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Foreword

The Seminar on mathematical analysis at the Novi Sad University was founded by Professor Bo-
goljub Stanković in1962. More than hundred mathematicians of the Novi Sad University started
their scientific work through this seminar. A large number of distinguished visitors participated
at the seminar as well. From the very beginning a vast scope of mathematical topics was cov-
ered, starting from integral transforms, integral equations and theory of generalized functions,
foundations of mathematics, differential equations and asymptotic behavior of solutions through
numerical solutions, fixed point theory and applications.

At the present time the Seminar resembles the enlarged mathematical interest of the researchers
participating at the three research projects. Functional analysis topics include Generalized func-
tions as framework for singular ODE and PDE, Microlocal analysis and ΨDO, Integral transforms
and asymptotics, Time-frequency analysis (research led by Academician Stevan Pilipović), Math-
ematical logic and general topology (research led by Professor Miloš Kurilić) and Differential
equations with fractional derivatives and their applications (research led by Academician Teodor
M. Atanacković).

The Department of Mathematics and Informatics, Department of Mechanics and the Center
for Mathematical Research of Nonlinear Phenomena at Novi Sad University, and the Scientific
and Organizing Committees are pleased to welcome you to the celebration of 50 years of Seminar
for analysis and foundation of mathematics, successfully led by Academician Bogoljub Stanković.

The main programme consists of three conferences:

Topics in PDE, Microlocal and Time-frequency Analysis, September 3-8, 2012

Contemporary Problems of Mechanics and Applied Mathematics, September 3-6, 2012

Mathematical Logic and General Topology, September 5-8, 2012

Organizing Committee
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Scientific and Organizing Committees

Scientific Committee

Bogoljub Stanković

Teodor M. Atanacković

Stevan Pilipović

Miloš Kurilić

Organizing Committee

Vladan Djordjević

Teodor Atanacković

Srboljub Simić

Dušan Zorica
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Supporting Organizers

Serbian Academy of Sciences and Art

Serbian Ministry of Education and Science

Provincial Secretariat for Science and Technological Development
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Schedules

Mon 3 Sep Tue 4 Sep Wed 5 Sep

09.30-10.10 Opening + Pilipović Mainardi Rodino
10.15-10.55 Oberguggenberger Spasić Ruggeri
11.00-11.25 Coffee break
11.25-12.05 Gorenflo Makris Jarić
12.10-12.50 Seyranian Stojanović Lazarević
13.00-15.20 Lunch break
15.20-15.40 Zorica Oparnica Stevanović
15.45-16.05 Tsankov Janev Pavić
16.10-16.30 Bazhlekova Dolićanin Madjarević
16.35-17.00 Coffee break
17.00-17.20 Takači Dj. Janevski Marić
17.25-17.45 Takači A. Glavardanov Hadžić
17.50-18.10 Vesković Hadžić
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Monday, September 3

9.30-10.10 Opening + Stevan Pilipović
Classes of generalized functions with finite type reg-
ularities

10.15-10.55 Michael Oberguggenberger
Detection of singularities in hyperbolic PDEs via
asymptotic properties of generalized solutions

11.00-11.25 coffee break

11.25-12.05 Rudolf Gorenflo
On subordination in time-fractional stochastic pro-
cesses

12.10-12.50 Alexander Seyranian
Paradox of Nicolai and similar effects in non-
conservative stability problems

13.00-15.20 lunch break

15.20-15.40 Dušan Zorica
Forced oscillations of a body attached to a light frac-
tional viscoelastic rod

15.45-16.05 Yulian Tsankov
Operational calculi for multivariate evolution bound-
ary value problems

16.10-16.30 Emilia Bazhlekova
Fractional Differential Equations: Abstract Theory
and Some Nonlocal Boundary-Value Problems

16.35-17.00 coffee break

17.00-17.20 Djurdjica Takači
On the approximate solutions of the fuzzy fractional
differential equation

17.25-17.45 Arpad Takači
On the approximate solutions of the fractional differ-
ential equation

Tuesday, September 4

9.30-10.10 Francesco Mainardi
On completely monotone and Bernstein functions in
relaxation and creep processes

10.15-10.55 Dragan Spasić
Engineering Problems with both Nonsmooth Multi-
functions and Noninteger Order Derivatives

11.00-11.25 coffee break

11.25-12.05 Nicos Makris

From Hooke’s “Hanging Chain” and Milankovitch’s
“Druckkurven” to a variational formulation: The ad-
venture of the thrust-line of masonry arches

12.10-12.50 Mirjana Stojanović Fractional Helmholtz equation with singularities

13.00-15.20 lunch break

15.20-15.40 Ljubica Oparnica Euler-Bernoulli beam on the viscoelastic foundation
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15.45-16.05 Marko Janev
Image denoising by a direct variational minimization

16.10-16.30 Diana Dolićanin
An equation with distributed order symmetrized frac-
tional derivative

16.35-17.00 coffee break

17.00-17.20 Goran Janevski
A Numerical Method for Estimating the Vibrations
of an Viscoelastic Beam

17.25-17.45 Valentin Glavardanov Buckling and postbuckling analysis of nanotube

17.50-18.10 Miroslav Vesković
Asymptotic solutions of quasilinear equations and the
problem of instability of equlibria of mechanical sys-
tems

19.30 Conference dinner

Wednesday, September 5

9.30-10.10 Luigi Rodino Weyl asymptotics and Dirichlet divisors

10.15-10.55 Tommaso Ruggeri Extended thermodynamics of real gases

11.00-11.25 coffee break

11.25-12.05 Jovo Jarić
Anisotropic elasticity damage tensor in continuum
damage mechanics

12.10-12.50 Mihailo Lazarević
Some applications of fractional calculus on control
problems in robotics and system stability

13.00-15.20 lunch break

15.20-15.40 Nevena Stevanović
Microbearing gas flow modeling by fractional deriva-
tive for entire Knudsen number range

15.45-16.05 Milana Pavić
Diffusion asymptotics of a kinetic model for gaseous
mixtures

16.10-16.30 Damir Madjarević
Shock structure and temperature overshoot in multi-
temperature model of binary mixture

16.35-17.00 coffee break

17.00-17.20 Vojislav Marić
An asymptotic analysis of solutions to equations of
Thomas-Fermi type

17.25-18.05 Olga Hadžić
50 years of Seminar for analysis and foundations of
mathematics

Thursday, September 6

20.00 Joint conference dinner
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Classes of generalized functions with finite type regularities

Stevan Pilipović

Department of Mathematics and Informatics, University of Novi Sad, Serbia
stevan.pilipovic@dmi.uns.ac.rs

We analyze regularity properties of elements of generalized function algebras parallel to the
corresponding theory within distribution spaces. In this sense we considered subspaces or sub-
algebras which correspond to Sobolev, Zygmund and Hölder spaces. Moreover, we investigate
regularity propetoes of Schwartz distributons within the Besov spaces of functions and distribu-
tions. In this case, instead of growth order of the form ”O(εa)”, we consider weighted integrals
from zero to one with respect to the measure dε/ε.

This talk is based on a joint work of Pilipović, Scarpalezos and Vindas, as well as of Pilipović
and Vindas.
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Detection of singularities in hyperbolic PDEs
via asymptotic properties of generalized solutions

Michael Oberguggenberger

University of Innsbruck, Austria
michael.oberguggenberger@uibk.ac.at

The talk addresses propagation of singularities in linear hyperbolic systems with non-smooth
coefficients. The existence of distributional solutions requires a minimal degree of regularity of
the coefficients. In case of more singular coefficients, e.g., discontinuous coefficients, solutions may
still be constructed in algebras of generalized functions, like the Colombeau algebras.

These generalized functions are represented by families of smooth functions depending on a
parameter ε. Classical notions for locating the singularities, such as the wave front set, have
a generalization and refinement in the setting of Colombeau algebras in terms of asymptotic
estimates with respect to ε.

The talk addresses recently established possibilities of tracing the singularities issuing from the
initial data across singularities of the coefficients. Methods of proof involve the generalized wave
front set, commutators of vector fields, and Fourier integral operators.

