Spectral analysis of special perturbations of diagonal operators on non-Archimedean Banach spaces

Aziz Blali,¹, Abdelkhalek El Amrani,²³ and Mohamed Amine Taybi⁴

Abstract. In this paper we are concerned with the spectrum of the operator $T = D + T_{\mu}$ where D is a diagonal operator and $T_{\mu} = \sum_{i=1}^{\infty} \mu_{i} P_{i}$

is a compact and self-adjoint operator in the non-Archimedean Banach space c_0 , where $\mu=(\mu_i)_{i\in\mathbb{N}}\in c_0$ and for each $i\geq 1$, $P_i=\frac{<...y_i>}{< y_i,y_i>}y_i$ is the normal projection defined by $(y_i)_{i\in\mathbb{N}}\in c_0$. Using Fredholm theory in the non-Archimedean setting and the concept of essential spectrum for linear operator, we compute the spectrum of T.

AMS Mathematics Subject Classification (2010): Primary 47S10; Secondary 47A10, 47A53.

Key words and phrases: Non-Archimedean Banach spaces, spectral operator, compact operator, self adjoint operator, diagonal operator.

1. Introduction

Non-Archimedean analysis is a well-developed branch of mathematics comparable to its classical counterpart, dealing over \mathbb{R} and \mathbb{C} see for example the monographs [7], [3] and [11]. The previous references includes some basic information on non-archimedean Banach spaces and operator theory and a rather complete theory of compact operators, see [9]. Moreover, a characterization of compact and self-adjoint operator on free Banach spaces is given in [3].

The problem of perturbation of p-adic linear operator has been a long studied through several steps. A first approach was carried out by Serre in [9], where he dealt with compact perturbation of identity on Banach space having an orthogonal base. A step further was taking by Gruson [5] for more general class of Banach spaces, always working on perturbation of the identity. A complete study of perturbation of the identity was finally done by Schikhof in [8].

¹Ecole Normale Superieure, Department of Mathematics, Sidi Mohamed Ben Abdellah University, B. P. 5206 Bensouda-Fès, Morocco, e-mail: aziz.blali@usmba.ac.ma

²Department of mathematics and computer science, Sidi Mohamed Ben Abdellah University , Faculty of Sciences Dhar El Mahraz, Atlas Fès, Morocco. e-mail: abdelkhalek.elamrani@usmba.ac.ma

³Corresponding author

⁴Department of mathematics and computer science, Sidi Mohamed Ben Abdellah University , Faculty of Sciences Dhar El Mahraz, Atlas Fès, Morocco. e-mail: mohamedamine.ettayb@usmba.ac.ma

Let \mathbb{K} denote a non trivial field which is complete with respect to a non archimedean valuation denoted |.| and its residue class fields is formally real,

i.e., for any finite subset $\{a_1, ..., a_n\}$ of \mathbb{K} , $\sum_{i=1}^n a_i = 0$ implies that each $a_i = 0$,

see [6]. For a given sequence $(\lambda_j)_{j\in\mathbb{N}}$ with $\lambda_j\in\mathbb{K}$ for all $j\in\mathbb{N}$, we set $\Lambda=\{\lambda_j\in\mathbb{K}:j\in\mathbb{N}\}$. For each λ in Λ , $I_{\lambda}=\{j\in\mathbb{N}:\lambda_j=\lambda\}$. Further, $r_{\lambda}=cardinality\ of\ I_{\lambda}$. Moreover $\Lambda^*=\{\lambda\in\Lambda:r_{\lambda}<\infty\}$. Set $\overline{\Lambda}$ is the closure of Λ in \mathbb{K} and $\Lambda'=\{\lambda\in\Lambda:\lambda\ is\ an\ accumulation\ point\ of\ \Lambda\}$. Then the essential spectrum $\sigma_e(D)$ of D is characterized by T. Diagana in [4] and is given by

$$\sigma_e(D) = (\overline{\Lambda} \backslash \Lambda^*) \cup (\Lambda^* \cap \Lambda').$$

