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The problem of building models of consequences, at the level
of H(!2), of classical forcing axioms together with CH has a
long history, starting with Jensen’s landmark result that Suslin’s
Hypothesis is compatible with GCH.

Most of the work in the area done so far proceeds by showing
that some suitable countable support iteration whose iterands
are proper forcing notions not adding new reals fails to add new
reals at limit stages.

There are (nontrivial) limitations to what can be achieved in this
area. In fact, there cannot be any ‘master’ iteration lemma:

A.–Larson–Moore: Modulo a mild large cardinal assumption,
there are two ⇧2 statements over H(!2), each of which can be
forced, using proper forcing, to
hold together with CH, and whose conjunction implies 2@0 = 2@1 .



Above result closely tied to the following concrete well–known
obstacle to not adding reals: Given a ladder system
~C = (C� : � 2 Lim(!1)), let Unif(~C) denote the statement that
for every colouring F : Lim(!1) �! {0, 1} there is
G : !1 �! {0, 1} such that that for every � 2 Lim(!1) there is
some ↵ < � such that G(⇠) = F (�) for all ⇠ 2 C� \ ↵. We say
that G uniformizes F on ~C.

Given ~C and F as above there is a natural forcing notion, Q~C,F ,

for adding a uniformizing function for F on ~C by initial
segments. Easy to see that Q~C,F is proper, adds the intended
uniformizing function, and does not add reals. However, any
long enough iteration of forcings of the form Q~C,F , even with a

fixed ~C, will necessarily add new reals. In fact, the existence of
a ladder system ~C for which Unif(~C) holds cannot be forced
together with CH in any way whatsoever, as this statement
actually implies 2@0 = 2@1 (Devlin–Shelah).



Proof: Fix a bijection h : ! �! ! ⇥ ! such that i  n if
h(n + 1) = (i , j). For each g : !1 �! 2 construct fn : !1 �! 2
(n < !) such that

f0 = g

and
fn+1 � C� =fin fi(� + j)

for every limit � 6= 0, where h(n + 1) = (i , j).
Given fk (k  n), fn+1 exists by applying Unif(~C) to the colouring

� �! fi(� + j)

But now, for each limit � 6= 0, (fn � � : n < !) determines
(fn � � + ! : n < !). Hence,

(fn � ! : n < !)

determines
(fn : n < !),

and in particular f0 = g. Hence 2@0 = 2@1 . ⇤



Definition
Measuring holds if and only if for every sequence
~C = (C� : � 2 !1), if each C� is a closed subset of � in the
order topology, then there is a club C ✓ !1 such that for every
� 2 C there is some ↵ < � such that either

• (C \ �) \ ↵ ✓ C�, or
• (C \ ↵) \ C� = ;.

We say that C measures ~C.



Measuring implies ¬WCG: Suppose ~C = (C� : � 2 Lim(!1))

ladder system and C ✓ !1 is a club measuring ~C. Then, for
every � 2 C, if � is a limit point of limit points of C, then a tail of
C \ � is disjoint from C� since ot(C�) = !.

Natural forcing for adding a club measuring a given ~C by initial
segments is proper and adds no new reals. On the other hand
it is not known if these forcings can (consistently) be iterated
without adding new reals. Strongest failures of Club–Guessing
known to be within reach of current techniques for iterating
proper forcing without adding reals are in the region of ¬WCG
(Shelah, NNR revisited).

Question
(Moore) Is Measuring consistent with CH?
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In joint work with Mota, we addressed Moore’s question. In
order to do so we distanced ourselves from the tradition of
preserving CH by not adding reals; we aimed at building
interesting models of CH by a cardinal–preserving forcing
which actually adds reals (but only @1–many of them).
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Forcing with symmetric systems of
models as side conditions

Finite–support forcing iterations involving symmetric systems of
models as side conditions are useful in situations in which, for
example, we want to force

• consequences of classical forcing axioms at the level of
H(!2), together with

• 2@0 large.