The talk is based on joint work with Hideo Deguchi, Claudia Garetto and Günther Hörmann.
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On subordination in time-fractional stochastic processes

Rudolf Gorenflo

Fachbereich Mathematik und Informatik, Freie Universität Berlin, Germany
gorenflo@math.fu-berlin.de

This lecture consists of two parts: A and B. In part A we present two pathways to subordination
in space-time fractional diffusion. In Part B we show that the time-fractional Poisson process can
be obtained from the classical Poisson process by a time change via the inverse stable subordinator.

Part A1: The uncoupled spatially one-dimensional Continuous Time Random Walk (CTRW)
under power law regime is split into three distinct random walks: a walk (rw1) along the line
of natural time, happening in operational time, a walk (rw2) along the line of space, happening
in operational time, a walk (rw3) (the walk (rw1) inverted) along the line of operational time,
happening in natural time. Via the general integral equation of CTRW and appropriate rescaling,
the transition to the diffusion limit is carried out separately for each of these three random walks.
Combining the limits of (rw1) and (rw2) we get the method of parameteric subordination for
generating particle paths, whereas combination of (rw2) and (rw3) yields the subordination integral
formula for the sojourn probability density in space-time fractional difusion.

Part A2: Via Fourier-Laplace manipulations of the relevant fractional differential equation we
obtain the subordination integral formula that teaches us how a particle path can be constructed
by first generating the operational time from the physical time and then generating in operational
time the spatial path. By inverting the generation of the operational time from the physical time
we arrive at the method of parametric subordination.

Part B: We generate the fractional Poisson process by subordinating the standard Poisson
process to the inverse stable subordinator. Our´analysis is based on Laplace-Laplace transform of
the probability densities. First we give an outline of basic renewal theory, then of the essentials of
the classical Poisson process and its fractional generalization via replacement of the exponential
waiting time density by one of Mittag-Lefler type. Turning our attention to the probability of the
counting number of the fractional Poisson process assuming a given value we find in the transform
domain a formula analogous to the Cox-Weiss formula in the theory of continuous time random
walk. This formula contains for the jump densities (all increments being positive, in fact equal
to 1) the Laplace transform instead of the customary Fourier transform. By manipulating this
formula we arrive, after inversion of the transforms, to a subordination integral involving the
inverse stable subordinator. Stochastic interpretation of this integral leads to the result that the
fractional Poisson process can be obtained from the classical Poisson process via time change to
the inverse stable subordinator.

References

[1] L. Beghin and E. Orsingher: Fractional Poisson processes and related random motions, Elec-
tronic Journ. Prob. No 61 (2009), 1790–1826.

[2] R. Gorenflo, F. Mainardi and A. Vivoli, Continuous time random walk and parametric sub-
ordination in fractional diffusion. Chaos, Solitons and Fractals, 34 (2007), 87–103. [E-print:
http://arxiv.org/abs/cond-mat/0701126].
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[3] R. Gorenflo and F. Mainardi: Subordination pathways to fractional diffusion. Eur. Phys. J.
Special Topics 193 (2011), 119-132.

[4] R. Gorenflo and F. Mainardi: Parametric subordination in fractional diffusion pocesses. In:
S.C. Lim , J. Klafter and R. Metzler (Editors), Fractional Dynamics, Chapter 10, pp. 228-261,
World Scientific, Singapore, 2011.

[5] F. Mainardi, R. Gorenflo and E. Scalas: A fractional generalization of the Poisson processes.
Vietnam Journal of Mathematics 32 SI (2004), 53-64. [E-print http://arxiv.org/abs/math/0701454]

[6] F. Mainardi, Yu. Luchko and G. Pagnini: The fundamental solution of the space-time fractional
diffusion equation. Fractional Calculus and Applied Analysis 4 (2001), 153-192.

[7] M.M. Meerschaert, E. Nane and P. Vellaisamy: The fractional Poisson process and the inverse
stable subordinator, Electronic Journ. Prob. 16 (2011), 1600-1620.
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Paradox of Nicolai and similar effects
in non-conservative stability problems

Alexander P. Seyranian

Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
seyran@imec.msu.ru

We present a general approach to the paradox of Nicolai and related effects analyzed as a sin-
gularity of the stability boundary. We study potential systems with arbitrary degrees of freedom
and two coincident eigenfrequencies disturbed by small non-conservative positional and damping
forces. The instability region is obtained in the form of a cone having a finite discontinuous increase
in the general case when arbitrarily small damping is introduced. This is a new destabilization
phenomenon, which is similar to the effect of the discontinuous increase of the combination reso-
nance region due to addition of infinitesimal damping. Then we consider the paradox of Nicolai:
the instability of a uniform axisymmetric elastic column loaded by axial force and a tangential
torque. It is shown that the paradox of Nicolai is related to the conical singularity of the stability
boundary which transforms to a hyperboloid with the addition of small dissipation.
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Forced oscillations of a body attached
to a light fractional viscoelastic rod

Teodor Atanackovića, Stevan Pilipovićb and Dušan Zoricac

a Department of Mechanics, Faculty of Technical Sciences, University of Novi Sad, Serbia
atanackovic@uns.ac.rs

b Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Serbia
stevan.pilipovic@dmi.uns.ac.rs

c Mathematical Institute, Serbian Academy of Arts and Sciences, Belgrade, Serbia
dusan zorica@mi.sanu.ac.rs

We study forced oscillations of a body attached to a free end of a viscoelastic rod (the other
end of the rod is fixed). We presented the case when the mass of the rod is negligible in comparison
with the mass of the body. Constitutive equation for the rod is assumed in a general form. The
existence of the solution for displacement and stress is proved and several numerical examples are
presented.
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Operational calculi for multivariate
evolution boundary value problems

Ivan H. Dimovskia and Yulian T. Tsankovb

aInstitute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
dimovski@math.bas.bg

bFaculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridsky”, Sofia,
Bulgaria

ucankov@fmi.uni-sofia.bg

Direct Mikusiński type operational calculi for several real variables are proposed by various
authors. As a rule they are applicable only to Cauchy problems for linear partial differential
equation with constant coefficients. As it concerns mixed problems, i.e. problems, containing
both boundary and initial conditions these operational calculi are unpractical.

Here, using non-classical convolutions (see [1]), we propose a direct operational calculus ap-
proach to nonlocal boundary value problems for a large class of evolution equations with several
space variables. To this end we introduce multidimensional convolution algebra and the ring of
multipliers fractions of this algebra. Our starting point is the class of linear nonlocal boundary
value problems for PDEs of the form:

P (∂t)u+

n∑
j=1

Qj(∂
2
xj
)u = F (x1, . . . , xn, t), 0 < t, 0 < xj < aj , j = 1, . . . , n,

where P and Qj , j = 1, . . . , n are polynomials of one variable, with degP ≥ 1 and degQj ≥ 1,
with the “initial” conditions

χτ

{
∂kt u(x1, . . . , xn, τ)

}
= fk(x1, . . . , xn), k = 0, 1, . . . ,degP − 1,

where χ is a non-zero linear functional on C[0,∞), and boundary value conditions

∂2mj
xj

u(x1, . . . , xj−1, 0, xj+1, . . . , xn, t) = gmj (x1, . . . , xj−1, xj+1, . . . , xn, t)

Φj,ξ

{
∂2mj
xj

u(x1, . . . , xj−1, ξ, xj+1, . . . , xn, t)
}
= hmj (x1, . . . , xj−1, xj+1, . . . , xn, t)

j = 1, . . . , n, mj = 0, 1, . . . , degQj − 1

where Φj , j = 1, . . . , n are supposed be non-zero linear functionals on C1[0, aj ].
The operational calculi developed here allow to obtained explicit solutions of series of local and

nonlocal evolution boundary value problems.

References

[1] Dimovski, I.H. Convolutional Calculus. Kluwer, Dordrecht. 1990.
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Fractional Differential Equations: Abstract Theory
and Some Nonlocal Boundary-Value Problems

Emilia Bazhlekova

Institute of Mathematics and Informatics, BAS, Sofia, Bulgaria

During the last few decades a considerable interest has been devoted to the application of
fractional calculus modeling to different fields of science e.g. classical and quantum mechanics,
rheology, nuclear physics, biology, geomorphology etc. This stimulated the development of the
mathematical theory of partial differential equations of fractional order. The existence of a unique
solution and its regularity as well as methods of obtaining explicit or approximate solutions are
extensively studied.