In this paper, we introduce a spectral analysis for compact and self-adjoint perturbation of diagonal operator in non-Archimedean Banach space of countable type. Namely we study the spectral analysis for operator of the form:

$$T = D + T_{\mu}$$

where $D = \sum_{i \in \mathbb{N}} a_i < ..., e_i > e_i, (a_i)_{i \in \mathbb{N}} \in c_0$, is a bounded diagonal operator

and $T_{\mu} = \sum_{i=1}^{\infty} \mu_i \frac{\langle ., y_i \rangle}{\langle y_i, y_i \rangle} y_i$ is compact and self-adjoint operator. Under some

suitable assumptions, we will show that the spectrum $\sigma(T)$ of the bounded linear operator T is given by

$$\sigma(T) = \sigma_e(D) \cup \sigma_p(T),$$

where $\sigma_e(D)$ is the essential spectrum of D and $\sigma_p(T)$ is the point spectrum of T, that is the set of eigenvalues of T given by $\sigma_p(T) = \{a_n + \mu_n : n \in \mathbb{N}\}.$

2. Preliminary

Define the space c_0 as the collection of all $\lambda = (\lambda_i)_{i \in \mathbb{N}}$, $\lambda_i \in \mathbb{K}$ for all $i \in \mathbb{N}$ such that λ_i tens to 0 in \mathbb{K} as $i \to \infty$. Namely, c_0 is given by

$$c_0 = \{ \lambda = (\lambda_n)_n \subset \mathbb{K} : \lim_n \lambda_n = 0 \}.$$

It is known that the space c_0 equipped with the norm defined by for each $\lambda = (\lambda_i)_{i \in \mathbb{N}} \in c_0$

$$\|\lambda\|_{\infty} = \sup_{i \in \mathbb{N}} |\lambda_i|$$

is a non-Archimedean Banach space see [7]. The bilinear form $\langle .,. \rangle : c_0 \times c_0 \to \mathbb{K}$ defined by $\langle x,y \rangle = \sum_{i=1}^\infty x_i y_i$ with $x=(x_i)$, $y=(y_i) \in c_0$, is an inner product in the non-archimedean sense. Since the residue class field of \mathbb{K} is formally real, then $\|x\|_\infty^2 = \langle x,x \rangle$. The non archimedean Banach space c_0 has a special base denoted by $(e_i)_{i\in\mathbb{N}} = (\delta_{ij})_{i\in\mathbb{N}}$ where δ_{ij} is the usual kronecker symbol.

Recall that a topological space is called separable if it has a countable dense subset. Now let E be a non trivial normed space over \mathbb{K} , $E \neq \{0\}$ and suppose that E is separable, then its one-dimensional subspaces are homeomorphic to \mathbb{K} , so \mathbb{K} must be separable as well. Thus, for normed space the concept of separability is of no use if \mathbb{K} is not separable, however linearizing the notion of separability we obtain a generalization useful for every scalar field \mathbb{K} . A normed space E is of countable type if it contains a countable set whose linear hull is dense in E. Clearly the span of unit vector $e_1 = (1, 0, ...), e_2 = (0, 1, 0, ...), ...$ is dense in c_0 , then c_0 is a Banach space of countable type. Each normed space is linearly heomeorphic to a subspace of c_0 . Each infinite-dimensional Banach space of countable type is linearly heomeorphic to c_0 see [7]. This result shows that, up to linear homeomorphisms, there exists, for given \mathbb{K} , only one infinite-dimensional Banach space of countable type viz c_0 .

A mapping $T: c_0 \to c_0$ is said to be a bounded linear operator on c_0 whether it is linear and bounded. That is, there exists C > 0 such that

$$||Tu||_{\infty} \le C||u||_{\infty}$$

for all $u \in c_0$.

 $\mathcal{B}(c_0)$ denote the collection of all bounded linear operators on c_0 , $\mathcal{B}(c_0)$ is a Banach space with the norm $||T|| = \sup_{u \neq 0} \frac{||Tu||_{\infty}}{||u||_{\infty}}$.

For all $T \in \mathcal{B}(c_0)$, its kernel and range are respectively defined by $N(T) = \{u \in c_0 : Tu = 0\}$ and $R(T) = \{Tu : u \in c_0\}$.

