27], [12]. Multi-term fractional
differential equations also received considerable attention as these equations
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appear in the mathematical models related to practical situations, for instance,
the behavior of real materials [24], an inextensible pendulum with fractional
damping terms [26], etc. For further applications, see [10], [I7], [15], [9].

There has also been shown a great interest in studying the boundary value
problems involving sequential fractional differential equations (a sub-class of
multi-term fractional differential equations). For some recent works on this
class of boundary value problems, we refer the reader to the articles [B], [2],
(131, 6], [, [20], [7}, 14, [, [11), [23], [19], 2.

In this paper, motivated by aforementioned work, we investigate the exis-
tence of solutions for a nonlinear Liouville-Caputo type fractional differential
equation of the form:

(1.1)  pD%(t) + & DI a(t) = f(t,2(t),° DPx(t),c DP"ta(t)), t € [a,b],

3<q<4, 0<p<1, supplemented with nonlocal integro-multipoint bound-
ary conditions

(1.2)  z(a) =o(z), 2'(a) =0, x(b) =0, 2'(b) = Zaix(ni) —|—/ x(s)ds,

where ©D? denotes the Caputo fractional differential operator of order ¢ € (3, 4],
a<m <my<-<nm<b, f:[a,b xR — Ris a given continuous function,
o is a nonlinear function defined on C([a,b], R) and p,& (1, #0), a; € R, i =
1,2,--- ,m.

The rest of the paper is arranged as follows. In section 2, we prove a basic
result related to the linear variant of the problem -, which plays a
key role in the forthcoming analysis. We also recall some basic concepts of
fractional calculus. The main results are presented in Section 3.

2. Preliminaries and auxiliary result

Before presenting an auxiliary lemma, we recall some basic definitions of
fractional calculus [16].

Definition 2.1. The Riemann-Liouville fractional integral of order p with
lower limit a for function g : [a,00) — R is defined as

1 ¢ s
2o = 55 [, e 70

provided the integral exists.

Definition 2.2. For (n-1)-times absolutely continuous function g : [a, c0) —
R, the Caputo derivative of fractional order p is defined as

_
I'(n —p)

where [p] denotes the integer part of the real number p.

t
“Drg(t) = [ =t s)ds, n-1<p<n 0=+ 1
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Lemma 2.3. [16] For n — 1 < g < n, the general solution of the fractional
differential equation Dix(t) =0, t € [a,b], is

2(t) =co+ci(t—a) +eat —a) + ... +cp1(t—a)* L,

where ¢; € R, 1 =0,1,...,n— 1. Furthermore,
n—1 .
I°Dia(t) = 2(t) + Y cilt — a)".

i=0

Let us consider the linear sequential fractional differential equation
(2.1) p D (t) + € DT a(t) = o(t), 3<q <4, t€[ab],

equipped with nonlocal integro-multipoint boundary conditions
m b

(2.2)  z(a)=0%, 2'(a) =0, 2(b) =0, 2/(b) = Zaim(m) —l—/ x(s)ds,
i=1 a

WhereweC([a,b],RL a<m<mn<--<Tp-2 <b7 ,u,f (Nag#o)v Qi GR,
i=1,2,--- ,mand ¢* € R

Lemma 2.4. Let ¢ € C([a,b],R). Then the unique solution z € C*([a,b],R)
of the problem — s given by

*

b
o) = G- 220 [ F Oty syas

b
wa(®) 5 [ F O p(e)ds — 110

m N _
Zai/ eTg(m_s)Igflz/)(s)ds

i=0 a
b

(/8 6_75(5_”)[371¢(u)du>d5} +

1t -
;/ eTE(t_S)IgfldJ(s)ds,

A —£(t—a A
CL)l(t) = (ﬁ*Ag)e“(t )+A3775+A

(b—a)?
13 A
+;((b —5(1)2 - A3) (t - a)
A A A A A ,
+((b—a5)4 - 632 e a)Q)(t_a) :
L As(1— e () €A
wolt) = = A(b— a)? ~ pA(b —5 a)? (t=a)
(A(b — a)2 — A1A5)
A(b—a)*

+ (t—a)?,
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Ay

Ao

(2.5) As

As
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—=£
(eT(t_a) -1 £ Ay 2
= B ——— —_— — [ — t —_
w3 (t) n +,uA(t a)+A(b—a)2( a)”,
— | _eilbma) _ §(b—a)
’Lt b
m b
_ 8k S e r e [ 3 emag
/L K3 )
i=1 a

m b m b
= e [ds A== aitm—a) - [ s ayis,
=1 a =1 a

m b
= 20— a) - Y aul - )’ - / (s — a)%ds,

and it is assumed that

(2.6)

& A1 As

= — A
A=A, A3+,U 4+(b—a)2

£ 0.

