A Ramsey Theorem for Metric Spaces ("joint work" with Saharon Shelah) the exioms and rules of inference are al to *REFAUK* athematical que on athan Vernervhic

Classical Ramsey Theory

 $\kappa \to (\lambda)^{\nu}_{\mu}$

- For any coloring of ν -sized subsets of κ with μ -many colors there is a λ -sized monochromatic subset of κ .
- Case $\nu = 1$ is trivial.
- What if we add structure?

Adding Structure

Ramsey arrow with structure

Adding Structure

Ramsey arrow with structure

 $\kappa \to_{\mathcal{K}} (\lambda)^1_{\mu}$

• A class of structures \mathcal{K} .

- A class of structures \mathcal{K} .
- ▶ For $A, B \in \mathcal{K}$ a set of embeddings Emb(A, B) of A into B.

- A class of structures \mathcal{K} .
- ▶ For $A, B \in \mathcal{K}$ a set of embeddings Emb(A, B) of A into B.
- Arrow holds if for every structure $B \in \mathcal{K}$ of size κ ,

- A class of structures \mathcal{K} .
- ▶ For $A, B \in \mathcal{K}$ a set of embeddings Emb(A, B) of A into B.
- ► Arrow holds if for every structure $B \in \mathcal{K}$ of size κ , and every partition of $B = \bigcup_{\alpha < \mu} B_{\alpha}$ into μ many pieces,

 $\kappa \to_{\mathcal{K}} (\boldsymbol{\lambda})^1_{\mu}$

- A class of structures \mathcal{K} .
- ▶ For $A, B \in \mathcal{K}$ a set of embeddings Emb(A, B) of A into B.
- Arrow holds if for every structure $B \in \mathcal{K}$ of size κ , and every partition of $B = \bigcup_{\alpha < \mu} B_{\alpha}$ into μ many pieces, there is a structure $A \in \mathcal{K}$ of size λ and an embedding $e \in \text{Emb}(A, B)$ of A into B

- A class of structures \mathcal{K} .
- ▶ For $A, B \in \mathcal{K}$ a set of embeddings Emb(A, B) of A into B.
- Arrow holds if for every structure $B \in \mathcal{K}$ of size κ , and every partition of $B = \bigcup_{\alpha < \mu} B_{\alpha}$ into μ many pieces, there is a structure $A \in \mathcal{K}$ of size λ and an embedding $e \in \text{Emb}(A, B)$ of A into Bsuch that the image e[A] of A is contained in some B_{α} .

Graphs

Ordered Graphs

Let \mathcal{G} be the class of well-ordered undirected graphs and $i \in Emb(G, H)$ if i is an order preserving injective mapping and the image of G is an induced subgraph of H graph-isomorphic to G.

Ordered Graphs

Let \mathcal{G} be the class of well-ordered undirected graphs and $i \in Emb(G, H)$ if i is an order preserving injective mapping and the image of G is an induced subgraph of H graph-isomorphic to G.

Theorem (Hajnal,Komjáth)

 $2^{\kappa} \to_{\mathcal{G}} (\kappa)^1_{\kappa}.$

Topological Spaces

Topological Spaces

Let \mathcal{T}_0 and \mathcal{T}_1 be the class all T_0 and T_1 topological spaces, respectively. The set $\mathsf{Emb}(X, Y)$ consists of homeomorphic embeddings of a topological space X into Y.

Topological Spaces

Topological Spaces

Let \mathcal{T}_0 and \mathcal{T}_1 be the class all T_0 and T_1 topological spaces, respectively. The set $\mathsf{Emb}(X, Y)$ consists of homeomorphic embeddings of a topological space X into Y.

Theorem (Nešetřil, Rödl) Let i < 2. Then

 $\kappa^{\mu} \to_{\mathcal{T}_{i}} (\kappa)^{1}_{\mu}.$

Topological Spaces

Topological Spaces

Let \mathcal{T}_0 and \mathcal{T}_1 be the class all T_0 and T_1 topological spaces, respectively. The set $\mathsf{Emb}(X, Y)$ consists of homeomorphic embeddings of a topological space X into Y.

Theorem (Nešetřil, Rödl) Let i < 2. Then

 $\kappa^{\mu} \to_{\mathcal{T}_{i}} (\kappa)^{1}_{\mu}.$

Theorem (Weiss) Every T_2 topological space can be partitioned into two pieces such that no piece contains a homeomorphic copy of the Cantor set

Topological Spaces

Topological Spaces

Let \mathcal{T}_0 and \mathcal{T}_1 be the class all T_0 and T_1 topological spaces, respectively. The set $\mathsf{Emb}(X, Y)$ consists of homeomorphic embeddings of a topological space X into Y.