A linear operator $T: c_0 \to c_0$ is said to be compact operator if $T(B_{c_0})$ is compactoid, where $B_{c_0} = \{x \in c_0 : ||x||_{\infty} \le 1\}$ is the unit ball of c_0 . It was proved in [11], that T is compact if and only if, for each $\epsilon > 0$, there exist a linear operator of finite dimensional range S in $\mathcal{B}(c_0)$ such that $||T - S|| < \epsilon$.

An operator $T \in \mathcal{B}(c_0)$ is said to be a Fredholm operator if it satisfies the following conditions:

- 1. $\eta(T) = \dim N(T)$ is finite;
- 2. R(T) is closed;
- 3. $\delta(T) = \dim(c_0/R(T))$ is finite.

The collection of all Fredholm linear operators on c_0 will be denoted by $\Phi(c_0)$. If $T \in \Phi(c_0)$, we then define its index by setting $\chi(T) = \eta(T) - \delta(T)$. An example of Fredholm operator is invertible bounded linear operator, in particular, the identity operator $I: c_0 \to c_0, I(x) = x$ is a Fredholm operator with index $\chi(I) = 0$ as $\delta(I) = \eta(I) = 0$.

The adjoint T^* of $T \in B(c_0)$, if it exists, is defined by $\langle Tu, v \rangle = \langle u, T^*v \rangle$ for all $u, v \in c_0$. In contract with the classical case, the adjoint of an operator may or may not exist. Note that if it exists, the adjoint T^* of an operator T, is unique and has the same norm as A, and hence, lies in $B(c_0)$ as well. Since c_0 is not orthomodular, there exist operator in $\mathcal{B}(c_0)$ which do not admit adjoint; for example the linear operator $T: c_0 \to c_0$ defined by

$$T(x) = (\sum_{i=1}^{\infty} x_i)e_1, x = (x_i)_{\in \mathbb{N}} \in c_0$$
, do not admit adjoint. We will denote by

 $A_0 = \{T \in \mathcal{B}(c_0) : \lim_{i \to \infty} \langle Te_i, y \rangle = 0, \text{ for all } y \in c_0\}$ the collection of all element of $B(c_0)$ which admit adjoint.

Set

$$A_1 = \{ T \in \mathcal{B}(c_0) : \lim_{n \to \infty} Te_n = 0 \},$$

and note that $A_1 \subsetneq A_0$, because $|\langle Te_n, y \rangle| \langle ||Te_n||_{\infty} ||y||_{\infty}$, for all $n \in \mathbb{N}$ and $y \in c_0$ and I_d doesn't in A_1 . We know that each $T \in \mathcal{B}(c_0)$ can be represented by:

$$T = \sum_{i,j=1}^{\infty} a_{ij} e_j' \otimes e_i,$$

where $\lim_{i\to\infty} a_{ij} = 0$ for each $j \in \mathbb{N}$. Also,

$$||T|| = \sup\{||T(e_i)||_{\infty} : i \in \mathbb{N}\}\$$

= \sup\{| < T(e_i), e_i > | : i, j \in \mathbb{N}\}.

And T is compact if and only if: $\limsup_{i\to\infty} \{|a_{ij}| : i\in\mathbb{N}\} = 0.$

Now, note that for all $n \in \mathbb{N}$,

$$||Te_n||_{\infty} = ||(\sum_{i,j=1}^{\infty} a_{ij}e_j' \otimes e_i)(e_n)||_{\infty}$$

$$= ||\sum_{i,j=1}^{\infty} a_{ij}e_j'(e_n)e_i||_{\infty}$$

$$= ||\sum_{i=1}^{\infty} a_{in}e_i||_{\infty}$$

$$= \sup\{|a_{in}| : i \in \mathbb{N}\}.$$

Thus

$$T \in A_1 \iff T \in A_0 \text{ and } T \text{ is compact.}$$

We will call normal projection any projection $P: c_0 \to c_0$ such that $\langle x, y \rangle = 0$ for each pair $(x, y) \in N(P) \times R(P)$. An example of a normal projection is $P(.) = \frac{\langle ., y \rangle}{\langle y, y \rangle} y$, for a fixed $y \in c_0 \setminus \{0\}$.