Proof. Rewrite the equation p ¢D9x(t) + £ DI tx(t) = (t) as

(2.7)

‘DTN (p D+ €)z(t) = v(1).

Applying the integral operator I9~! on both sides of (2.7) and solving the
resulting equation, we get

(2.8)

2(t) = boe® D by +by(t — a) + by(t — a)?
1 [t -
+*/ e%(tfs)lg_lw(s)ds,

a

where b; € R, i = 0,1,2,3 are unknown arbitrary constants. From (2.8]) we

have

(2.9)

(El(t) = ;é-boe%(t_a) —+ bg =+ 2b3 (t — a)

1
t
- X 1
f%/ ef@—é)fg*lw(s)dw;Igflw(t).

Using the boundary conditions (2.2)) in (2.8) and (2.9), we obtain

(2.10)

(2.11)

(2.12)

b2 = £bOa
I

by = —by + ¥,

e Db 4 b+ (b— a)by + (b— a)bs = I,
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(2.13) Asbg + Asby + Agby + Asbs = I,
where A; (i =1,...,5) are given by (2.5)), and

1 [ -
= “/ e P11 y(s)ds,
HJa

L= 2 / eI (s)ds = 12 ()
Sy
,u

1 b S e
+7/ / e WV (u)du ) ds.
/"L a ( a ( ) )

Using (2.10) and (2.11)) in (2.12) and (2.13)), we get

(2.14) / em (1) 191 (5)ds

1 A1 o*
2.1 by = I bo —
(249) S e R e e T
1 A
by = I — > b
Az—A3+§A4 A2_A3+%A4
(2.16) —Lga*
Ay — Az + 2 A4
Solving and together we find that
—As 1 * As
2.1 = 71 I — —A
(2.17) b = Xp—ap 1+A2+A<(b—a)2 )
(A(b - a)2 - A1A5) A1
bs A(b—a)* Lt Ab—a)??
0:( A1A5 _ A1A3 _ A )
A\(b—a)* (b—a)? (b—a)?/)

Putting (2.17)) in (2.10) and (2.11)), we find that

o A5 1 o* A5
b= ool Akt (s m“)v
—As ¢ g0ty s
= 71 I —— — Aj).
> pA(b — )21+MA2+/~LA((5—@)2 3)

Inserting the values of by, b1, by and b3 in (2.8)) together with notations
(2.4), we obtain the solution (2.3]). The converse of the lemma follows by direct

computation. The proof is completed.

To simplify the proofs in the forthcoming theorems, we establish the bounds

for the integrals arising in the sequel in the following lemma.
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Lemma 2.5. For ¢ € C([a,b],R) we have

/b e O 1971 (5)ds /ab ef(bS)(/: mw(u)du)d‘g

b—g)i 1t -

(4)

(i) ;ia [ e
=0 @
S m%(q) Z o[ (i — a)q_l (1 - e%f(m—ﬂ)) [[¥1l-
i=0
1 ’ ° =L (s—u — (b — a)q_l
(#41) ;/a (/a en mwa 1¢(u)du)ds < {W[(b—a)
+ (0 =) o
N R AT (b—a)i! £ (h—a
(iv) ;/a e (I (s)ds| < W(l—e w ))WH-

3. Existence of solutions

For 0 < p < 1, let us consider the space G = {x : z, °DPz, *DPtlz €
C([a,b],R)} endowed with the norm defined by

(3.1) lz* = sup {|z(t)| + [*DPx(t)| + |*DP a(t)]}-

t€la,b]

In view of Lemma we transform the problem (|1.1))-(1.2)) into an equivalent
fixed point problem as