Given a cardinal  and T ✓ H(), a finite N ✓ [H()]@0 is a
T–symmetric system if
(1) for every N 2 N ,

(N,2,T ) 4 (H(),2,T ),

(2) given N0, N1 2 N , if N0 \ !1 = N1 \ !1, then there is a
unique isomorphism

 N0,N1 : (N0,2,T ) �! (N1,2,T )

and  N0,N1 is the identity on N0 \ N1.
(3) Given N0, N1 2 N such that N0 \ !1 = N1 \ !1 and

M 2 N0 \N ,  N0,N1(M) 2 N .
(4) Given M, N0 2 N such that M \ !1 < N0 \ !1, there is

some N1 2 N such that N1 \ !1 = N0 \ !1 and M 2 N1.



The pure side condition forcing

P0 = ({N : N a T –symmetric system},◆)

(for any fixed T ✓ H()) preserves CH:

This exploits the fact that given N, N 0 2 N , N a symmetric
system, if N \ !1 = N 0 \ !1, then  N,N0 is an isomorphism

 N,N0 : (N;2,N \ N) �! (N 0;2,N \ N 0)

Proof: Suppose (ṙ⇠)⇠<!2 are names for subsets of ! and
N �P0 ṙ⇠ 6= ṙ⇠0 for all ⇠ 6= ⇠0. For each ⇠, let N⇠ be a sufficiently
correct model such that N , ṙ⇠ 2 N⇠.



The pure side condition forcing

P0 = ({N : N a T –symmetric system},◆)

(for any fixed T ✓ H()) preserves CH:

This exploits the fact that given N, N 0 2 N , N a symmetric
system, if N \ !1 = N 0 \ !1, then  N,N0 is an isomorphism

 N,N0 : (N;2,N \ N) �! (N 0;2,N \ N 0)
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By CH we may find ⇠ 6= ⇠0 such that there is an isomorphism

 : (N⇠;2,T ⇤,N , ṙ⇠) �! (N⇠0 ;2,T ⇤,N , ṙ⇠0)

(where T ⇤ is the satisfaction predicate for (H();2,T )). Then
N ⇤ = N [ {N⇠,N⇠0} 2 P0. But N ⇤ is (N⇠,P0)–generic and
(N⇠0 ,P0)–generic.

Now, let n < ! and let N 0 be an extension of N ⇤. Suppose
N 0 �P0 n 2 ṙ⇠. Then there is N 00 2 P0 extending both N 0 and
some M 2 N⇠ \ P0 such that M �P0 n 2 ṙ⇠. By symmetry, N 00

extends also  (M). But  (M) �P0 n 2  (ṙ⇠) = ṙ⇠0 .

We have shown N ⇤ �P0 ṙ⇠ ✓ ṙ⇠0 , and similarly we can show
N ⇤ �P0 ṙ⇠0 ✓ ṙ⇠. Contradiction since N ⇤ extends N and ⇠ 6= ⇠0.
⇤
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(where T ⇤ is the satisfaction predicate for (H();2,T )). Then
N ⇤ = N [ {N⇠,N⇠0} 2 P0. But N ⇤ is (N⇠,P0)–generic and
(N⇠0 ,P0)–generic.

Now, let n < ! and let N 0 be an extension of N ⇤. Suppose
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In typical forcing iterations with symmetric systems as side
conditions, 2@0 is large in the final extension. Even if P0 can be
seen as the first stage of these iterations, the forcing is in fact
designed to add reals at (all) subsequent successor stages.

Something one may want to try at this point: Extend the
symmetry requirements also to the working parts in such a way
that the above CH–preservation argument goes trough. Hope
to be able to force something interesting this way.
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Theorem
(A.–Mota) (CH) Let  > !2 be a regular cardinal such that
2< = . There is then a partial order P with the following
properties.
(1) P is proper and @2–Knaster.
(2) P forces the following statements.

(a) Measuring
(b) CH
(c) 2µ =  for every uncountable cardinal µ < .



Construction: An ✓–increasing sequence (Q↵)↵ of posets.
• Each Q↵ consists of conditions q = (f , {(Ni , �i) | i < n}),

where
• f is a function with finite domain dom(f ) ✓ ↵ such that f (↵)

is a condition of suitable forcing for adding an instance to
Measuring,

• {Ni | i < n} is a symmetric system,
• �i is in the closure of N \ (↵+ 1).

• Given q = (f , {(Ni , �i) | i < n}) and Ni , Ni 0 such that
Ni \ !1 = Ni 0 \ !1, the natural restriction of q to Ni
below �i is to be copied over to the natural restriction

of q to Ni 0 below �i 0 .