We consider first the abstract differential equation of fractional order

Dα
t u(t) = Au(t) + f(t), t > 0,

where Dα
t denotes the Caputo fractional derivative of order α ∈ (0, 2), A is a closed linear operator

densely defined in a Banach space X, f(t) is a given vector-valued function and appropriate initial
conditions for u(t) are prescribed. Results on the unique solvability of the problem and some
properties of the solution such as analyticity, regularity, perturbation, subordination principle, are
presented. It appears that many facts from the theories of C0-semigroups of operators (α = 1)
and cosine operator functions (α = 2) have natural analogues for the solution operators in the
case of noninteger α. However, in some aspects the fractional problems show remarkably different
features.

Regularity estimates for the solution in various functional spaces are obtained. Such estimates
are essential in the computational stability analysis of numerical solutions, in inverse problems as
well as in the transition from linear to quasilinear problems.

Some particular initial-boundary-value problems for the time-fractional diffusion-wave equa-
tion are also considered, including problems with nonlocal boundary conditions. Applying the
operational calculus approach proposed by Dimovski, we find explicit Duhamel-type representa-
tion of the solution. This representation is used for numerical computation and visualization of
the solution.
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On the approximate solutions of the fuzzy
fractional differential equation

Djurdjica Takačia and Aleksandar Takačib

aDepartment of Mathematics and Informatics, Faculty of Sciences
University of Novi Sad, Serbia

bFaculty of Technology, University of Novi Sad, Serbia
djtak@dmi.uns.ac.rs

Fuzzy fractional integral and derivative introduced by Agarwal are presented.In that sense
the class of fuzzy fractional differential equations are consider and the approximate solutions are
constructed and analyzed.
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On the approximate solutions of the fractional differential equation

Arpad Takači

Department of Mathematics and Informatics, Faculty of Sciences
University of Novi Sad, Serbia

takaci@dmi.uns.ac.rs

The time-fractional integro-differential equation of the form

∂2u(x, t)

∂t2
+ a

∫ t

0

k(t− τ)
∂2u(x, τ)

∂τ2
dτ = b

∫ t

0

k(t− τ)
∂3u(x, τ)

∂x2∂τ
dτ +

∂2u(x, t)

∂x2
,

for t > 0, x ∈ (0, 1), for k(t) = t−α

Γ(1−α) , 0 < α < 1, with the following conditions:

u(0, x) = u0(x), ut(0, x) = u1(x) u(t, 0) = u(t, 1) = 0, t > 0

is analyzed in the frames of the Mikusiński calculus. We present a method for obtaining the exact
and the approximate solution.



Book of Abstracts 27

On completely monotone and Bernstein functions
in relaxation and creep processes

Francesco Mainardi

Department of Physics, University of Bologna and INFN, Italy
mainardi@bo.infn.it

In view of the electro-mechanical analogy, linear viscoelastic and dielectric materials exhibit
similar features as far as the time dependent response functions are concerned. As a common
characteristic, the relaxation functions are completely monotonic (CM) whereas the creep functions
are of Bernstein type. This means that these response functions are represented by discrete
or continuous distributions of elementary (i.e. exponential) relaxation and creep processes via
spectra of relaxation and retardation times with physical relevance. In this talk we will discuss
some interesting examples of relaxation and creep processes occurring in viscoelastic or dielectric
materials, which are described by special CM and Bernstein functions, which turn out to be of
Mittag-Leffler, stretched exponential, logarithmic and power law types.

References

[1] E. Capelas de Oliveira, F. Mainardi and J. Vaz Jr: Models based on Mittag-Leffler functions
for anomalous relaxation in dielectrics, Eur. Phys. J., Special Topics, Vol. 193, pp. 161-171
(2011). E-print http://arxiv.org/abs/1106.1761

[2] R. Gorenflo and F. Mainardi: Fractional relaxation of distributed order, in M. Novak (Editor):
Complexus Mundi: Emergent Patterns in Nature, World Scientific, Singapore (2006), pp. 33-42.

[3] A. Hanyga and M. Seredynska: On a mathematical framework for the constitutive equations
of anisotropic dielectric relaxation. J. Stat. Phys, Vol 131, pp. 269-303 (2008).

[4] F. Mainardi: Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press,
London (2010), pp. 340.

[5] F. Mainardi, A. Mura, R. Gorenflo and M. Stojanovic: The two forms of fractional relaxation
of distributed order. Jour. Vibr. Control., Vol 13 No 9/10, pp. 1249-1268 (2007). E-print
http://arxiv.org/abs/cond-mat/0701131

[6] F. Mainardi and G. Spada: On the viscoelastic characterization of the Jeffreys-Lomnitz law
of creep. Rheol. Acta, published on line 16/05/2012, DOI 10.1007/s00397-012-0634-x, E-print:
http://arxiv.org/abs/1112.5543.

[7] F. Mainardi and G. Spada: Becker and Lomnitz rheological models: a comparison, AIP (Amer.
Inst. of Physics) Proceedings of Int. Conference ”Times of Polymers and Composites”, Ischia,
Italy 10-14 June 2012.

[8] K.S. Miller and S.G. Samko: Completely monotonic functions, Integr. Transf. and Spec.
Funct., Vol pp. 389-402 (2001).

[9] R.L. Schilling, R. Song and Z. Vondracek: Bernstein Functions: Theory and Applications, De
Gruyter, Berlin, 2010.
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On Engineering Problems with both Nonsmooth Multifunctions
and Noninteger Order Derivatives

Dragan T. Spasić

Department of Mechanics, Faculty of Technical Sciences, University of Novi Sad, Serbia
spasic@uns.ac.rs

Because of today’s concern for liability, engineering innovations must be exhaustively tested
and analytically proven on models generated by fundamental physical and geometrical principles
which are complemented with an appropriate set of constitutive equations. In order to formulate
a well-posed problem and to allow accurate predictions of its behavior, certain hypothesis should
be made and a rheological description of the system component that contains enough information
on its physical properties should be chosen. Among the variety of all possible choices that can
be used in mechanical problems dealing with impacts and oscillatory motions, we suggest the
constitutive model of the viscoelastic body with fractional derivatives of stress and strain, restric-
tions on the coefficients that follow from Clausius-Duhem inequality, and discontinuous inequality
constraint conditions imposed by the Coulomb friction model. The principal advantages of the
model are twofold. First, it takes an energy dissipation ab initio, and secondly, it can be used
for rheological description of both new high performance materials, such as elastomers/polymers,
as well as different biological tissues. Besides, since it contains both nonsmooth multifuctions
and nonlocal operators, it possess an essential mathematical interest too. Thus, we give three
examples belonging to parallel studies of fractional differential equations to the well known theory
of ordinary differential equations and show possible connections between fractional calculus and
nonsmooth dynamics from both theoretical and numerical point of view.

First, we study dynamics of a block, sliding on a dry surface and impacting against another
block through a standard fractional viscoelastic body, that we model as a straight rod of negli-
gible mass. Due to the presence of dry friction and the proposed fractional model the problem
belongs to the class of set-valued fractional differential equations (or multivalued differential equa-
tions of arbitrary real order) leading to the Cauchy problem for two coupled integro-differential
inclusions, for which the existence result ensuring the contractible solution set exists. By use of
the slack variable algorithm the problem was solved numerically. It was shown that both sepa-
ration and capture behavior patterns of the blocks after impact are predictable. Actually, there
are ten different scripts for different values of the system parameters. On the other side, using
the Atanackovic-Stankovic expansion formula for fractional derivatives, the same problem can be
transformed into the system of differential equations of integer order of the Fillipov type. Special
features of latter approach are that the existence of the solution for fractional differential inclusion
can be proved by the classical result and numerical solutions are obtained by standard numerical
procedures.