Theorem (Nešetřil, Rödl) Let i < 2. Then

 $\kappa^{\mu} \to_{\mathcal{T}_{i}} (\kappa)^{1}_{\mu}.$

Theorem (Weiss) Every T_2 topological space can be partitioned into two pieces such that no piece contains a homeomorphic copy of the Cantor set (under suitable cardinal arithmetic assumptions; these hold e.g. if no measurable cardinals exist).

Metric spaces

Let ${\mathcal M}$ be the class of metric spaces. For what κ,λ,μ can we have

 $\kappa \to_{\mathcal{M}} (\kappa)^1_{\mu}.$

- By Weiss' result we need $\lambda < 2^{\omega}$
- We restrict ourselves to bounded metric spaces.
- The embeddings will be scaled isometries

Definition A metric space (X, ρ) is bounded if there is d such that $\rho(x, y) < d$ for each (X, ρ) .

Definition An injective map $i : (X, \rho) \rightarrow (Y, \sigma)$ is a scaled isometry if there is $\varepsilon > 0$ such that for each $x, y \in X$ we have $\rho(x, y) = \varepsilon \cdot \sigma(i(x), i(y))).$

Let ${\mathcal M}$ consist of all bounded metric spaces and ${\sf Emb}(X,Y)$ be the scaled isometries of X into Y.

Theorem (Shelah, V.)

$$2^{\omega} \to_{\mathcal{M}} (\omega)^1_{\omega}.$$

Preliminaries

Proof of the main theorem

Given a countable bounded metric space (X, ρ) we will find a metric space (Y, d) such that for any partition of Y into countably many pieces one piece contains a scaled isometric copy of X.

▶ By universality of $\mathbb{Q} \cap [0, 1]$ we could only consider $X = \mathbb{Q} \cap [0, 1]$; this will not be needed.

Proof of the main theorem

Given a countable bounded metric space (X, ρ) we will find a metric space (Y, d) such that for any partition of Y into countably many pieces one piece contains a scaled isometric copy of X.

- ▶ By universality of $\mathbb{Q} \cap [0, 1]$ we could only consider $X = \mathbb{Q} \cap [0, 1]$; this will not be needed.
- It is in fact sufficient to find a pseudometric (Y, ρ) space.

Proof of the main theorem

Given a countable bounded metric space (X, ρ) we will find a metric space (Y, d) such that for any partition of Y into countably many pieces one piece contains a scaled isometric copy of X.

- ▶ By universality of $\mathbb{Q} \cap [0, 1]$ we could only consider $X = \mathbb{Q} \cap [0, 1]$; this will not be needed.
- It is in fact sufficient to find a pseudometric (Y, ρ) space.
- ► Without loss of generality assume that the diameter of X is 1.

Proof of the main theorem

Given a countable bounded metric space (X, ρ) we will find a metric space (Y, d) such that for any partition of Y into countably many pieces one piece contains a scaled isometric copy of X.

- ▶ By universality of $\mathbb{Q} \cap [0, 1]$ we could only consider $X = \mathbb{Q} \cap [0, 1]$; this will not be needed.
- It is in fact sufficient to find a pseudometric (Y, ρ) space.
- ► Without loss of generality assume that the diameter of X is 1.

The underlying set

Proof of the main theorem

The space Y will consist of some sequences $s \in {}^{<\omega_1}\omega$. For a sequence s let $\pi(s)$ be the largest non-decreasing function bounded by s.

The underlying set

Proof of the main theorem

The space Y will consist of some sequences $s \in {}^{<\omega_1}\omega$. For a sequence s let $\pi(s)$ be the largest non-decreasing function bounded by s. For r in the range of $\pi(s)$ let

$$\Pr(\mathbf{r},\mathbf{s}) = \{\alpha < |\mathbf{s}| : \mathbf{s}(\alpha) = \pi(\mathbf{s})(\alpha) = \mathbf{r}\}.$$

The underlying set

Proof of the main theorem

The space Y will consist of some sequences $s \in {}^{<\omega_1}\omega$. For a sequence s let $\pi(s)$ be the largest non-decreasing function bounded by s. For r in the range of $\pi(s)$ let

$$\Pr(\mathsf{r},\mathsf{s}) = \{\alpha < |\mathsf{s}| : \mathsf{s}(\alpha) = \pi(\mathsf{s})(\alpha) = \mathsf{r}\}.$$

Let

$$\mathsf{Y} = \{\mathsf{s} \in {}^{<\omega_1}\omega : (\forall \mathsf{r})(|\mathsf{Pr}(\mathsf{s},\mathsf{r})| < \omega)\}.$$

Proof of the main theorem

Given $s \in Y$ and r in the range of $\pi(s)$ we let

$$X(r,s) = \{s \upharpoonright \alpha : s(\alpha) = r\}.$$

Proof of the main theorem

Given $s \in Y$ and r in the range of $\pi(s)$ we let

 $\mathsf{X}(\mathsf{r},\mathsf{s})=\{\mathsf{s}\restriction\alpha:\mathsf{s}(\alpha)=\mathsf{r}\}.$

▶ define a function f on X(r, s) × X(r, s) ⊆ Y × Y so that it is a suitably scaled isometric copy of an initial segment of X.