Let us take a fixed orthonormal sequence $(y_i)_{i \in \mathbb{N}} \in c_0$ that is, $\langle y_i, y_j \rangle = 0$, for all $i, j; i \neq j$ and $||y_i||_{\infty} = 1$.

The next theorem involves normal projections with compact and self-adjoint operators. The poof can be found in [1].

Theorem 2.1. If the linear operator $T: c_0 \to c_0$ is compact and self-adjoint, then there exist an element $\lambda = (\lambda_i)_{i \in \mathbb{N}} \in c_0$ such that:

$$T = \sum_{i=1}^{\infty} \lambda_i P_i.$$

Where for all $i \in \mathbb{N}$, $P_i = \frac{\langle ...y_i \rangle}{\langle y_i, y_i \rangle} y_i$ is the normal projection defined by $(y_i)_{i \in \mathbb{N}} \in c_0$. Moreover $||T|| = ||\lambda||_{\infty}$.

3. Main Results

From now we will consider a fixed orthonormal sequence $Y = (y_i)_{i \in \mathbb{N}} \in c_0$. We will denote by C_Y , the collection of all compact operator T_{μ} , $\mu \in c_0$, where

$$T_{\mu} = \sum_{i=1}^{\infty} \mu_i P_i.$$

The adjoint T_{μ}^* of T_{μ} is itself and $\lim_{n\to\infty} T_{\mu}(e_n) = 0$. On the other hand, since Y is orthonormal for all $i \in \mathbb{N}$, $T_{\mu}(y_i) = \mu_i y_i$, then μ_i is an eigenvalues of T_{μ} , let us denote by $\sigma_p(T_{\mu})$ the set of eigenvalues of T_{μ} .

Now, the collection C_Y is a linear space with the operations

$$T_{\lambda} + T_{\mu} = T_{\lambda + \mu}; \quad \alpha T_{\lambda} = T_{\alpha \lambda}.$$

On the other hand, since c_0 is a commutative algebra with the operation $\lambda \cdot \mu = (\lambda_i \cdot \mu_i)$, we have

$$T_{\lambda} \circ T_{\mu} = T_{\lambda.\mu} = T_{\mu} \circ T_{\lambda}.$$

In order to simplify the notion, $T_{\lambda} \circ T_{\mu}$ will be denoted by $T_{\lambda}.T_{\mu}$.

With the operations described above, C_Y becomes a commutative algebra without unit. Even more, by the fact that $T_{\lambda} = T_{\mu}$ implies $\lambda = \mu$, the maps

$$\Gamma: c_0 \to C_Y; \ \lambda \mapsto \Gamma(\lambda) = T_\lambda$$

is an isometric isomorphism of algebra.

The resolvent of a bounded linear operator $T: c_0 \to c_0$ is defined by $\rho(T) = \{\lambda \in \mathbb{K} : \lambda I - T \text{ is a bijection and } (\lambda I - T)^{-1} \in \mathcal{B}(c_0)\}$. The spectrum $\sigma(T)$ of T is then defined by $\sigma(T) = \mathbb{K} \setminus \rho(T)$. A scalar $\lambda \in \mathbb{K}$ is called an eigenvalue of $T \in \mathcal{B}(c_0)$, whenever there exists a nonzero $u \in c_0$ (called eigenvector associated with λ) such that $Tu = \lambda u$.