(3.2) r = Hz,
where H : G — G is defined by

x w2 b =£ (p— 17
(Hx)(t) = Ji)wl(t)ﬂ(t)/ en® S)Ig Lf(x(s))ds

~

b o~
ran)[ 5 [ eF O flals))ds - 15 Flato)

e (=) 117 Flan(s))ds

_|_

—
o
e
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where w;(t), i = 1,2,3 are defined by (2.4) and f(:c(t)) = f(t,z(t),° DPx(t),
¢DP+1lg(t)). Notice that the fixed points of the operator H are the solution of
1)),

From (3.3]), we have

o(x wh b ~
(Ha() = Cuf) - Y [0 flao)as
b =£ (b—s —1
+w§(t){%/a e 70— 1071 Fla(s))ds

_—Ig—lf(.%(b)) + % iai /m e%(nifs)lg—lf(x(s»ds

+i /a” (/asef(sU)]g—lA(gc(u))du)ds] + iIZ‘lf(w(t))

i
" b e .
(Ha'@) = Tt - 2 [0 flao)as

I fem) e [ eE 0 On fla()ds
i=0 @
b s
_~_%/a (/a e_TE(S*“)Ig_lf(x(u))du)ds} +%Ig_2f\($(t>)
¢ ~

S o) + 35 [ eF 1 fats)s

By the definition of Caputo fractional derivative with p € (0,1) we have

DP(Ha)(t) — / (lf(zi);;(%x)’(s)ds,
(3.4) CDPYL(Hz)(t) = /M(ch)”(s)ds,te[a,b}.

We need the following hypotheses in the sequel.

(B1) The function f : [a,b] x R®> — R is continuous and there exists
Iy > 0 such that
|f(t, 21, @2, 23) — f(E,y1,92,93)|
< l1<|€C1 — 1| +lze — yo| + |23 — y3|),
Vtelab], x,y; €ER, i =1,2,3;
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(B2) The function f : [a, b] x R* — R is continuous and there exists a function
¢ € C([a,b],R") such that

[f(t, 21,29, 23)] < (1), [|6]] = sup [o(1)],

t€la,b]
for t € [a,b], and each z; € R, i =1,2,3;
(B3) The function o € C([a,b], R) satisfies the Lipschitz condition:

‘O’(J}) - O'(y)| < lQH‘T - y||7 12 > Oa v T,y € C([G,, b]aR)a

(B4) The function o € C([a, b],R) and there exists k > 0 such that

lo(2)] < kl|lz]l, ¥z € C([a, b], R).

For the sake of computational convenience, we set

i = sup |wi(t)] >0, Ay = sup |wi(t)] >0, A = sup |w/(t)] >0, i=1,2,3,

t€la,b] t€la,b] B
— q)a1 e
&= A(&F(q)(leu(b ).
b= o) “L(b—a b—g)e !
& = o S (1) S
g O el — ™ (1 -0
(3.5) +(l)|€|r‘1(); ((b—a)+ ||€“|| (0= 1]},
bh—a)dt e
o = Carg (=)
c 2(b—a)?! ey
& = A (|Z|F(q)) ( e (b ))
- < ((b—a)?t —€(h—a (b— a)s~?
& = {0 T
* |§|I‘1(q) ; || (i — )97t (1 _ 6_75(771'*0«))
— q)a1 e
(36) _|_(b|§|F()q) |:(b— )+||/£||(e =5 (b )_1)1|}7
&l )\E(EE«(C;);_( e%(bia))
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& = )\g{(b;a()ql(l_ef(ba)>+(l)—a)ql

e W@
+|5|r1<q>§'ail<m—a>q Y1 ew )
(3.7) +(b|g|ra();l ((b-a) + ||’;| (500 1]},
0 = A G D,
(38) Q = 51+52+53+w(51+52+m+||i|| :
#8485 + ey + e+ ()’ 83).

Now we prove the existence of solutions for the problem — 1.2) by
applying Krasnosel’skii fixed point theorem [21].

Theorem 3.1. (Krasnosel’skii fized point theorem [21]): Let M be a closed,
convez, bounded and nonempty subset of a Banach space X and let Fy,Fo be
the operators defined from M to X such that: (i) Fix + Foy € M wherever
x,y € M; (ii) Fi is compact and continuous; (iii) Fa is a contraction. Then
there exists z € M such that z = Fiz + Faz.