Next, we deal with a seismic base isolation problem. Namely, we study dynamics of a column-
like structure consisting of two blocks positioned one on another with passive dumping elements
between them. We assume that there is a sliding friction between the blocks, which was modeled
by a set valued function, as well as the connection between the blocks that contains a standard
fractional viscoleastic body. We discuss the simplified earthquake models, i.e. the exponentially
decreasing sinusoidal function as well as the Rickert type of ground motion. The dynamics of the
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problem is given in form of a system of set-valued fractional differential equations. By use of the
Laplace transform method we show that there is a periodical solution of the obtained equivalent
Cauchy problem for coupled integro-differential inclusions that corresponds to the slip-stick phase
of the motion after the earthquake. The suggested numerical procedure for solving the problem
was based on the Grünwald-Letnikov form of the fractional derivative and the slack variable
algorithm used for handling discontinuous model motion phases. Results for different loads and
the dumper parameters are discussed. Some alternative formulations of the problem as well as
numerical procedures for its solutions are also considered.

Finally, we pose an optimal control problem for a sliding-isolated seismic-excited structure with
passive fractional damping. Namely, we intend to keep the seismically excited structure near the
equilibrium in prescribed time by minimizing the control force as well. As in the previous example
we use the fractional Zener model for the passive damping. Referring again to the Atanackovic-
Stankovic expansion formula for RL-fractional derivatives in terms of function, its integer-order
derivatives and moments, we use the Pontryagin maximum principle to derive necessary conditions
for optimality. Noting that the nonlocal effects are taken into account through moments of the
functions involved and that each of the moments, requires corresponding adjoint variable, we
comment on the order of the obtained equivalent system and numerical solutions of the problem
obtained by the Krilov-Chernousko method of successive approximations. Several related optimal
control problems including the one in which the motion of the systems ceases in a finite time are
discussed at the end.
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From Hooke’s “Hanging Chain” and Milankovitch’s “Druckkurven”
to a variational formulation: The adventure of the thrust-line

of masonry arches

Nicos Makrisa and Haris Alexakisb

Department of Civil Engineering, University of Patras, Greece
anmakris@upatras.gr; balexakis@upatras.gr

More than a century ago the Serbian engineer and astronomer Milutin Milankovitch presented
a remarkable formulation for the thrust-line of arches that do not sustain tension, and using polar
coordinates he presented for the first time the correct and complete solution for the theoretical
minimum thickness, t, of a semicircular arch with radius R. This paper shows that Milankovitch’s
solution, t/R = 0.1075, is not unique and that it depends on the coordinate system used. The
adoption of a cartesian coordinate system yields a neighboring thrust-line and a different, slightly
higher value for the minimum thickness (t/R = 0.1095) than the value computed by Milankovitch.
This result has been obtained recently (Makris and Alexakis 2012) with a geometric and a varia-
tional formulation.

Figure 1. Left: Semicircular arched monolith with t/R = 0.12 which accommodates a catenary curve (thin

solid line) that passes by the extrados springing point F and is long enough to be tangent at the extrados

point A at the crown. Right: The catenary curve, h(x) is different than the two physically admissible

minimum thrust-lines ρ(φ) given by Milankovitch (1904, 1907) and η(x) given by Makris and Alexakis

(2012).

The Milankovitch minimum thrust-line derived with a polar coordinate system and our min-
imum thrust-line derived with a cartesian coordinate system are two distinguishable, physically
admissible thrust-lines which do not coincide with Hooke’s catenary (1675) that meets the ex-
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trados of the arch at the three extreme points. For instance, Figure 1 shows: (a) the radius of
curvature ρ(φ) of the minimum thrust-line as derived by Milankovitch (1904, 1907) after adopting
a polar coordinate system; (b) the abscissa η(x) of the neighboring minimum thrust-line derived
by Makris and Alexakis (2012) after adopting a cartesian coordinate system; and (c) the abscissa
h(x) of Hooke’s “hanging chain” that meets the extrados of the arch at the three extreme points.

Figure 2. Equilibrium check at φN = 56.746◦ shows by reducing to the absurd that the catenary curve

(the “hanging chain”) which can only just be located within the semicircular arch is not a physically

admissible thrust-line.

Most importantly, the paper shows that the catenary (the “hanging chain”) is not a physically
admissible minimum thrust-line of the semicircular arch although it is a neighboring line to the
aforementioned physically admissible thrust-lines. Figure 2 portrays the equilibrium check and the
location where the catenary curve touches the intrados (φN = 56.746◦) of a semicircular monolith
that does not sustain tension and it is shown by reducing to the absurd that the catenary curve (the
“hanging chain”) which can only just be located within the semicircular arch is not a physically
admissible thrust-line.

Table 1. Minimum allowable thickness and rupture locations of a semicircular monolith with zero tensile

strength.
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The minimum thickness of a semicircular arch that is needed to accommodate the catenary
curve is t/R = 0.1117 – a value that is even higher than the enhanced minimum thickness t/R =
0.1095 computed in this paper after adopting a cartesian coordinate system; therefore, it works
towards the safety of the arch. Accordingly, Heyman’s (1969) solution remains unconservative
regardless the stereotomy exercised on the arch – even if one assumes vertical joints (Heyman,
2009).

The results derived in this work for the minimum allowable thickness and the rupture location
of a semicircular monolith with zero tensile strength subjected to its own weight is summarized in
Table 1 together with the list of past publications which derived the correct results with various
approaches.
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Fractional Helmholtz equation with singularities

Mirjana Stojanović
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We prove an existence-uniqueness result for an initial value problem with singularities for
nonlinear fractional Helmholtz equation of fractional order α, where 1 < Re(α) ≤ 2. As a frame-
work, we employ Colombeau algebra of generalized functions containing fractional derivatives and
operations among them in order to deal with the fractional equations with singularities.
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Euler-Bernoulli beam on the viscoelastic foundation

Ljubica Oparnica

Faculty of Education, Sombor, University of Novi Sad, Serbia
ljubica.oparnica@gmail.com

Recently, in [3], we studied the initial-boundary value problem for an Euler-Bernoulli beam
model with discontinuous bending stiffness laying on a viscoelastic foundation and subjected to
an axial force and an external load both of Dirac-type (cf. [1] for mechanical background).

The differential equation of the transversal motion reads

∂2

dx2

(
A(x)

∂2u

dx2

)
+ P (t)

∂2u

∂x2
+R(x)

∂2u

∂t2
+ g(x, t) = h(x, t), x ∈ [0, 1], t > 0, (1)

where

• A denotes the bending stiffness and is given by A(x) = EI1 + H(x − x0)EI2. Here, the
constant E is the modulus of elasticity, I1, I2, I1 ̸= I2, are the moments of inertia that
correspond to the two parts of the beam, and H is the Heaviside jump function;

• R denotes the line density (i.e., mass per length) of the material and is of the form R(x) =
R0 +H(x− x0)(R1 −R2);

• P is the axial force, and is assumed to be of the form P (t) = P0+P1δ(t−t1) with P0, P1 > 0;

• g represents the force terms associated with the foundation;

• u denotes the displacement of the beam;

• h is the prescribed external load (e.g. when describing moving load it is of the form h(x, t) =
H0δ(x− ct), H0 and c are constants).

Since the beam is connected to the viscoelastic foundation there is a constitutive equation describ-
ing relation between the force of foundation and the displacement of the beam. The viscoelastic
foundation is of Zener type and described by a fractional differential equation with respect to time:

Dα
t u(x, t) + u(x, t) = θDα

t g(x, t) + g(x, t), (2)

where 0 < θ < 1, 0 < α < 1, and Dα
t denotes the left Riemann-Liouville fractional derivative of

order α with respect to t, defined by

Dα
t u(t) =

1

Γ(1− α)

d

dt

∫ t

0

u(τ)

(t− τ)α
dτ.

System (1)-(2) is supplied with initial conditions

u(x, 0) = f1(x), ∂tu(x, 0) = f2(x),
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where f1 and f2 are the initial displacement and the initial velocity. If f1(x) = f2(x) = 0 the only
solution to (1)-(2) should be u ≡ g ≡ 0. Also, the beam is considered to be fixed at both ends,
hence boundary conditions take the form

u(0, t) = u(1, t) = 0, ∂xu(0, t) = ∂xu(1, t) = 0.