Clearly, eigenvalues of T consist of all $\lambda \in \mathbb{K}$, for with $\lambda I - T$ is not one-toone, that is $N(\lambda I - T) \neq \{0\}$. The collection of all eigenvalues of T is denoted by $\sigma_p(T)$ (called punctual Spectrum) and is defined by

$$\sigma_p(T) = \{ \lambda \in \sigma(T) : N(\lambda I - T) \neq \{0\} \}.$$

Example 3.1. Consider the diagonal operator $D: c_0 \to c_0$ defined by

$$Du = \sum_{j=0}^{\infty} \lambda_j u_j e_j$$
 for all $u = (u_j)_{j \in \mathbb{N}} \in c_0$

where $\sup_{j\in\mathbb{N}} |\lambda_j| < +\infty$. Then $\sigma(D) = \overline{\{\lambda_k : k \in \mathbb{N}\}}$ the closure of $\{\lambda_k : k \in \mathbb{N}\}$, i.e:

$$\sigma(D) = \{ \lambda \in \mathbb{K} : \inf_{j \in \mathbb{N}} |\lambda - \lambda_j| = 0 \}.$$

Definition 3.2. Define the essential spectrum $\sigma_e(T)$ of a bounded linear operator $T: c_0 \to c_0$ as follows

$$\sigma_e(T) = \{\lambda \in \mathbb{K} : \lambda I - T \text{ is not Fredholm operator of index } 0\}.$$

Clearly, if $\lambda \in \mathbb{K}$ does not belong to neither $\sigma_p(T)$ nor $\sigma_e(T)$, then $(\lambda I - T)$ must be injective. $N(\lambda I - T) = \{0\}$ and $R(\lambda I - T)$ is closed with $0 = \dim N(\lambda I - T) = \dim(c_0/R(\lambda I - T))$. Consequently $(\lambda I - T)$ must be bijective (injective and surjective) which yields that $\lambda \in \rho(T)$. In view of previous fact, we have

$$\sigma(T) = \sigma_p(T) \cup \sigma_e(T).$$

Theorem 3.3. 1. Let $T_{\lambda} \in C_Y$ be a compact and self-adjoint operator and let $\mu \in \mathbb{K}$, $\mu \neq 0$ be an eigenvalue of T_{λ} . Then $\mu = \lambda_i$ for some i. 2. If $T \in \mathcal{B}(c_0)$, then for all $T_{\mu} \in C_Y$, we have

$$\sigma_e(T + T_\mu) = \sigma_e(T).$$

3. If $T = D + T_{\mu}$, where $T_{\mu} \in C_Y$ and D is a diagonal operator, then its spectrum $\sigma(T)$ is given by $\sigma(T) = \sigma_e(D) \cup \sigma_p(T)$.

4. The punctual Spectrum of $T = D + T_{\mu}$, is given by:

$$\sigma_p(T) = \{ \mu_n + a_n : n \in \mathbb{N} \}.$$

We use the following lemma to show the second assertion of the theorem.

Lemma 3.4. If $T \in \Phi(c_0)$ and $T_{\mu} \in \mathcal{C}_Y$, then $T + T_{\mu} \in \Phi(c_0)$, with $\chi(T + T_{\mu}) = \chi(T)$.

Proof. see [10] and [2].

Proof. of Theorem 3.2

1. Let $x \in c_0$ an eigenvector corresponding to μ . Then

$$T_{\lambda}x = \sum_{i=1}^{\infty} \lambda_i \frac{\langle x, y_i \rangle}{\langle y_i, y_i \rangle} y_i$$

$$T_{\lambda}(T_{\lambda}x) = T_{\lambda}(\mu x) = \mu T_{\lambda}x.$$

It follows from the last equation that

$$T_{\lambda}(\sum_{i=1}^{\infty} \lambda_i \frac{\langle x, y_i \rangle}{\langle y_i, y_i \rangle} y_i) = \mu(\sum_{i=1}^{\infty} \lambda_i \frac{\langle x, y_i \rangle}{\langle y_i, y_i \rangle} y_i).$$

Thus

$$\sum_{i=1}^{\infty} \lambda_i^2 \frac{\langle x, y_i \rangle}{\langle y_i, y_i \rangle} y_i = \sum_{i=1}^{\infty} \lambda_i \mu \frac{\langle x, y_i \rangle}{\langle y_i, y_i \rangle} y_i.$$

Since $T_{\lambda}x = \mu x \neq 0$, it follows that $\langle x, y_i \rangle \neq 0$ for some i. Hence

$$\bigcup_{i=1}^{\infty} \{\lambda_i\} \neq \emptyset.$$

Thus

$$\sum_{i=1}^{\infty} \lambda_i (\lambda_i - \mu) \frac{\langle x, y_i \rangle}{\langle y_i, y_i \rangle} y_i = 0 \text{ for } \langle x, y_i \rangle \neq 0.$$

The normality of the sequence $\{y_i\}$ implies that

for all
$$i \in \mathbb{N}$$
, $\lambda_i(\lambda_i - \mu) \frac{\langle x, y_i \rangle}{\langle y_i, y_i \rangle} = 0$; $\langle x, y_i \rangle \neq 0$.