The following question addresses whether or not adding reals
is a necessary feature of forcing Measuring.

Question
(Moore) Does Measuring imply that there are non-constructible
reals?



Trees on @2 and GCH

This is joint work with Mohammad Golshani.



Let  be a regular uncountable cardinal.

• A –tree is a tree T of height  all of whose levels are
smaller than . A –Aronszajn tree is a –tree which has
no –branches.

• A –Souslin tree is a –tree which has no –branches and
no antichains of size .

• If  = �+, a –Aronszajn tree T is said to be special if there
exists a function f : T ! � such that f (x) 6= f (y) whenever
x , y 2 T are such that x <T y . We say that f specializes T .

• The special Aronszajn tree property at  = �+, SATP(), is
the statement “there exist –Aronszajn trees and all such
trees are special”.



Aronszajn trees were introduced by Kurepa, and Aronszajn
(1934) proved the existence, in ZFC, of a special @1–Aronszajn
tree. Later, Specker (1949) showed that 2<� = � implies the
existence of special �+–Aronszajn trees for � regular, and
Jensen (1972) produced special �+–Aronszajn trees for
singular � in L.

Baumgartner, Malitz and Reinhardt (1970) showed that Martin’s
Axiom + 2@0 > @1 implies SATP(@1), and hence Souslin’s
Hypothesis at @1 as well. Later, and as already mentioned,
Jensen (1974) produced a model of GCH in which SATP(@1)
holds.
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The situation at @2 turned out to be more complicated. Jensen
(1972) proved that the existence of an @2–Souslin follows from
each of the hypotheses CH+}({↵ < !2 | cf(↵) = !1}) and
⇤!1 +}({↵ < !2 | cf(↵) = !}). The second result was
improved by Gregory (1976); he proved that GCH together the
existence of a non–reflecting stationary subset of
{↵ < !2 | cf(↵) = !} yields the existence of an @2–Souslin tree.

Laver and Shelah (1981) produced, relative to the existence of
a weakly compact cardinal, a model of ZFC+CH in which
SATP(@2) holds. But in their model 2@1 > @2, and the following
remained a major open problem (s. e.g. Kanamori–Magidor
1977):

Question
Is ZFC+GCH consistent with the non–existence of @2–Souslin
trees?
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In December 2017, while visiting Golshani in Tehran, we
started thinking about combining the ideas from Measuring +
CH with the Laver–Shelah construction for SATP(@2). We
eventually succeeded:

Theorem⇤ (A.–Golshani) Suppose GCH holds and  is a
weakly compact cardinal. Then there exists a set–generic
extension of the universe in which
(1) GCH holds,
(2)  = @2, and
(3) SATP(@2) holds (and hence there are no @2–Souslin trees).



Our argument can be easily extended to the successor of any
regular cardinal.

Our large cardinal assumption is optimal:

? Rinot (2017) proved that GCH+ Souslin’s Hypothesis at @2
implies ¬⇤(!2); on the other hand, Todorčević (1987)
proved that ¬⇤(!2) implies that !2 is weakly compact in L.



Sketch of definition of forcing

Let  be weakly compact and assume GCH.
We define
by induction on �, a sequence hQ� | �  ++i of forcing notions.



Given �  , a condition in Q� is an ordered pair of the form
q = (fq, ⌧q) with the following properties.

(1) fq is a countable function such that
dom(fq) ✓ ({0} [ S++

 ) \ � and such that the following
holds for every ↵ 2 dom(fq).
(a) If ↵ = 0, then fq(↵) 2 Col(!1, <).
(b) If ↵ > 0, then

(i) fq(↵) : ⇥ !1 ! !1 is a countable function, and
(ii) Q↵ lQ�0 for every �0 2 [↵, �).

(2) ⌧q is a countable set of ordered pairs (N, �), where
(a) N is an elementary submodel of H(++) such that !N ✓ N,

N \  2 , and |N| = |N \ |,
(b) � is in the closure of N \ �.
(c) N is “⇠–sufficiently correct” for each ⇠ 2 N \ �.

(3) For all ↵ < �, q � ↵ 2 Q↵.