By a change of variables t 7→ τ via t(τ) =
√
R(x)τ the problem (1)-(2) is transformed into the

standard form

∂2t u+Q(t, x, ∂x)u+ g = h, (3)

Dα
t u+ u = θDα

t g + g, (4)

u|t=0 = f1, ∂tu|t=0 = f2, (IC)

u|x=0 = u|x=1 = 0, ∂xu|x=0 = ∂xu|x=1 = 0, (BC)

where Q is a differential operator of the form

Qu := ∂2x(c(x)∂
2
xu) + b(x, t)∂2xu.

The function c in (3) equals A and therefore is of Heaviside type, and the function b is then
given by b(x, t) = P (R(x)t) and its regularity properties depend on the assumptions on P and R.
Problem (3)-(4) is equivalent to

∂2t u+Q(t, x, ∂x)u+ Lu = h, (5)

with L being the (convolution) operator given by (L denoting the Laplace transform)

Lu(x, t) = L−1

(
1 + sα

1 + θsα

)
(t) ∗t u(x, t), (6)

with the same initial (IC) and boundary (BC) conditions.
Standard functional analytic techniques reach as far as the following: boundedness of b together

with sufficient (spatial Sobolev) regularity of the initial values f1, f2 ensure existence of a unique
solution u ∈ L2((0, T );H2

0 ((0, 1))) to (5) with (IC) and (BC). However, the prominent case b =
p0 + p1δ(t − t1) is clearly not covered by such a result, so in order to allow for these stronger
singularities one needs to go beyond distributional solutions.

We have set up and solved Equation (5) subject to the initial and boundary conditions (IC)
and (BC) in an appropriate space of Colombeau generalized functions on the domain XT :=
(0, 1) × (0, T ) (with T > 0) as introduced in [2] and applied later on, e.g., in [4]. Therefore
b, c, g, h, f1 and f2 are generalized functions in following sence: one start with regularizing families
(uε)ε∈(0,1] of smooth functions uε ∈ H∞(XT ) (space of smooth functions on XT all of whose
derivatives belong to L2). We write (uε)ε to mean (uε)ε∈(0,1]. Then one consider the following
subalgebras: Moderate families, denoted by EM,H∞(XT ), are defined by the property

∀α ∈ Nn
0 , ∃ p ≥ 0 : ∥∂αuε∥L2(XT ) = O(ε−p), as ε→ 0.

Null families, denoted by NH∞(XT ), are the families in EM,H∞(XT ) satisfying

∀ q ≥ 0 : ∥uε∥L2(XT ) = O(εq) as ε→ 0.

Thus moderateness requires L2 estimates with at most polynomial divergence as ε → 0, together
with all derivatives, while null families vanish very rapidly as ε → 0. Null families form a differ-
ential ideal in the collection of moderate families and we may define the Colombeau algebra as the
factor algebra

GH∞(XT ) = EM,H∞(XT )/NH∞(XT ).
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So, we show how functional analytic methods for abstract variational problems can be applied
in combination with regularization techniques to prove existence and uniqueness of generalized
solutions to our initial-boundary problem.

The talk is based on joint work with Güenther Hoermann (Faculty of Mathematics, University
of Vienna) and Sanja Konjik (Faculty of Sciences, Department of Mathematics and Informatics,
University of Novi Sad).
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Image denoising by a direct variational minimization
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Since the work of Perona and Malik , PDE methods have been used for image processing,
especially for denoising and stabilizing edges. They were the first to replace an isotropic diffusion
expressed through a linear heat equation with an anisotropic diffusion. Diffusion, in generally,
is associated with an energy dissipating process. This process seeks the minima of an energy
functional. For example, the well known total variation (TV) minimization model is obtained
in the case when the energy functional is equal to the TV norm of the image. Although these
methods have been demonstrated to be able to achieve a good trade-off between the noise removal
and the edge preservation, the resulting image in the presence of the noise often has a ”blocky”
look.

In this work, we present a novel variational, and at the same time patch-based image smooth-
ing method, which combines a mathematically well-posdenes of the variational modeling with the
efficiency of a patch-based approach. More-over, the proposed method is based on the direct
variational minimization of the appropriate energy functional, which involves fractional gradient.
By doing so, we avoid problems of finding the optimal stopping time and the optimal time step.
The role of λ is sustained and the actual minimization is conducted till it converges (with respect
to the predefined error bound of the particular optimization method). We note that patch-based
approach is also convenient to make the proposed direct variational method computationally fea-
sible and applicable on real images. Actually, if working with the whole image, one needs a huge
approximation bases1, which is not computationally feasible. According to this, we proceed as
follows: The image is divided into relatively small overlap- ping patches, and the energy functional
is minimized on each particular patch independently by using a direct variational minimization.
As patches should not be to small, in order to capture enough relevant image features, the com-
putational load would be still unacceptable for any real application if one calculates the minimizer
in the whole orthonormal basis of the particular patch. There-fore, we approximate the true min-
imizer by using the Ritz variational method with a specially chosen trial functions. In the sequel
we call the set of those functions: the approximation generator. For that purpose, we derive the
complementary fractional variational principle (CFVP) for the corresponding energy functional.
The CFVP gives us the explicit upper bound for the L2 norm of the approximation error. Next,
we proceeded with spatial discretization of the continuous model, i.e., we make transition from
the continuous image to pixels.
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Every discrete patch is analyzed in the chosen discrete over-complete dictionary (same for
every patch) that has the sparsity property in the class of discrete images of interest. In this
work, we use a simple discrete cosine transform (DCT) over-complete dictionary which possess
a sparsity property in the class of images. The elements of the actual approximation generator
for a particular patch, are chosen to be those with the largest K << N projections ⟨ϕ0, ψn⟩,
where N is size of the orthonormal basis and ϕ0 is observed noisy image, so that the upper error
bound obtained by a spatially discretized CFVP is below the predefined threshold. Thus, the
computational load is additionally rapidly reduced, making the method applicable for practical
purposes. Moreover, as we conduct the minimization of the target functional on each patch
separately, we use different values for the Lagrange multiplier for each patch. The choice is
based on the measure of nonsmoothness of the signal present on that particular patch which is
obtained by an appropriate pre-processing. Thus, we obtain additional stronger regularization
on the uniform and weaker regularization on the oscillatory patches, which significantly improves
resulting image quality. It is an additional adaptive feature of the proposed method which is not
applicable to anisotropic diffusion PDE modeling. Actually, for that purpose anisotropic diffusion
uses only an appropriate edge stopping function (in our case ”mini-mal surface”), which is also
included in the proposed model. We also note that we use the functional that contains gradient
of a fractional order, in order to gain all benefits of fractional approach, in comparison to the
classical gradient method or the methods of higher order, as it is previously explained.
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An equation with distributed order symmetrized fractional derivative
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In this paper we study equation

d2

dt2
u (t) + b

∫ 1

0

±Eα
T u (t)ϕ(α)dα+ F (u (t)) = 0, t ∈ [0, T ], T > 0

where,
∫ 1

0

±
Eα
T u (t)ϕ(α)dα is the distributed order symmetrized Caputo fractional derivative of u,

ϕ(α), α ∈ (0, 1), is a positive integrable function (it can also be a compactly supported distribution
with the support in (0, 1)) and F (u), u ∈ R, is locally Lipschitz continuous function in R. We have
researched its solvability, dissipativity and stability.
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A Numerical Method for Estimating
the Vibrations of an Viscoelastic Beam

Ratko Pavlović, Predrag M. Rajković and Goran Janevski

Faculty of Mechanical Engineering, University of Nǐs, Serbia

We consider viscoelastic Timoshenko beam which governing partial differential equations are

ρA∂2TTW − kGA(1 + ν̄∂αTα)(∂2ZZW − ∂ZΨ) + F (T )∂2ZZW = 0,

ρIx∂
2
TTΨ− kGA(1 + ν̄∂αTα)(∂ZW −Ψ)− EIx(1 + ν̄∂αTα)∂2ZZΨ = 0,

where are: A - area of cross-section; Ix- axial moment of inertia; ν̄ - retardation time; ρ - mass
density; T - time; Z - beam coordinate; W - transverse displacement; Ψ - banding slope; k -
shear correction factor; G - shear modulus; E - Young modulus; F (T ) - time-dependent axial
compressive load.