Since the eigenvectors corresponding to different eigenvalues are normal and since $x \neq 0$, it follows that $\lambda_i \neq 0$ for some $i \in \mathbb{N}$, then $\lambda_i - \mu = 0$ for $i \in \mathbb{N}$.

Hence $\lambda_i = \mu$ for some i.

- 2. If λ does not belong to $\sigma_e(T)$, then $\lambda I T$ belongs to $\Phi(c_0)$ with $\chi(\lambda I A) = 0$, therefore $\lambda I T T_\mu$ belongs to $\Phi(c_0)$ with $\chi(\lambda I (T + T_\mu)) = 0$ for all $T_\mu \in C_Y$. Then λ does not belong to $\sigma_e(T + T_\mu)$.
- 3. We have $\sigma(T) = \sigma_e(T) \cup \sigma_p(T)$. In view of the second assertion of theorem we have, $\sigma_e(T) = \sigma_e(D + T_\mu) = \sigma_e(D)$. So, it follows that $\sigma(T) = \sigma_e(D) \cup \sigma_p(T)$.
 - 4. Let $y = (y_n)_{n \in \mathbb{N}}$ be an orthonormal sequence in c_0 then:

$$Ty = (D + T_{\mu})(y);$$

since y is orthonormal, we have: $Dy = a_n < y_n, e_n > e_n$ and $T_{\mu}y = \mu_n y_n$. Then:

$$Ty = Ty_n = a_n < y_n, e_n > e_n + \mu_n y_n.$$
 (*)

Taking the inner product of equality (*) with the canonical basis of c_0 we obtain:

$$\langle Ty_n, e_n \rangle = a_n \langle y_n, e_n \rangle + \mu_n \langle y_n, e_n \rangle = (\mu_n + a_n) \langle y_n, e_n \rangle.$$

Then $\langle Ty_n - (\mu_n + a_n)y_n, e_n \rangle = 0$ it follows that $Ty_n - (\mu_n + a_n)y_n = 0$, if not, there exists a nonzero $(\alpha_i)_{i \in \mathbb{N}} \subseteq \mathbb{K}$ such that $Ty_n - (\mu_n + a_n)y_n = \sum_{i \in \mathbb{N}} \alpha_i e_i$,

then $<\sum_{i\in\mathbb{N}} \alpha_i e_i, e_n>=\alpha_n$, absurd because $\alpha_n\neq 0$. Consequently μ_n+a_n is eigenvalue of T.

Corollary 3.5. For every $T_{\mu} \in C_Y$, we have $\sigma_e(D + T_{\mu}) = \sigma_e(D)$, where D is a bounded diagonal operator in c_0 .

Corollary 3.6. The spectrum of $T = D + T_{\mu}$ is

$$\sigma(T) = \{\mu_n + a_n : n \in \mathbb{N}\} \cup (\overline{\Lambda} \backslash \Lambda^*) \cup (\Lambda^* \cap \Lambda').$$

Proposition 3.7. Let $T = D + T_{\mu}$ where D is diagonal operator and T_{μ} is compact and self-adjoint, then $\sigma_p(T) \cap \sigma_p(D) = \emptyset$.