Theorem 3.2. Assume that (B1) — (B4) hold: Then the problems (1.1)-(1.9)

has at least one solution on [a,b] if

k
791 < 1a
Al

where Q1 is defined by (@

Proof. Consider a closed bounded and convex ball S, = {z € G : ||z||* <
r} C G, with

1,
\A|Ql<

4|l
k )

1— =
A 9

>

where we have used (Bs). Define operators H; and Hz on S, as

b o~
a0 = =20 [ F 0 flals)as
b o~
raa(®) / eF O Fa(s))ds
1 q—1 l S =E(ni—s) yq—1 P
L1 fio u; a 191 fa(s)d
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_|_% /ab (/: e%(s_“)fg_lf(m(u))du)ds}

1t - ~
b [T flae)is, e )

(Hoz)(t) = ”Sf)wl(t),te[a,b}.

Observe that
(Hz)(t) = (H1z)(t) + (Hox)(t), t € [a,b].

Now we show that H; and Hs satisfy all the conditions of Theorem [3.1]
(1) For z,y € S, by using Lemma we have

[Hiz + Hayll < [[Hiz|| + [Hayll

krq )\g(b—a)q_l (b—a) (b—a)q_l =£(b—a)
= AT |5|r<q> (1=eF ) exa{ g (1 - ¢7?)

b— a)i™ .
(I IIC‘L) |§\r Z|az = a 1(1_ef<m >)

(q)
S oo+ ||§||(_Eb“) ]} e (=)
= T+<El+€z+83>|¢n.

Similarly we have

, ) krhy (b—a)! [
362y + (o)l < 5+ (8 &+ e+ s 19l
1" " er{ * * (b - a)q—2
|(Hiz)” + (Hay)"l| < WJF(& +52+m
b—qg)?t 2
O+ (£) &) ol
b—a)lP rkri S s
D7) ¢ D) < LGt [ (B
(b—a)" ¢
it g el
c 1 c 1 (b_a)l—p k'f’)\f * * (b_a)q_2
|SDPH (Hyz) +¢ DPTY (Hay)|| < T@ ) [ A +<€1 + & +|M|F(T1)
€l(b—a)r! €2
R +(>) &) lo].
Hence
IHaz + Hayll* = |[Haz + Hayll + I°DP(Haz) +° DP(Hay)|

HCDPF (M) +° DPT (Hay) |
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= m“aféa_))%ﬂ )] + 91l [&1 + & + &
(b—a)'? b—a) ! [ o
+ﬁ<51+52+w+m53+51+52
(b—a)i=2 |€|(b—a)?™ é 2
e () &)
- |A|Ql+||¢||Q2<7‘

which shows that Hixz + Hay € S, for all z,y € S,.
(i4) We prove that the operator Hs is a contraction. For z,y € S,., we have

lo
(39)  [How —Hay| = sup [Haa(t) — Hay(t) < o7l — "
telab] A

Also, for all t € [a, b], we have

|(Haz) — (Hay)'|| = up, |(Haz)' () — (Hay) (1))
125\1 *
(3.10) < Wllwfyll-

In view of (3.10), we obtain

[°DP(How) = DP(Hay)l = Sl[lp]ch”(Hzm)(t) — DP(Hay)(¢)]
tela,b

IN

oo { [ 4= 00 - G (9105}

t€la,b]
125\1 (b — a)l_p

3.11 < 28U eyl Vte[ab]
Similarly, one can find that
I} (b— )
c p+1 _ ¢ pp+1 2 o *
From the inequalities (3.9)), (3.11)) and (3.12)), it follows that
[How — Hoyl™ = [[Haw — Hayl| + [|*DP (Hox) = DP(Hay)|
+H[C D (Haz) = DPF (Hay) |
l2 (b a)l—p N * *
< ASe? S _
< |A| [Al + Ty Al -l

for all z,y € S,., with |A‘ Q1 < 1. This shows that Hs is a contraction.
(#it) M, is compact.
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Continuity of f implies that the operator H; is continuous on S,. Also, the
operator H; is uniformly bounded on S, as

[Hiz]| < (&1+ &+ E)ll9ll,
N1 -1
loronal < Gt (@ d s Soihe - Seaial,
CDp-‘rl (b_a)l—p Ex Ex (b_ )q_2 |€|(b_a‘)q_1
1D S T (E g e
2
+(2) e ol
In consequence, we get
: (b—a)'7 -y e, .
”Hlx” S |:<€1 +52+(€3+m(51 +52+W+m53+51
R G g 3 Gt L
TR TG- T et T (ﬁ) &)l

= Q|l¢|l, Vx € S,.