By introducing non-dimensional variables: W = lw, Z = lz, kt = l2
√

ρA
EIx

, T = ktt, ν = ν̄
kt
,

and f(t) = l2 F (ktt)
EIx

, κ = l2 kGA
EIx

, r = Ix
Al2 , we obtain

∂2ttw − κ(1 + ν∂αtα)(∂
2
zzw − ∂zψ) + f(t)∂2zzw = 0,

∂2ttψ − κ

r
(1 + ν∂αtα)(∂zw − ψ)− 1

r
(1 + ν∂αtα)∂

2
zzψ = 0.

Supposing the solutions in the form

w(z, t) =
∞∑

m=1

Xm(t) sin(βmz), ψ(z, t) =
∞∑

m=1

Ym(t) cos(βmz),

where βm = mπ, we can reduce to the following system of fractional differential equations

(DαX)(t) = a1(t)X
′′(t) + b1(t)Y

′′(t) + c1(t)X(t) + d1(t)Y (t),

(DαY )(t) = a2(t)X
′′(t) + b2(t)Y

′′(t) + c2(t)X(t) + d2(t)Y (t).

Let us remind that the fractional integral of order α ∈ R+ and Riemman-Liouville fractional
derivative of order α ∈ R+ defined by

Jα[f(t)] =
1

Γ(α)

∫ t

0

(t− u)α−1 f(u)du, Dα[f(t)] = D⌈α⌉J⌈α⌉−α[f(t)].

where ⌈α⌉ is the nearest integer number greater or equal to α.
The Hadamard finite part integral (HFP-integral) for g(x) is

Hµ(g) = (HFP )

∫ 1

0

g(x)

xµ
dx = Iµk (g) +Dµ

k (g)

=

∫ 1

0

g(x)− gk(x)

xµ
dx+

k∑
i=0

g(i)(0)

i!(−µ+ i+ 1)
.
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Very effective and useful quadrature formulas were developed in (see [1]). For a fixed q ∈ (0, 1), it
was developed ∫ 1

0

g(u)

u1+q
du ≈ Qj [g] =

j∑
k=0

σk,jg(k/j) (j ∈ N).

Using it we can introduce a formula for numerical differentiation

Dα[f(tj)] ≈
1

Γ(−α)tαj

j∑
i=0

σj−i,jfi (j = 1, 2, . . . , n).

The previous theoretical considerations can be used for determination of dynamical characteristics
of the Thimoshenko viscoelastic beam.

Example. Let us consider the case

α = 1/2, m = 1, ν = 0.01, r = 0.025, κ = 12, f(t) = cos t.

The results are shown on the Figure 1.
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Figure 1: a) x(t) b) y(t)
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Buckling and postbuckling analysis of nanotube

Valentin Glavardanov and Teodor Atanacković
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Due to the development of technology the analysis of nanotubes has become a very interested
field of research. One important direction of this research is the problem of analyzing the stability
boundary of an elastic nanotube conveying fluid. Namely, because of excellent mechanical prop-
erties and perfect hollow geometry, the carbon nanotube (CNT) promises many new applications
in nanobiological devices and nanomechanical systems such as fluid storage, fluid transport, and
drug delivery. Instead of analyzing a nanotube conveying fluid we investigate, mathematically
equivalent, the problem of an inextensible string that is pulled through a nanotube.

The usual way of investigation of mechanical behavior of nanotubes is the use of molecular
dynamics simulations or continuum mechanics. In this paper we use the methods of continuum
mechanics.

Thus, we consider a nanotube, pinned at both ends, through which a string is pulled with
constant velocity. Inside the nanotube there is a friction force between the nanotube and the
string. The constitutive equation for the nanotube is taken in the form of non-local constitutive
relation, suggested by Eringen in 1983. Since we study the divergence type of instability only
nonlinear equilibrium equations for the nanotube are derived. By using the Liapunov-Schmidt
method the analysis of the lowest bifurcation point of these equations is performed. The obtained
results are:

1. The system of non-linear differential equations describing the equilibrium configuration of
the nanotube can be reduced to two non-linear differential equations.

2. The non-local Eringen theory and the classical Timoshenko beam theory lead to the same
type of non-linear governing equations.

3. The explicit form of stability boundary (critical velocity) is obtained. Also, the small length
scale parameter, representing the influence of nonlocal effects, decreases the stability bound-
ary.

4. The bifurcation pattern at the critical velocity is super-critical for all values of small length
scale parameter. This means that the non-local effect does not influence the bifurcation
pattern.
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Asymptotic solutions of quasilinear equations
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Miroslav Veskovića and Srboljub Simićb
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In the first part of the lecture we shall consider asymptotic solutions of quasilinear equations.
Consider the system of ordinary differential equations of the form

dz

dτ
= Uz+Ψ(τ, z), z ∈ Rs, (1)

where U is constant s × s matrix, Ψ(τ, z) a continuous s−vector for which limτ→∞ Ψ(τ, z) = 0
holds. By using the linear transformation, matrix U can be expressed in the form U = diag(N,P ),
where Re(λi(N)) < 0, i = 1, . . . , k, and Re(λj(P )) ≥ 0, j = k + 1, . . . , s.

Green function corresponding to the operator U takes the form

Γ(U) =

{
(expUζ)diag(Ik, 0), ζ > 0

−(expUζ)diag(0, Is−k), ζ < 0

in which Ik and Is−k denote s× s and (s−k)× (s−k) unit matrices, respectively. Green function
Γ has the following properties:

(i) for each ζ ̸= 0 the function Γ(ζ) is continuously differentiable and satisfies the equation
dΓ/dζ = U · Γ(ζ);

(ii) for ζ = 0, Γ(0+)− Γ(0−) = I, where I is the s× s unit matrix;

(iii) for every constant γ > 0 and every constant α > 0 which satisfy α+ γ < min(Re(λi(−N))),
there is a sufficiently large positive constant K for which ∥Γ(ζ)∥ ≤ K exp(−(α+γ)ζ), ζ > 0,
and ∥Γ(ζ)∥ ≤ K exp(−γζ), ζ < 0, respectively.

The following theorem determines the asymptotic behavior of the solution z(τ).

Theorem 1. Let on the set H = {(τ, z) : τ ≥ τ0, ∥z∥ ≤ exp(−(α/2+γ)τ)}, τ0 > 0, the following
conditions be satisfied: (a) Ψ(τ, z) is continuous function; (b) for (τ, z), (τ, z(1)), (τ, z(2)) ∈ H
there holds ∥Ψ(τ, z)∥ ≤M exp(−(α+ 2γ)τ) and

∥Ψ(τ, z(1))−Ψ(τ, z(2))∥ ≤M exp(−(α/2 + γ)τ)∥z(1)z(2)∥, M > 0;

(c) there is at least one eigenvalue of the matrix U with negative real part.

Then there exists a > τ0 and continuously differentiable solution z : (a,∞) → Rs of Eq. (1)
which satisfies ∥z∥ = O(exp(−(α/2 + γ)τ)).
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Second part of the lecture is devoted to the study of instability of equilibrium of non-holonomic
system. Consider a scleronomic mechanical system with generalized coordinates x = (x1, . . . , xn)

T

(where T denotes the transpose) subject to constraints linear in the velocities:

B(x)ẋ = 0 (2)

where B(x) is n ×m matrix of rank m. Let T = (1/2)ẋTA(x)ẋ be the kinetic energy (A(x) is
symmetric positive definite n× n matrix for each x ∈ Rn) and Π the potential of the force field.

