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Existence and stability of solutions to fractional-order
differential equations in a weighted space

Okan Duman1

Abstract. We prove an existence and uniqueness result for fractional-
order differential equations and a result regarding the Hyers-Ulam sta-
bility of this problem based on the use of weighted spaces.
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1. Introduction

The more general form of the classical integer order differential equation,
fractional-order differential equations have recently been utilized to model prob-
lems in a wide range of disciplines, including engineering, finance, astrophysics,
thermodynamics, and mathematical physics [11, 16, 4, 15, 14]. Studies on the
existence, uniqueness, and stability of fractional-order differential equations in
the literature have also gained prominence as a result of the rapid rise in the
importance of ordinary and partial fractional-order differential equations and
developments in this field [7, 6, 2, 1].

Ulam was the first to introduce the idea of stability for functional equations
at a conference in 1940. This type of stability concept came to be known as
Hyers-Ulam stability after Hyers made his first contribution to Ulam’s work
in 1941. Obloza is the first author to study the this type of stability of linear
differential equations [9]. Later, the concept of Hyers-Ulam stability is stud-
ied in many topics such as ordinary differential equations, partial differential
equations, and delay differential equations [5, 8, 13, 19, 10]. As fractional-order
differential equations widened traditional integer order differential equations,
the stability problem gained even more significance. Many authors have exam-
ined this type of stability concerning the Caputo derivative for fractional-order
differential equations [17, 18, 19, 2]. We refer the reader to papers [12, 13, 2] and
the references therein for further information on the evolution of Hyers-Ulam
stability.

In this article, we investigate the existence and uniqueness of solutions and
Hyers-Ulam type stability for the following fractional-order differential equation
in the sense of Caputo{

cDαυ(t) = f(t, υ(t)) t ∈ [0, T ]

υ(0) = υ0.
(1.1)
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where cDα is the fractional derivative of order α ∈ (0, 1). The structure of
the paper is as follows: The general concepts of Hyers-Ulam stability and the
Caputo fractional-order derivative are discussed in Section 2. The useful in-
equalities and fundamental properties of the Caputo fractional-order derivative
are described here. In Section 3, we investigate the existence and uniqueness of
the solution to this problem. These type of theorems are usually proved under
the condition of the continuity of the function f . The necessity to weaken the
continuity assumptions on f contributes to the interest in such results. Here
again, we extend the existence and uniqueness theorems on weighted spaces
introduced on integer order differential equations in the paper [3] to fractional-
order differential equations by modifying them. In Theorem 3.5, we obtain
the existence and uniqueness of the solution in a weighted space under the
hypothesis that the function on the righthand side of our problem satisfies
Carathéodory and Lipschitz type conditions. In Section 4, we focus our atten-
tion on Hyers-Ulam stability for the problem.

2. Preliminaries

In this section, we present some notations, definitions, and preliminary facts
used throughout this paper.

Definition 2.1. [11, 6] The Riemann–Liouville integral of order α > 0 for the
function υ is defined as

Iαυ(t) =
1

Γ(α)

∫ t

0

(t− s)α−1υ(s)ds, t ∈ [0, T ],

where Γ(·) is the Gamma function.

Definition 2.2. [11, 6] The Caputo derivative of fractional-order α for the
function υ is defined as

Dαυ(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1υ(n)(s)ds, t ∈ [0, T ],

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3. The equation (1.1) is Hyers-Ulam stable if there exists a real
number c > 0 such that for each ϵ > 0 and for each solution ϑ ∈ C([0, T ],Rn)
to the inequality

(2.1) ∥Dαϑ(t)− f(t, ϑ(t))∥ ≤ ϵ t ∈ [0, T ],

there exists a solution υ ∈ C([0, T ],Rn) to the equation (1.1) with∥∥ϑ(t)− υ(t)
∥∥ ≤ cϵ t ∈ [0, T ].

Remark 2.4. A function ϑ ∈ C([0, T ],Rn) is a solution of inequality (2.1) if
and only if there exists a function Ψ ∈ C([0, T ],Rn) such that
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Existence and stability of solutions to FDE in a weighted space 3

i)
∥∥Ψ(t)

∥∥ ≤ ϵ for all t ∈ [0, T ],

ii) cDαϑ(t) = f(t, ϑ(t)) + Ψ(t) for all t ∈ [0, T ].

Remark 2.5. If ϑ ∈ C([0, T ],Rn) is a solution of the inequality (2.1), then it is
a solution to the following integral inequality:∥∥∥∥ϑ(t)− ϑ(0)− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, ϑ(s))ds

∥∥∥∥ ≤ ϵTα

Γ(α+ 1)

for all t ∈ [0, T ].

3. Existence and Uniqueness results

We begin by defining the weighted space to be studied and then give our
main results.

Definition 3.1. Let 0 < k ≤ 1 be fixed and υ ∈ Rn. We will say that a
function w ∈ C([0, T ],Rn) belongs to Bυ,k([0, T ],Rn) if and only if

(3.1) ∥w∥υ,k := sup

{
∥w(t)− υ∥

tk
: t ∈ (0, T ]

}
is finite.

