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The equivalence

We say that classes of topological spaces C, D are equivalent if
every member of C is homeomorphic to a member of D and vice
versa. We write C ∼= D and we put

[C] := {F ⊆ K([0, 1]ω) : F ∼= C}.

For every class of metrizable compata C there is a family
F ⊆ K([0, 1]ω) equivalent to C, so [C] 6= ∅.
Namely, there is the saturated family

max([C]) =
⋃

X∈C
{Y ∈ K([0, 1]ω) : X ∼= Y }.

Usually, the complexity of max([C]) is considered.
We are interested in the lowest complexity among the
members of [C]. This is rarely the complexity of max([C]).
Our motivation lies in compactifiable classes.
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Compactifiable and Polishable classes

Definition
A class of topological spaces C is called

compactifiable or Polishable if there is a continuous map
q : A→ B between metrizable compacta or Polish spaces such
that {q−1(b) : b ∈ B} ∼= C,

strongly compactifiable or strongly Polishable if the map q is
additionally open and closed.

strongly
compactifiable compactifiable strongly

Polishable Polishable

We define the strong variants because of their direct connection
with hyperspaces.
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Relation to hyperspaces

Theorem
The following conditions are equivalent for a class of spaces C.

1 C is strongly compactifiable.
2 There is a metrizable compactum X and a closed family

F ⊆ K(X ) such that F ∼= C.
3 There is a closed family F ⊆ K([0, 1]ω) such that F ∼= C.

1 C is a strongly Polishable class of compacta.
2 There is a Polish space X and an analytic family

F ⊆ K(X ) such that F ∼= C.
3 There is a Gδ family F ⊆ K([0, 1]ω) such that F ∼= C.
4 There is a closed family F ⊆ K((0, 1)ω) such that F ∼= C.
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Borel complexity up to equivalence

∆0
1 (clopen)

Σ0
1 (open)

∆0
2

Σ0
2 (Fσ)

Π1
1 (co-analytic)

· · ·

Π0
1 (closed)

strongly compactifiable

Π0
2 (Gδ)

· · · ∆1
1 (Borel)

Σ1
1 (analytic)

strongly Polishable

What about clopen, open, and Fσ subsets of K([0, 1]ω)?

Proposition
There are only four clopen subsets of K([0, 1]ω):

∅, {∅}, K([0, 1]ω) \ {∅}, K([0, 1]ω).
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Principal upper classes

Let X be a metrizable compact space.
m(X ) := number of connected components of X .
n(X ) := number of nondegenerate components of X .

t(X ) := (m(X ), n(X )) if m(X ) < ω, ∞ otherwise.
T := {(m, n) : m ≥ n ∈ ω}, T+ := {(m, n) ∈ T : m > 0}.
We define a partial order ≤ on T ∪ {∞}:

(0, 0) is not comparable with anything,
T+ is ordered by the product order,
∞ ≥ t for every t ∈ T+.

For t ∈ T ∪ {∞} we define the principal upper class
Ut := {X : t(X ) ≥ t}.
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Principal upper classes

Examples
We have the following classes of metrizable compact spaces:

U0,0 = {∅},
U1,0 – all nonempty compacta,
U1,1 – all infinite compacta,
U2,0 ∪ U1,1 – all nondegenerate compacta,
Um,0 – all compacta with at least m components,
Um,0 ∪ U1,1 – all compacta with at least m points.



Nice antichains

Since the finite spaces are dense in K([0, 1]ω), not every principal
upper class is open. However, this is essentially the only obstacle.

Let R ⊆ T ∪ {∞}.
We say that R is nice if (m, 0) ∈ R for some m > 0 whenever
R ∩ (T+ ∪ {∞}) 6= ∅. This holds if and only if

⋃
t∈R Ut

contains a nonempty finite space whenever it contains a
nonempty space.
We say that R is an antichain if it is pairwise ≤-incomparable.
Note that every antichain is finite, and that no nice antichain
contains ∞.
By A(R) we denote the set of all ≤-minimal elements of R.
Note that this is the only antichain A such that⋃

t∈A Ut =
⋃

t∈R Ut . It follows that A(R) is nice if and only if
R is nice.
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Open classes – the outline

Part 1
The set

⋃
t∈R Ut ∩ K([0, 1]ω) is open if and only if R is nice.