Let the system have an equilibrium position x = 0. We shall introduce the following hypothesis
(H):

(1) A(x) and B(x) are C2(Rn);

(2) Π(x), Πp(x) : R
n − {0} → Rn are C2(Rn) and C3(Rn), respectively, Πp(x) being homoge-

neous function of degree p > 1;

(3) for i = 0, 1, 2, Π(i)(x) = Π
(i)
p (x) +O

(
∥x∥p+ε−i

)
, when x → 0, 0 < ε ≤ 1.

Let π be the (n − m)−dimensional subspace determined in the following way: π = {x ∈ Rn :
BT

0 x = 0}, B0 = B(0). Let Π̂p be restriction of Πp to π, and thus homogeneous function of
degree p.

Theorem 2. The equilibrium state x = 0, ẋ = 0 is unstable if the following conditions are
fulfilled:

(a) the potential Π(x) and matrices A(x) and B(x) satisfy the hypothesis (H);

(b) the function Π̂p has no minimum at x = 0.

Theorem 2 generalizes the result of the paper [1]. We must point out, that Theorem 2 holds
also in the case of integrable constraints (2). Proof of the Theorem 2 is be based on the fact
that equations of motion of the described mechanical system, although strictly nonlinear, can be
brought to the form of the equations (1), see [2].
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Weyl asymptotics and Dirichlet divisors
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We consider tensor products of self-adjoint partial differential operators or pseudo-differential
operators on compact manifolds and Euclidean spaces. The Weyl asymptotics for the counting
functions are then determined by solving related problems for Dirichlet divisors (results in collab-
oration with T.Gramchev, S.Pilipovic, J.Vindas).
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Tommaso Ruggeri

Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University
of Bologna, Italy

tommaso.ruggeri@unibo.it

The kinetic theory and the Extended thermodynamics (ET) are important theories for rarefied
non-equilibrium gas. Nevertheless the weak point is that the range is limited to monatomic gas.
In this talk we want to present recent new approach to deduce hyperbolic system for real gas not
necessary rarefied. In the first part of the talk we study extended thermodynamics of dense gases
by adopting the system of field equations with a different hierarchy structure to that adopted in
the previous works.

It is the theory of 14 fields of mass density, velocity, temperature, viscous stress, dynamic
pressure and heat flux. As a result, all the constitutive equations can be determined explicitly by
the caloric and thermal equations of state as in the case of monoatomic gas.

It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of
gases. In the second part we specialized the result to the physical interesting case of rarefied
polyatomic gas and we show a perfect coincidence between ET and the procedure based upon
maximum entropy principle. The main difference with respect to usual procedure is existence of
two hierarchies of macroscopic equations for moments of suitable distribution function, in which
the internal energy of a molecule is taken into account.
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The problem of estimating the effective elastic properties of a damage solid has been intensively
studied in the last four decades.

In continuum damage mechanics, usually a phenomenological approach is adopted. In this
approach, the most important concept is that of the Representative Volume Element (RVE). The
discontinuous and discrete elements of damage are not considered within the RVE; rather their
combined effects are lumped together through the use of a macroscopic internal variable. In this
way, the formulation may be derived consistently using sound mechanical and thermodynamic
principles.

The formulation is presented within the framework of the usual classical theory of elasticity.
At any given state of damage, the elastic portion of the material response will be characterized

by a fourth-order tensor C of the damaged elastic moduli just as the fourth order tensor E describes
the elastic response of the virgin material. In general, one may expect that the damage moduli
depend on both the undamage values and on some measure of the damage level, i.e. C (E, damage
level).

In most of the existing damage theories, the damaged elastic strain-stress (or stress-strain)
response is formulated by using the notion of effective stress (strain) and the hypothesis of strain
(stress) equivalence or stress-energy (strain-energy) equivalence (Lemaitre and Chaboche, 1985;
Cauvin and Testa, 1999).

The damage variable (or tensor), based on the effective stress concept, represents average mate-
rial degradation which reflects the various types of damage at the micro-scale level like nucleation
and growth of voids, cracks, cavities, micro-cracks, and other microscopic defects.

In the present paper it is shown that closed form solution is possible in the process of deriving
damage tensor components, starting from the principle of strain energy equivalence. It is shown
that damaged tensors are of the fourth order, and they are derived for orthotropic, hexagonal,
cubic and isotropic damage. To the best knowledge of the authors nobody derived damage tensor
in closed form solution up to now.
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In recent years, there have been extensive research activities related to applications of fractional
calculus (FC), [5] in nonlinear dynamics, mechatronics as well as control theory. In this paper,
they are presented recently obtained results which are related to applications of fractional calculus
in mechanics - specially stability and control issues. Some of these results [1-4] are presented at
the Fifth symposium of fractional differentiation and its applications FDA2012, was held at the
Hohai University, Nanjing, China in the period of May 14-May 17, 2012. Also, fractional order
dynamic systems and controllers have been increasing in interest in many areas of science and
engineering in the last few years.In that way, our objective of using fractional calculus is to apply
the fractional order controller to enhance the system control performance as well as it has better
disturbance rejection ratios and less sensitivity to plant parameter variations.

First, they are introduced and obtained the new algorithms of fractional order PID control
based on genetic algorithms in the position control of a 3 DOF’s robotic system driven by DC
motors. Then, the main task is to find out the optimal settings for a fractional PIαDβ controller
in order to fulfill the proposed design specifications for the closed-loop system. In addition, this
method allows the optimal design of all major parameters of a fractional PID controller and
then enhances the flexibility and capability of the PID controller. Last,in simulations, they are
compared step responses of these two optimal controllers where it will be shown that fractional
order PID controller improves transient response as well as provides more robustness in than
conventional PID.

Second, we propose sufficient conditions for finite time stability for the (non)homogeneous
fractional order systems with time delay. Specially, the problem of finite time stability with respect
to some of the variables (partial stability) is considered. Namely, along with the formulation of
the problem of stability to all variables, Lyapunov also formulated a more general problem on the
stability to a given part of variables (but not all variables) determining the state of a system,[6].The
problem of the stability of motion with respect to some of the variables also known as partial
stability arises naturally in applications. So, in this presentation, it will be proposed finite time
partial stability test procedure of perturbed (non) linear (non)autonomous time varying delay
fractional order systems. Time-delay is assumed to be varying with time but its upper bound is
assumed to be known over given time interval. New stability criteria for this class of fractional
order systems will be derived using “classical” Bellman-Gronwall inequality,as well as another
another suitable inequality, [7]. Last,a numerical example is provided to illustrate the application
of the proposed stability procedure.

Third, some attention is devoted to the problem of stability of linear discrete-time fractional
order systems is addressed, [8]. It was shown that some stability criteria for discrete time-delay
systems could be applied with small changes to discrete fractional order state-space systems.
Accordingly, simple conditions for the stability and robust stability of a particular class of linear
discrete time-delay systems are derived. These results are modified and used for checking the
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stability of discrete-time fractional order systems. The systems under consideration involve time
delays in the state and parameter uncertainties. The parameter uncertainties are assumed to be
time-varying and norm bounded.

Acknowledgement. This work is supported by the Ministry of Education and Science of Re-
public of Serbia, Projects No.41006 and 35006.
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Rarefied gas flow is encountered in many technical applications as well as in scientific inquiry.
It may appear in low-pressure or vacuum environmental conditions and, on the other hand at
standard atmospheric conditions. First category include gas flow in the devices used in hypersonic
space vehicles and in several types of vacuum instruments, while the second category relates to the
gas flow in micro/nano-electro-mechanical-systems (MEMS, NEMS) with characteristic dimension
of the order of and . In these systems the ratio between the mean free path of the molecules and
the characteristic length, which is defined as the Knudsen number (Kn), is not negligible and
continuum approach breaks down. As a consequence gas slips along the wall and classical no-slip
boundary conditions are no more valid. In the range 10−2 < Kn < 10−1, known as the slip flow
regime, gas flow still obeys continuum i.e. Navier-Stokes equations, but now with slip boundary
conditions at the walls. In the range 10−1 < Kn < 10 (transitional flow regime) more complex
Burnett equations have to be applied. The accuracy of the Burnett equations is of the order
O(Kn2) and they are solved under the boundary conditions of the same second order accuracy.
Besides, the individual particle-based direct simulation Monte Carlo (DSMC) approach might be
employed. Finally, for Kn > 10 the gas flow is considered as a free molecular flow amenable to
the methods of kinetic theory of gases.