Proof of the main theorem

Given $s \in Y$ and r in the range of $\pi(s)$ we let

 $X(r,s) = \{s \upharpoonright \alpha : s(\alpha) = r\}.$

- ▶ define a function f on X(r, s) × X(r, s) ⊆ Y × Y so that it is a suitably scaled isometric copy of an initial segment of X.
- extend f to a metric d on Y via the standard "trick"

Proof of the main theorem

Given $s \in Y$ and r in the range of $\pi(s)$ we let

 $X(r,s) = \{s \upharpoonright \alpha : s(\alpha) = r\}.$

- ▶ define a function f on X(r, s) × X(r, s) ⊆ Y × Y so that it is a suitably scaled isometric copy of an initial segment of X.
- extend f to a metric d on Y via the standard "trick"
- prove that d = f where defined

Proof of the main theorem

Given $s \in Y$ and r in the range of $\pi(s)$ we let

 $X(r,s) = \{s \upharpoonright \alpha : s(\alpha) = r\}.$

- ▶ define a function f on X(r, s) × X(r, s) ⊆ Y × Y so that it is a suitably scaled isometric copy of an initial segment of X.
- extend f to a metric d on Y via the standard "trick"
- prove that d = f where defined

Proof of the main theorem

Let $\chi : Y \to \omega$ be a partition of Y. Recursively define a sequence $\langle s_{\alpha} : \alpha \leq \gamma \rangle$ such that: 1. $s_0 = \emptyset$;

Proof of the main theorem

Let $\chi : Y \to \omega$ be a partition of Y. Recursively define a sequence $\langle s_{\alpha} : \alpha \leq \gamma \rangle$ such that: 1. $s_0 = \emptyset$; and 2. $s_{\alpha} = \varphi$; (a.):

2. $s_{\alpha+1} = s_{\alpha}^{\frown} \chi(s_{\alpha});$

Proof of the main theorem

- Let $\chi: Y \to \omega$ be a partition of Y. Recursively define a sequence $\langle s_{\alpha}: \alpha \leq \gamma \rangle$ such that:
 - 1. $s_0 = \emptyset$; and
 - 2. $s_{\alpha+1} = s_{\alpha}^{\frown} \chi(s_{\alpha})$; and
 - 3. $s_{\beta} = \bigcup_{\alpha < \beta} s_{\alpha}$ if β is limit.

Proof of the main theorem

Let $\chi: Y \to \omega$ be a partition of Y. Recursively define a sequence $\langle s_{\alpha}: \alpha \leq \gamma \rangle$ such that:

1.
$$s_0 = \emptyset$$
; and

2.
$$s_{\alpha+1} = s_{\alpha}^{\frown} \chi(s_{\alpha})$$
; and

3.
$$s_{\beta} = \bigcup_{\alpha < \beta} s_{\alpha}$$
 if β is limit.

Then

• γ is a limit ordinal and $s_{\gamma} \not\in Y$

Proof of the main theorem

Let $\chi: Y\to \omega$ be a partition of Y. Recursively define a sequence $\langle \mathsf{s}_\alpha:\alpha\leq\gamma\rangle$ such that:

1.
$$s_0 = \emptyset$$
; and

2.
$$s_{\alpha+1} = s_{\alpha}^{\frown} \chi(s_{\alpha});$$
 and

3.
$$s_{\beta} = \bigcup_{\alpha < \beta} s_{\alpha}$$
 if β is limit.

Then

- γ is a limit ordinal and $s_{\gamma} \not\in Y$
- X(r, s) has order typy ω for some r.

Proof of the main theorem

Let $\chi: Y\to \omega$ be a partition of Y. Recursively define a sequence $\langle \mathsf{s}_\alpha:\alpha\leq\gamma\rangle$ such that:

1.
$$s_0 = \emptyset$$
; and

2.
$$s_{\alpha+1} = s_{\alpha}^{\frown} \chi(s_{\alpha});$$
 and

3.
$$s_{\beta} = \bigcup_{\alpha < \beta} s_{\alpha}$$
 if β is limit.

Then

- γ is a limit ordinal and $s_{\gamma} \not\in Y$
- X(r, s) has order typy ω for some r.
- $X(r, s) \subseteq Y$ is a scaled r-colored copy of X.

Winter School in Abstract Analysis section Set Theory & Topology

28th Jan – 4th Feb 2017

TUTORIAL SPEAKERS

David Asperó Joan Bagaria Christina Brech Andrew Marks

REGISTRATION DEADLINE 31st Dec 2016

VENUE Hejnice Czech Republic

www.winterschool.eu