Part 2
Every open set U ⊆ K([0, 1]ω) is equivalent to

⋃
X∈U Ut(X).
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Special open classes

Let s : I → N+ be a finite function.
The special open class Os is the class of all metrizable
compacta K having a clopen decomposition {Ki : i ∈ I}
such that |Ki | ≥ s(i) for every i ∈ I.

Let X be a metrizable space and let U ⊆ K(X ) be open.
The set U is of the shape s if there are disjoint open sets
Ui ⊆ X and Vi ,j ⊆ Ui for i ∈ I and j < s(i) such that

U = (
⋃

i∈I Ui )+ ∩
⋂

i∈I, j<s(i) V
−
i ,j .

The set U is exactly of the shape s if additionally every set
U+

i ∩
⋂

j<s(i) V
−
i ,j contains a connected space.

Observation
A space K ∈ K(X ) has a neighborhood of the shape s in K(X ) if
and only if K ∈ Os . It follows that Os ∩ K(X ) is open.
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Special open classes

Proposition
For every finite function s : I → N+ there is a nice antichain
Rs ⊆ T such that Os =

⋃
t∈Rs
Ut .

Examples

O∅ = U0,0 = {∅}.
O(1) = U1,0 – all nonempty compacta.
O(2) = U1,1 ∪ U2,0 – all nondegenerate compacta.
O(m) = U1,1 ∪ Um,0 – all compacta with at least m points.
O(1: i<m) = Um,0 – all compacta with at least m components.
O(1,1,1,2,3,4) = U6,3 ∪ U7,2 ∪ U9,1 ∪ U12,0.
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Open classes – Part 1

To every type t ∈ T ∪ {∞} we associate a set of finite functions

St :=
{{

s : m→ N+ : |{i < m : s(i) > 1}| ≤ n
}

if t = (m, n),{
s : m→ N+ : m > 0

}
if t =∞.

Proposition

We have Ut =
⋂

s∈St
Os .

For every m ∈ N+ there is st,m ∈ St such that
Ut ⊆ Ost,m ⊆ Ut ∪ Um,0.

Proposition
Let R ⊆ T ∪ {∞}.
The set

⋃
t∈R Ut ∩ K([0, 1]ω) is open if and only if R is nice.
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Open classes – Part 2

Proposition
Let t ∈ T ∪ {∞} and let M be metrizable. Every X ∈ Ut ∩ K(M)
has a neighborhood basis such that for every basic set U there is
s ∈ St such that U is exactly of the shape s.

Proposition
Let s : I → N+ be a finite function. For every compactum Y ∈ Os
and every open set U ⊆ K([0, 1]ω) exactly of the shape s there is a
compactum Y ′ ∈ U homeomorphic to Y .

Proposition
Let X ,Y ∈ K([0, 1]ω). A homeomorphic copy of Y is contained in
every neighborhood of X if and only if t(Y ) ≥ t(X ).

Proposition
Every open set U ⊆ K([0, 1]ω) is equivalent to

⋃
X∈U Ut(X).
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Open classes

We denote the set of all nice antichains in T ∪ {∞} by R.
These are finite subsets of T .

For every R ∈ R we define the open class OR :=
⋃

t∈R Ut .

Theorem

For every open U ⊆ K([0, 1]ω) there exists exactly one R ∈ R
such that U ∼= OR .

For every R ∈ R we have OR ∼= OR ∩ K([0, 1]ω), which is
open.
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Fσ classes

Proposition
Let us have

a finite function s : I → N+ and a metrizable space X ,
an open set U ⊆ K(X ) of the shape s,
an open set V ⊆ K([0, 1]ω) exactly of the shape s.

For every compact set H ⊆ U there is a compact set F ⊆ V and a
homeomorphism Φ: H → F such that Φ(H) ∼= H for every H ∈ H.

For every strongly compactifiable class C ⊆ Os there is a compact
zero-dimensional family F ⊆ V equivalent to C

Theorem
Every Fσ subset of K([0, 1]ω) is equivalent to a closed subset.
Strongly compactifiable classes are stable under countable unions.
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