(4) For all ↵ 2 dom(fq),
(a) cf(↵) = ,
(b) Q↵ lQ�0 for all �0 2 [↵, �), and
(c) for all x , y 2 dom(fq(↵)), if (fq(↵))(x) = (fq(↵))(y), then

q � ↵ does not force that x and y are comparable in Ṫ↵

(where Ṫ↵ is, in VQ↵ , a –Aronszajn tree given by a
suitable book-keeping; we assume all trees are on ⇥ !1
with ⇢-th level {⇢}⇥ !1).

(5) Suppose (N0, �0), (N1, �1) 2 ⌧q, ↵ 2 N0 \ min{�0, �1},
↵0 2 N1 \ min{�0, �1}, and there is an isomorphism
 N0,N1 : (N0,2) �! (N1,2) which
(a) is the identity on N0 \ N1,
(b) is sufficiently correct, and such that
(c)  N0.N1(↵) = ↵0.

Then the natural restriction of q � ↵ is isomorphic, via
 N0,N1 , to the natural restriction of q � ↵0 to N1.



The extension relation:
Given q1, q0 2 Q�, q1 � q0 (q1 is an extension of q0) if and
only if the following holds.
(A) dom(fq0) ✓ dom(fq1)

(B) fq0(↵) ✓ fq1(↵) for all ↵ 2 dom(fq0).
(C) ⌧q0 ✓ ⌧q1

Defining Q++ : Let C be the –club of � < ++ such that
cf(�) =  and there is some M 4 H(✓) (✓
large enough) containing (Q↵)↵<++ and such that M\++ = �.

Q++ =
[

�2C

Q�



Main facts

(1) Due to the strong symmetry in clause (5) of the definition, it
is probably not the case that Q� lQ�0 (or even Q� ✓ Q�0)
for all � < �0. On the other hand:

• Q� lQ�+1 for all � < ++.
• Q� lQ�0 for all � < �0 in C [ {++}.

(2) For all �  ++ such that cf(�) � , Q� is !1–strategically
closed; in particular, Q� does not add reals and hence
preserves CH.

(3) Q++ adds –many new subsets of !1, but not more than
that; in particular, Q++ preserves 2@1 = @2 [essentially the
same argument we saw on slide 8].

(4) If Q++ has the –c.c. then it forces SATP(@2).



The –chain condition
Let C0 be the set of � 2 ++ such that

• cf(�) =  and
• Q� lQmin(C\(�+1)),

and let C̃ be the closure of C0 in the order topology.

Lemma
For every � 2 C̃, Q� has the –c.c (equivalently, it is –Knaster
(since  �! ()2

2)).

This is the most involved part of the proof, and the only place
where we use the weak compactness of . Let (�i)i++ be the
increasing enumeration of C̃ and let � = (q�)�< be a
sequence of Q�i -conditions. Want to find � 6= �0 so that q� and
q�0 are compatible in Q�i . The proof is by induction on i .



The case i = 0 is trivial (Q�0 is essentially the Lévy
collapse).The case when i is a limit ordinal with cf(i) <  uses

• the fact that if two conditions q and q0 are compatible in
Q↵, then they have a greatest lower bound q �↵ q0

(obtained essentially from closing under relevant
isomorphisms  N0,N1) together with

•  �! ()2
cf(i).

If q� and q�0 are incompatible then there is some ī < i such that
(q� � �ī)��ī

(q�0 � �ī) is not a condition. Hence, if � is an
antichain,

c(�,�0) = min{̄i < i | (q� � �ī)��ī
(q�0 � �ī) /2 Q�ī

}

is a well–defined colouring of []2. But if H is any homogeneous
set with value ī , then {q� � �ī | � 2 H} is an antichain in Q�ī

.
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The case i = i0 + 1 follows easily from earlier cases.

The hardest case is the case cf(i) = . For this case we use an
adaptation of the following key separation argument from
Laver–Shelah.



Lemma
(Laver–Shelah) Suppose  is weakly compact and (Q�)�⌧ is a
countable support iteration such that Q1 = Col(!1, <) and for
all 1  � < ⌧ , Q�+1 = Q� ⇤ Ṙ�, where Ṙ� is the natural forcing
for specializing
some given –Aronszajn tree Ṫ�. Then Q� is –c.c. for all �  ⌧ .

Proof sketch: Let M 4 H(✓) containing everything relevant of
size  and such that <M ✓ M and let (M�)�< be a continuous
filtration of M. Let Q⇤

↵ = Q↵ \ M for all ↵. By –c.c. of Q↵ for alll
↵ < ⌧ (by induction hypothesis), Q⇤

↵ lQ↵ for all ↵ < ⌧ .