Now we prove that H; is equicontinuous on S,. Let t1, t2 € [a,b] with t; < t2
and z € S,.. Then we have

[Hiz(t2) — Hiz(t1)]
|wa(t2) = wolt)|| [° =€ (bs) 7q-1 7
plll —allll) [0 13 o
/ 3 011 flas))ds
e el |Z"“‘
S / e%&“*"ﬁg*f(x(u))du)dsH
/t1 (e%(“_s) - e%(“_s))fg_lf(:r(s))ds‘

Iz
1
+m{
/t2 e?(tz—s)lg_lf(ac(s))ds‘}
t1

IN

Hus(t) 7w3<t1>|[' |

/ i e (mi=s qulf(x(s))ds

_|_

IN

w — wa(ty —a)i~t —£(p_a
B e e (R

+|w3(t2)—w3(t1)|[w<l e a))

m

(b-a)? ! il — )11 — ¢35 (ni—a)
I E X e )
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(b—a)! Il =¢b-a)
+ b— T -1
A (09 g (777 -1)
Lol a
Tl {
2] -1
—§(t27s) (s —a)?
en ————ds
/t1 I'(q) ‘}
wa(te) — wa(ty)|(b —a)?™! = (b—a
||¢H{| 2( 2) 2( 1)|( ) <1 —en (b— ))

I}
t (e%f(tz—s> _ eTﬂtl_s))M

e

_|_

IN

)
n(ts) — wn(ty) [(b O (- e%w—w)
e i"“' N
et (0o g (0 -1)])
+|§|||ff(” ){(tl—a)q—l(ev“rtﬂ_l_ o (t2=a)

(3.13) +en S (t— a)) + (tg — a)q_1(1 _ e%&(tzftl)) }

In addition, we have

ey < 1ol (6 +far L0 4 Bl

lulL(q) [
Thus,
°DPH 2 (t) —¢ DPHaa(t))|
- U (te — s)Fz’l_(t; —s)7P (Hlx)’(,g)ds‘
+‘/t2 o = 5) ’Hlm) (s)dsH
o]l (b—a)—t ¢ )P
= Te-p <‘€1 ot g ) [0
(3.14) (1 — a)P| + 2(ts —tl)lﬂ.

Similarly, we can find that

" * * (b_a)q—Q ‘ﬂ(b_a)q_l 5 2
(1) O < ol (85 + &5 + g + = g — + () €):

and thus

|CDp+1H1.’E(t2) —¢ Dp—H/HlI(tl)l

First online - July 15, 2021. Draft version - July 15, 2021
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[ e = ) ()|
+ ‘/ t%s = ()" (s)ds

ol (b—a)i? N Iél( —a)?!
L'2-p) || T(g — 1) T'(q)

(3.15) +(%)2€3)[|(t2_a)1 P (t; —a) 7P| 4+ 2(ty — t1)* }

IN

(5{ L&+

The right hand sides of the inequalities — tend to zero as to —
t; — 0 independent of xz. Thus, the operator H; is equicontinuous on S,.
Therefore, by Arzeld-Ascoli theorem, H; is a relatively compact on S,. So, all
the conditions of Theorem [3.1] are satisfied, which implies that there exists a
fixed point of operator H. Therefore, the problem (L.I)-(1.2) has at least one
solution on [a, b]. The proof is completed. |

Example 3.3. Consider the fractional boundary value problem.
(3.16)
4°DFa(t) +7 D% a(t) = f(t,x(t),° Dia(t),c D3x(t)), t € (0,1),
4

z(0) = o(z), 2/(0) =0, (1) =0, 2/(1) = Zaix(m) —|—/ x(s)ds,
i=1 0

where ¢ = 19/6, p =1/3, a =0, b=1, p =4, £ =7, a1 = =2, ag =
=5/4, ag =—1/12, g =2/39, m1 =1/8, 2 = 1/4, n3 =1/2, ny = 3/4. Using
the given data, we find that A ~ —0.39151 # 0, Q; ~ 3.10393, Qo ~ 2.51497.
|z(3)]
23(1+z(3)l)