For the sake of simplicity of notation, we frequently write Bυ,k instead of
Bυ,k([0, T ],Rn). We would like to emphasize that the results we obtain about
existence and uniqueness will be local, thus all results could be stated on all
finite intervals [0, T ].

Remark 3.2. We note that ∥w∥υ,k < ∞ implies that w(0) = υ. Moreover, it
is verified that Bυ,k is a vector space only if υ = 0 and then ∥.∥0,k is a norm.
From here, for any υ we can obtain a metric defined on this space as follows

d(w, u) = ∥w − u∥0,k.

It is easily seen that any Cauchy sequence in this metric space is uniformly
convergent. Thus, we have the following lemmas to be used for the fixed point
theorem.

Lemma 3.3. For 0 < k ≤ 1 and υ ∈ Rn, Bυ,k is a complete metric space.

Lemma 3.4. Assume that k1 < k2. Then we have the followings

Bυ,k2
⊂ Bυ,k1

and ∥w∥υ,k1
≤ T k2−k1∥w∥υ,k2

.

Proof. If we take any w ∈ Bυ,k2
, then ∥w∥υ,k2

< ∞ and

∥w(t)− υ∥
tk1

tk2

tk2
≤ T∥w∥υ,k2

< ∞.
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4 Okan Duman

So, we have Bυ,k2 ⊂ Bυ,k1 . Now for k1 < k2,

∥w∥υ,k1
=

1

T k1
sup

{
∥w(t)− υ∥

( t
T )

k1
: t ∈ (0, T ]

}
≤ 1

T k1
sup

{
∥w(t)− υ∥

( t
T )

k2
: t ∈ (0, T ]

}
= T k2−k1∥w∥υ,k2 .

Let us state the following hypotheses that will be used later:

(H1) υ 7→ f(t, υ) is continuous for a.e. t in [0, T ].

(H2) t 7→ f(t, υ) is Lebesgue measurable for all υ.

(H3) There exist a locally integrable function m such that ∥f(t, υ)∥ ≤ m(t).

(H4) There exist a function ξ ∈ L1((0, T ),R) such that

∥f(t, ν)− f(t, ν̃)∥ ≤ ξ(t)

t
∥ν − ν̃∥ for all t ∈ (0, T ]

(H5) Let the function ξ in (H4) satisfy the following quantity

Λ(ξ, T ) := sup

{
1

tΓ(α)

∫ t

0

(t− s)α−1ξ(s)ds : t ∈ (0, T ]

}
< 1

If f satisfies the conditions (H1),(H2) and (H3), it is called Carathéodory func-
tion. Since we consider the right-hand side of the problem (1.1) to be discontin-
uous, we need to explain the concept of solution. The necessary and sufficient
condition for the υ ∈ C([0, T ],Rn) to be a solution to the problem (1.1) is
that it is absolutely continuous function which satisfies (1.1) for almost every
t ∈ [0, T ] and υ(0) = υ0. Now we are ready to state our first result.

Theorem 3.5. Let f be a Carathéodory function and hypotheses (H4) and
(H5) are satisfied. If Λ(f(·, υ0), T ) is finite, then the problem (1.1) has a unique
solution belonging to Bυ0,1.

Proof. Equivalently, finding a solution of the problem (1.1) is to find a solution
of the following integral equation on [0, T ]

υ(t) = υ0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, υ(s))ds.

In order to prove our claim, we only prove the existence of solution for the
integral equation which can be turned into a fixed point problem in Bυ0,1.
Therefore, let’s denote the right-hand side of the integral equation with F(υ).
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Existence and stability of solutions to FDE in a weighted space 5

Step 1: Firslty we show that F(υ) ∈ Bυ0,1. So our initial task is to
demonstrate that for any element υ ∈ Bυ0,1, F is map from Bυ0,1 to Bυ0,1.
Let us consider the following calculation.∥∥∥∥F(υ)(t)− υ0

t

∥∥∥∥ ≤ 1

tΓ(α)

∫ t

0

(t− s)α−1∥f(s, υ(s))∥ds

=
1

tΓ(α)

∫ t

0

(t− s)α−1

(
∥f(s, υ(s)) + f(s, υ0)− f(s, υ0)∥

)
ds

≤ 1

tΓ(α)

∫ t

0

(t− s)α−1∥f(s, υ(s))− f(s, υ0)∥ds

+
1

tΓ(α)

∫ t

0

(t− s)α−1∥f(s, υ0)∥ds

≤ 1

tΓ(α)

∫ t

0

(t− s)α−1 ξ(s)

s
∥υ(s)− υ0∥ds+ Λ(f(·, υ0), T )

≤Λ(ξ, T )∥υ∥υ0,1 + Λ(f(·, υ0), T )
Then we have F(υ) ∈ Bυ0,1.