Proof. Suppose $\lambda \in \sigma_p(T)$, thus there exists $u \neq 0$, $u \in c_0$ such that $Tu = \lambda u$. Equivalently,

$$(\lambda I - D)u = T_{\mu}u = \sum_{i=1}^{\infty} \mu_i \frac{\langle u, y_i \rangle}{\langle y_i, y_i \rangle} y_i.$$

Clearly, all expressions $\langle u, y_i \rangle \neq 0$ for $i \in \mathbb{N}$. If not, we will get $(\lambda I - D)u = 0$ with $u \neq 0$. That is, $\lambda \in \sigma_p(D)$ and hence there exists $j_0 \in \mathbb{N}$ such that $\lambda = \lambda_{j_0}$,

 $u = ae_{j_0}, a \in \mathbb{K}\setminus\{0\}$. Then for $i = j_0$, we have: $0 = \langle u, y_{j_0} \rangle = \langle ae_{j_0}, y_{j_0} \rangle = a \langle e_{j_0}, y_{j_0} \rangle \neq 0$. Absurd, consequently λ doesn't belong to $\sigma_p(D)$.

Conversely, suppose that $\lambda \in \sigma_p(D)$. Thus there exists $u \neq 0$, $u \in c_0$ such that $Du = \lambda u$, hence there exists $i_0 \in \mathbb{N}$ and $\alpha_{i_0} \in \mathbb{K} \setminus \{0\}$ such that $\lambda = \lambda_{i_0}$ and $u = \alpha_{i_0} e_{i_0}$. On the other hand, we have

$$Tu = Du + T_{\mu}u = \lambda u + \mu_{i_0} \alpha_{i_0} \frac{\langle y_{i_0}, e_{i_0} \rangle}{\langle y_{i_0}, y_{i_0} \rangle} y_{i_0}.$$

Then $\lambda u - Tu = -\mu_{i_0} \alpha_{i_0} \frac{\langle y_{i_0}, e_{i_0} \rangle}{\langle y_{i_0}, y_{i_0} \rangle} y_{i_0} \neq 0$, if not we will have $\mu_{i_0} y_{i_0} = 0 = T_{\mu}(y_{i_0})$, absurd. Then λ doesn't belong to $\sigma_p(T)$.

Remark 3.8. T and T_{μ} have the same eigenvectors corresponding to $\mu_i + a_i$ and μ_i respectively.

References

- [1] AGUAYO, J., NOVA, M., AND SHAMSEDDINE, K. Characterization of compact and self-adjoint operators on free Banach spaces of countable type over the complex Levi-Civita field. *J. Math. Phys.* 54, 2 (2013), 023503, 19.
- [2] ARAUJO, J., PEREZ-GARCIA, C., AND VEGA, S. Preservation of the index of p-adic linear operators under compact perturbations. Compositio Math. 118, 3 (1999), 291–303.
- [3] Bosch, S., Güntzer, U., and Remmert, R. Non-Archimedean analysis, vol. 261 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry.
- [4] DIAGANA, T., KERBY, R., MIABEY, T. H., AND RAMAROSON, F. Spectral analysis for finite rank perturbations of diagonal operators in non-archimedean Hilbert space. p-Adic Numbers Ultrametric Anal. Appl. 6, 3 (2014), 171–187.
- [5] GRUSON, L. Théorie de Fredholm p-adique. Bull. Soc. Math. France 94 (1966), 67–95.
- [6] NARICI, L., AND BECKENSTEIN, E. A non-Archimedean inner product. In Ultrametric functional analysis, vol. 384 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2005, pp. 187–202.
- [7] PEREZ-GARCIA, C., AND SCHIKHOF, W. H. Locally convex spaces over non-Archimedean valued fields, vol. 119 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
- [8] SCHIKHOF, W. H. On p-adic Compact Operators. Report 8911. Nijmegen, Katholieke Universiteit, Department of Mathematics, 1989.
- [9] SERRE, J.-P. Endomorphismes complètement continus des espaces de Banach p-adiques. Inst. Hautes Études Sci. Publ. Math., 12 (1962), 69–85.
- [10] ŚLIWA, W. On Fredholm operators between non-Archimedean Fréchet spaces. Compositio Math. 139, 1 (2003), 113–118.
- [11] VAN ROOIJ, A. C. M. Non-Archimedean functional analysis, vol. 51 of Monographs and Textbooks in Pure and Applied Math. Marcel Dekker, Inc., New York, 1978.

Received by the editors March 25, 2021 First published online September 19, 2022