Consider o(z) = and

For the above functions we have k = Iy = 1/23 and |f(t, z1, 22, 23)] < ¢(1),

t
for all t € [0,1] and z; € R,i = 1,2,3, with ¢(t) = (Lg(’j 8|) + g t e 0,1].
k l
Furthermore, we obtain |f|1 = Tfl ~ (.344700 < 1. Thus, all the conditions

of Theorem ﬂ 3.2| are satisfied, we conclude that the problem (3.16]) has at least
one solution on [0, 1].
4. Uniqueness of solutions

Next, we prove the uniqueness of solutions for the problem (1.1])-(1.2) via
Banach’s fixed point theorem.
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Theorem 4.1. Assume that (Bl) and (B3) hold. Then the boundary value
problem (1.1)-(1.9) has a unique solution on [a,b] if

b
Al

where Q1, Qo are given by (@
Proof. Setting sup |f(¢,0,0,0)] =N < oo, |0(0)| = 09, and selecting

(4.1) Q1 +01Q2 <1,

t€la,b]
o
]ﬁ&+N%
rto > 7 ;
2
1-— (ng + l1Q2)

we define S, = {z € A : ||z||* < r*}, and show that HS,« C Sy, where the
operator H is defined by (3.3). For z € S,.«, and using the norm given by (3.1)),
we find that

~

[fle@)] = [f(tx(t),° DPx(t),* DP  a(t))]
< |f(t2(8),° DPa(t),” DY a(t)) - f(£,0,0,0)] + [ £(t,0,0,0)]
< L(lz@)] +[°DPx(t)| + |*DPFla(t)]) + N
< Lzl + N < hrf+ N,
and

|lo(z)| = [o(z) =0 (0)+0(0)] < |o(x) —a(0)|+]|o(0)] < loflz]|+00 < laf|z[|* +00.

Then we have

b ~
o) < T+ 2 [0 flato)a

b — o~
Has@I[&] [ e 0 Fatsas
2 a
+ L3 e
RO
ul =

il [ e et

LY —ems) g1 7,
+m\ e 11 Fa(s))ds|

lor™* A
(27”|—|—A|O'0)1 + (51 + & +53)(ll7“* -‘r./\f),

L 17,
+mlfa flz(d))]

Ni A
/ e (1= 18 Fa(s))ds

<

which, on taking the supremum for ¢ € [a, b], yields

(lg?“* + 0'0))\1

4.2 Herl| <
(42)  |Hal T

+ (& +E+ 83)(l17“* —l—./\[)
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Furthermore, we can find that

i Uor* +o0)M s, s, b=—a)t g «
H <——+ &+ 68+ —F— + 758 N),
()l < S PP b (B & S ) ()

which implies that

(t—s)"
I'(1-p)

(b - a)l_p {(127"* + 0'0))\1
I'(2-p) A

S ) o 3 P W
(4.3) +(51+£2+ @) +‘u|53)(11 +N)].

t
I°DPHz| =  sup [*DPHa(t)] < / (M) (s)|ds

t€la,b]

Similarly, we have

ft—s)?

Dyl = sup |*DPTIFx(t </
|| H a o< [ s

t€la,b]
(b—a)l=P |:(12’I“* + 00) A}
I'(2-p) Al

(4.4) +% + (%)253,) (lhr* +N)]

From the inequalities —, it follows that

Ml = I He| + [|*DPHal| + | “DP* Hal|

(Iar* + 0¢) (/\1 4 (?(2‘1_);)1)(5\1 + AT)) + [51 Tét+ &

b— 1-p , _ _ b— q—1
+(a)p)(51+€2+(a)+|§|83+6{‘+5;

1 T(q) ||
(b—a)i™> [Jb—a)?™! | EN2 -
BT CER TN ) +(u) 53”(11 )
(lQ’I“*—l-O'o)

= TQI + Qa(lir™ + N) <7,

|(Hz)" (s)|ds

(b—a)?
[T (g — 1)

+(erve+

IN

Thus, we conclude that H maps S, into itself for any x € S,«. Therefore,
HSp+ C Spx.