Step 2: Now we prove that F : Bυ0,1 → Bυ0,1 is a contraction mapping.∥∥∥∥F(υ)(t)−F(u)(t)

∥∥∥∥ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1∥f(s, υ(s))− f(s, u(s))∥ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1 ξ(s)

s
∥υ(s)− u(s)∥ds

≤∥υ − u∥0,1
1

Γ(α)

∫ t

0

(t− s)α−1ξ(s)ds.

After dividing both sides by tk we get that∥∥∥∥F(υ)(t)−F(u)(t)

tk

∥∥∥∥ ≤∥υ − u∥0,1
tkΓ(α)

∫ t

0

(t− s)α−1ξ(s)ds.

=
∥υ − u∥0,1

tk−1

1

tΓ(α)

∫ t

0

(t− s)α−1ξ(s)ds.

≤∥υ − u∥0,kΛ(ξ, T ).
Hence we have d(F(υ),F(u)) ≤ d(υ, u)Λ(ξ, T ). Since Λ(ξ, T ) < 1, then the
map F is a contraction mapping, and the Banach fixed point principle implies
that exists a unique solution. Thus the proof is complete.

Corollary 3.6. Let f be a Carathéodory function and hypotheses (H4) and
(H5) are satisfied. Then there exists at most one solution to the problem (1.1)
in Bυ0,1.

Proof. Suppose that there are two solutions υ and u in the class Bυ0,1. It is
easy to see that υ − u ∈ B0,1. In addition, we have the following

cDαυ(t)−c Dαu(t) = f(t, υ(t))− f(t, u(t)) a.e. t ∈ [0, T ]

υ(0)− u(0) = 0.
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6 Okan Duman

From the definition of derivative in the sense of Caputo, we have

υ(t)− u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1
(
f(s, υ(s))− f(s, u(s))

)
ds.

Hence,

∥υ(t)− u(t)∥ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1∥f(s, υ(s))− f(s, u(s))∥ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1 ξ(s)

s
∥υ(s)− u(s)∥ds

≤
(

sup
z∈(0,T ]

∥υ(z)− u(z)∥
z

)
1

Γ(α)

∫ t

0

(t− s)α−1ξ(s)

If we divide both sides by t, we have

∥υ(t)− u(t)∥
t

≤ ∥υ − u∥0,1Λ(ξ, T ).

Thus, using the Λ(ξ, T ) < 1, we obtain that ∥υ − u∥0,1 = 0. Hence these
solutions must be equal.

4. Hyers-Ulam stability result

In this section we give a result on the Hyers-Ulam stability of the first equa-
tion in the problem (1.1).Based on the Definition 2.3, the concept of stability
in the sense defined here will be adapted to the space we are studying on.

Theorem 4.1. Let f be a Carathéodory function and assume that (H4) and
(H5) are satisfied. If α ≥ k then the first equation of the problem (1.1) is
Hyers-Ulam stable.

Proof. Let ϑ be a solution to (2.1). We indicate υ as a unique solution to the
following problem by Theorem 3.5,{

cDαυ(t) = f(t, υ(t)) t ∈ [0, T ]

υ(0) = ϑ(0)

It follows we have

υ(t) = ϑ(0) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, υ(s))ds t ∈ [0, T ].
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Existence and stability of solutions to FDE in a weighted space 7

Now consider the following quantity using Remark 2.4 and (H4),

∥∥ϑ(t)− υ(t)
∥∥ =

∥∥∥ϑ(t)− ϑ(0)− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, υ(s))ds
∥∥∥

≤
∥∥∥ϑ(t)− ϑ(0)− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, ϑ(s))ds
∥∥∥

+
1

Γ(α)

∫ t

0

(t− s)α−1
∥∥f(s, ϑ(s))− f(s, υ(s))

∥∥ds
≤ ϵtα

Γ(α+ 1)
+

1

Γ(α)

∫ t

0

(t− s)α−1 ξ(s)

s
∥ϑ(s)− υ(s)

∥∥ds
≤ ϵtα

Γ(α+ 1)
+ ∥ϑ(s)− υ(s)∥0,1

1

Γ(α)

∫ t

0

(t− s)α−1ξ(s)ds.

If we divide both sides by tk we have∥∥∥∥ϑ(t)− υ(t)

tk

∥∥∥∥ ≤ ϵtα

tkΓ(α+ 1)
+

∥ϑ(t)− υ(t)∥0,1
tkΓ(α)

∫ t

0

(t− s)α−1ξ(s)ds

≤ ϵtα−k

Γ(α+ 1)
+ ∥ϑ− υ∥0,kΛ(ξ, T ).

Since Λ(ξ, T ) < 1, we obtain that

∥ϑ− υ∥0,k ≤ ϵTα−k

Γ(α+ 1)(1− Λ(ξ, T ))
where c =

Tα−k

Γ(α+ 1)(1− Λ(ξ, T ))
.

Hence, we say that the first equation of the problem (1.1) is Hyers-Ulam stable.
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