In this paper rarefied compressible two-dimensional gas flows in microbearings that are often
part of MEMS and NEMS are treated. Instead of different approaches for slip velocity for the
three rarefied gas flow regimes, slip at the boundaries is modeled by fractional derivative for the
whole Knudsen number range. For this purpose a version of Caputo derivative is defined, with
the order α defined as a function of the local value of the Knudsen number in the microbearing.
For no-slip boundary conditions i.e. for continuum flow regime α = 0, while for free molecular
flow when the Knudsen number approaches infinity α → 1. The correlation between α and Kn
is derived in the following way. The flow rate coefficient of Poiseuille flow QP is calculated for
various Knudsen numbers by utilizing the numerical solution of the Boltzmann equation obtained
by Fukui and Kaneko (1988). The obtained values of QP for specified Kn numbers are used for
the derivation of the analytical relation between α and kn. Such a universal boundary condition
that defines velocity at the wall for an arbitrary Knudsen number value is incorporated in the
system of continuity and momentum equation, which leads to the general slip-corrected Reynolds
lubrication equation. It is shown that it possesses the analytical solution which is obtained by a
suitable transformation of the independent variable (Stevanovic and Djordjevic, 2012). It provides
the mass flow rate as well as the pressure distribution in the microbearing for a specified bearing
number Λ, the reference Knudsen number at the exit cross section Kneand the ratio of the inlet
and exit microbearing height.

The results for a wide range of the Knudsen number and the continuum flow conditions,
obtained by the general analytical solution from this paper, are in excellent agreement with Fukui
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and Kaneko’s (1988) numerical solution of the Boltzmann equation.

References

[1] S. Fukui, R. Kaneko, Analysis of ultra-thin gas film lubrication based on linearized Boltzmann
equation. First report-derivation of a generalized lubrication equation including thermal creep
flow, J. Tribol. 110 (1988), 253-262.

[2] N. D. Stevanovic , V. D. Djordjevic, The exact analytical solution for the gas lubricated bearing
in the slip and continuum flow regime, Publications de l’Institute mathematique 91 (2012), 83-93.



Book of Abstracts 53

Diffusion asymptotics of a kinetic model for gaseous mixtures

Laurent Boudina, Bérénice Grecb, Milana Pavićc and Francesco Salvaranid
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In this work, we consider the non-reactive fully elastic Boltzmann equations for mixtures
constituted with I ≥ 2 species. Each species Ai of the mixture, 1 ≤ i ≤ I, is described by
a microscopic density function fi, which depends on time t ∈ R+, space position x ∈ R3 and
molecular velocity v ∈ R3, and is nonnegative. More precisely, fi(t, x, v) dxdv allows to quantify
the number of molecules of species Ai at time t in an elementary volume of size dx, and whose
velocities equal v up to dv. We can also define the macroscopic density ni of each species Ai by

ni(t, x) =

∫
R3

fi(t, x, v) dv.

We focus on the diffusive limit of the Boltzmann equations obtained from the framework of the
classical diffusive scaling, where the scaling parameter is the mean free path. We look for each
distribution function fi, 1 ≤ i ≤ I, as a formal power series in scaling parameter, replace it into
i-th Boltzmann equation and identify the same order terms.

The order −1 allows to find the zero-th order term of the series: Maxwell functions described in
the H-theorem. Therefore, each distribution function fi, 1 ≤ i ≤ I, can be seen as a perturbation
of the equilibrium:

fi(t, x, v) =Mi(v)ni(t, x) + εMi(v)
1/2 gi(t, x, v) + ..., ∀t ≥ 0, ∀x, v ∈ R3,

where Mi(v) is the normalized, centred Maxwell function Mi(v) =
(
mi

2π

)3/2
e−

mi
2 v2

, ∀v ∈ R3.

The zero-th order leads to a linear functional equation in the velocity variable:

(K − ν Id) g =
(
M

1/2
i (v · ∇xni)

)
1≤i≤I

,

where ν = ν(v) is positive function. The main result of this work is a theorem which ensures
existence of the solution g(t, x, ·) ∈ L2(R3

v)
I under two assumptions. First assumption refers to

cross section included into collisional operators and consists on a general condition satisfied by hard
spheres and all cutoff power-law potentials. Second assumption is a requirement that total number
density

∑I
i=1 ni(t, x) does not depend on space position x. It could be fulfilled, for example, in
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the equimolar diffusion situation (common in closed experimental settings) if we suppose that the
initial value of total number density does not depend on x. Proof of the theorem is based on
application of the Fredholm alternative provided compactness of the operator K from L2(R3

v)
I

to L2(R3
v)

I is known. The proof of compactness brings out new method which we propose for
treating terms involving particles with different masses. Namely, techniques introduced by Grad,
who studied the formal small free path limit for the monatomic and monospecies Boltzmann
equation, can be partly extended to the case of multispecies mixtures i.e. only when considering
collisions between same mass particles. The reason lies in a symmetry property of the collision
process when colliding molecules are of same masses. This property is completely lost when masses
of molecules are different. We hence propose a new approach to the problem which, in turn, only
works when collisions involve particles with different masses.

The first order allows to obtain the usual continuity equation ∂tni + ∇x · Ni = 0, where the
flux Ni of species Ai is given by

Ni(t, x) =

∫
R3

v gi(t, x, v)Mi(v)
1/2 dv, ∀x, v 1 ≤ i ≤ I.

Since gi only depends on (nj), the flux Ni shares the same property. Consequently, the continuity
equations give a system, which only involves (nj). This concludes the work.
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This lecture addresses the problem of shock structure in macroscopic multi-temperature model
of gaseous mixtures, recently established within the framework of extended thermodynamics [1].
Basic assumption is that each component of the mixture is ideal gas described by its own fields of
density, velocity and temperature (ρα,vα, Tα). As a consequence, governing equations are balance
laws of mass, momentum and energy of each component, where source terms take into account
mutual interaction of the components.

∂ρα
∂t

+ div(ραvα) = τα,

∂(ραvα)

∂t
+ div(ραvα ⊗ vα − tα) = mα,

∂
(
1
2ραv

2
α + ραεα

)
∂t

+ div

{(
1

2
ραv

2
α + ραεα

)
vα − tαvα + qα

}
= eα,

The study is restricted to the simplest case of binary mixture of non-viscous and non-heat-
conducting inert gases. The simplicity of the model that allows to test the hypothesis that mass
difference between the constituents is the main driving agent which tears their temperatures apart.

By assuming the traveling wave solution we studied the shock structure and eventually con-
firmed the aforementioned hypothesis. We also studied the temperature overshoot of the heavier
component of binary mixture. In particular, its dependence on mass ratio (as a parameter) and
concentration and Mach number in unperturbed state is analyzed.
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Figure 1. Temperature overshoot estimation for different values of mass ratio µ and Mach number M

Temperature overshoot is analyzed for two different concentrations, c0 = 0.2 and c0 = 0.6, and
different values of Mach number. It was observed that for given concentration and Mach number
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there are two possible bounds for the values of mass ratio: lower one (if exists) is due to vanishing
of temperature overshoot (cases c0 = 0.2, M = 1.2 and c0 = 0.6, M = 1.1), while higher one
indicates appearance of sub-shock, i.e. discontinuous shock structure. It is to be expected that
temperature overshoot grows with the increase of Mach number and the decrease of mass ratio.
However, our numerical study showed that dependence of the temperature overshoot on mass
ratio is non-monotonous. There exists a critical value of mass ratio µcrit for which temperature
overshoot attains the minimum. For µ < µcrit temperature overshoot decreases with the increase
of mass ratio. For µ > µcrit temperature overshoot increases with the increase of mass ratio.

This is the first step in systematic study of temperature overshoot in binary mixtures. At this
moment we cannot give precise physical explanation of this phenomenon, especially when we have
in mind that diffusion is the only dissipative mechanism taken into account. It remains to be
studied what is the influence of viscosity and heat conduction on temperature overshoot.
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