Now we show that H is a contraction. For z,y € G and t € [a, b], we obtain

|(a)(t) - () (o))

|o(z) —o(y)

| |wa (1)]
a lwy ()] 4+ 2222

|1l
b
/ 7 =) 1971 F((s)) — 191 F(y(s))|ds

/ T O 17 () — 12 (o)

el
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+ﬁ|fg*1 Fla(v) = 1871 Fly ()|

zm
=0

—Ig-lf<y<s>>|ds\ [ e )
~12 Flolan)as]] + | [ FE 1 Fas)) — 13 Fly(e)) s

. " R N N
bl oy 4 L2 OO — T Ry iy

[ eF ol ft)

IN

b
=L (p_
e S)ds‘
a

Al 1IT(q)
a)?1 b
+|w3(t)l[|£|(@))llf() Fol| [ e
(b—a)i~
) 7@ - )l
« " e (1=9) gg
e 1) - ||Z| o= ayt] [T 0 a
(bia)qil N iy =L (s—u
it Vo= o | <L )]
(b—a)it 2 tg%(t—s) <
e @ = Fwll| | ds|.
Observe that
1f(@) - f)ll = S, | f(z(s)) — Fly(s))|
< L(lz(s) — y(s)| + [*DP(x(s)) —° D(y(s))]
+EDP (x(s)) —¢ DPT(y(s))])
< Lz =yl +|[°DPx — DPy|| + |°DP 1z —¢ DPHy|)
S lle*y”*? VSG[(Z,I)],

which implies that

lady

e —Hyl < [TEF

YL+ &t 53)} llz — yl*.

Also, for all ¢ € [a, b], we have

a)?1
e L R R U i < [

which implies that

|*DPHx —¢ DPHy||
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= sup [*DPHz(t) —° DPHy(t)|
t€la,b]

t (t—S)_p , /
< /'—(——7uﬁm<@—«ﬂw<@ws

Iah (b—a)t I *
{ |A| +l1(81 +52+W+m53)]”x*y” .

In a similar mannar, we have

D" 194 = D73y
= sup [“DPT'Hz(t) - DPT Hy(t)|

t€la,b]

t _
(t — 5) P " "
< RS _
< [ o) ) = () (sl
(b—a)™?  [¢(b—a)’"

(b—a)'~ [ZQA*
I'(2-p) LA (g — 1) 1#°T'(q)

+(2) e)]le -l

Consequently, we obtain

+11(5f+5§+

[(Ha) — (Hy) "

{|lj| (>‘1 m@l +X{)) +1 (51 &+ &t (b (za)lpp (5

)
(b—a)"*1 H (b—a)i” N £l(b—a)i™!
[T (q) | \ T (g — 1) 12T (q)

(8’ ol

- (|A|Ql+zlgz)||a:—y||

+£‘2+ 53"’51 +52

Thus, by using (4.1)), we deduce that the operator H is a contraction. Therefore,

by applying Banach fixed point theorem we conclude that the boundary value

problem ([1.1)-(1.2)) has a unique solution on [a, b], which completes the proof.
O

Example 4.2. Consider the following fractional differential equation

(45)  4°DTa(t)+7 D x(t) = f(t,a(t)," D3x(t), D3x(t)), t € (0,1),

supplemented with the boundary conditions of Example (3.3), and let o(x) =
1 2

— sinx (7> ,

19 3

f(t,x(t),cD%w(t),CD%x(t)) = 11\/%ﬂ(aurctanac(t)—l—CD%ac(t))
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cos(“D3x(t))
+ 33 .

Obviously

c i c i c i c i
|f(t,£l?(t), DSQ:(t)v D3$(t))_f(t7y(t)a D3y(t), DBy(t))|
1 1
< == (le =yl +1°Dsa — D¥y| + 'Diz — Diy|) < |l -yl

with {; = 1/33 and from the inequality

lo(2(t)) ~ o(y(®)] < 152~ ol

we have Iy = 1/19 for all t € [0,1] and z,y € R. In addition, we obtain

l
Tﬁl + 119y =~ 0.493479 < 1. Therefore, all the conditions of Theorem [4.1

are satisfied, and we conclude there exists a unique solution on [0, 1] for the

problem (4.5)).

5. Conclusions

We have presented the existence and uniqueness criteria for solutions of a
sequential Caputo fractional differential equation complemented with nonlocal
integro multipoint boundary conditions. In the first step, we convert the given
nonlinear problem into a fixed point problem. Once the fixed point operator
is available, we make use of Krasnosel’skii’s fixed point theorem to obtain an
existence result for the problem at hand, while the uniqueness result is estab-
lished by applying the the contraction mapping principle. Our results are new
in the given configuration and enrich the literature on boundary value problems
involving sequential fractional differential equations.
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