Given conditions qL, qR, ↵ 2 dom(fqL) \ dom(fqR ),
x 2 dom(fqL(↵)) and y 2 dom(fqR (↵)) (x and y may or may not
be equal), we say that

• x and y are separated by qL � ↵ and qR � ↵ below � by
means of x̄ , ȳ

if there is ⇢̄ < �, together with ⇣ 6= ⇣ 0 in !1, such that letting
x̄ = (⇢̄, ⇣) and ȳ = (⇢̄, ⇣ 0),

qL
� � ↵ �↵ x̄ <Ṫ↵

x

and
qR
� � ↵ �↵ ȳ <Ṫ↵

y



Let � = (q� | � < ) be a sequence of conditions in Q⇤
⌧ . Let F

be the weak compactness filter on  (i.e., F is the filter
generated by the sets {↵ <  | (V↵,2,A \ V↵) |= �}, for
A ✓ V and for a ⇧1

1 sentence � over (V,2,A)). F is a proper
normal filter on .

Given X 2 F+, say that

(qL
� | � 2 X ), (qR

� | � 2 X )

is a separating pair for (q� | � < ) if for all � 2 X :
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⌧ . Let F

be the weak compactness filter on  (i.e., F is the filter
generated by the sets {↵ <  | (V↵,2,A \ V↵) |= �}, for
A ✓ V and for a ⇧1

1 sentence � over (V,2,A)). F is a proper
normal filter on .

Given X 2 F+, say that

(qL
� | � 2 X ), (qR

� | � 2 X )

is a separating pair for (q� | � < ) if for all � 2 X :



(1) Both of qL
� and qR

� extend q�.
(2) dom(fqL

�
) = dom(fqR

�
)

(3) For all nonzero ↵ 2 dom(fqL
�
) \ M� and all

x 2 dom(fqL
�
(↵)) \ (�⇥ !1) and y 2 dom(fqR

�
(↵)) \ (�⇥ !1),

x and y are separated below � at stage ↵ by qL
� � ↵ and

qR
� � ↵ via some pair �0(x , y ,↵,�), �1(x , y ,↵,�).

(4) The following holds for all �0 > � in X .
(a) qL

� � M� = qR
�0 � M�0

(b) qL
� 2 M�0

(5) The following holds for all �0 > � in X , all nonzero
↵ 2 dom(qL

�) \ dom(qR
�0) and all x 2 dom(fqL

�(↵)
) \ (�⇥ !1)

and y 0 2 dom(fqR
�0 (↵)

) \ (�0 ⇥ !1).
(a) ↵ 2 M�

(b) There are x 0 2 dom(fqL
�0 (↵)

) \ (�0 ⇥ !1) and
y 2 dom(fqR

�(↵)
) \ (�⇥ !1) such that

�0(x , y ,↵,�) = �0(x 0, y 0,↵,�0)

and
�1(x , y ,↵,�) = �1(x 0, y 0,↵,�0)



The following claim is easy.
Claim
Let X 2 S and suppose �L = (qL

� | � 2 X ), �R = (qR
� | � 2 X )

is a separating pair for �. Then for all � < �0 in X ,

qL
�

and
qR
�0

are compatible conditions.

Hence, it suffices to prove that there is �L = (qL
� | � 2 X ),

�R = (qR
� | � 2 X ), a separating pair for �. But this follows

essentially from a construction in ! steps such that
⇤ at every step we separate some given sequence of pair of

nodes x , y ,
followed by a pressing–down argument using the normality of
F .



The relevant separation, at every step of the construction, is
effected via a ⇧1

1 reflection argument: There is a measure 1 set
C in F of � <  such that, for relevant ↵,

• M� \Q↵ lQ↵ and
• M� \Q↵ forces, over V , that Ṫ↵ \ M� has no �–branches.

Using this idea one can find suitable conditions

qLL
�  qL

�

and
qRR
�  qR

�

such that
• qLL

� � M� = qRR
� � M� and

• forcing conflicting information regarding the projections of
x and y to some level below �

(if this were not possible, we would be able to find �–branches
through Ṫ↵ \ M� in the M� \Q↵–extension, which is
impossible). ⇤



Thank you!
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