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I would formulate the basic problem

of set-theoretic topology as follows:

To determine which set-theoretic structures

have a connection with

the intuitively given material of polyhedral topology

and hence deserve to be considered

as geometric figures

- even if very general ones.

Paul Alexandroff, 1932
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Two foundational theorems

Fix natural numbers m 6= n.

Theorem (Cantor, 1877)
|Rm| = |Rn|

Theorem (Brouwer, 1912)
Rm � Rn

In other words: foundational theorems in set theory and

algebraic topology, respectively, signal utterly opposite

approaches to the concept of dimension.
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Oil and water

Moreover, the core material of set theory and polyhedral
topology — uncountable cardinals and Euclidean space,
respectively — tend to defy comparison:

Theorem
Let f be

an order-preserving map from ω1 to R, or

an order-preserving map from R to ω1, or

a continuous map from ω1 to R, or

a continuous map from R to ω1.

Then f is eventually constant.
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Doing it wrong

Alexandroff understood all this.

So when he centers
set-theoretic topology in the question of which set-theoretic
structures [...] deserve to be considered as geometric figures,
he’s deliberately thinking a relation from its most tenuous
point, from its point of apparent breakdown. This I admire.

The quote’s from Elementary Principles of Topology, which
came my way when I was turning to something even wronger,
probably, than anything Alexandroff had had in mind: I was
interested in the Čech cohomology of uncountable ordinals.
These, of course, being somehow at once (1) largely discrete,
and (2) far from paracompact, are at least doubly ill-suited for
Čech cohomology: This is an idea so wrong it must be right.
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The cohomology of the ordinals
...

...
...

...
...

...
Ȟ3 0 0 0 nonzero consistently nonzero . . .
Ȟ2 0 0 nonzero consistently nonzero consistently nonzero . . .
Ȟ1 0 nonzero independent independent independent . . .
Ȟ0 nonzero nonzero nonzero nonzero nonzero . . .

ω ω1 ω2 ω3 ω4 . . .

1 Boldface, above, are ZFC computations.
2 The chart above conjoins two applications of cohomology:

Ȟ2 and above point to things we don’t yet understand,
while Ȟ1 powerfully summarizes what we do know about
the combinatorics of ω1.

3 Pictured, plainly, are phenomena of dimension.
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Ȟ3 0 0 0 nonzero consistently nonzero . . .
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Ȟ0 nonzero nonzero nonzero nonzero nonzero . . .

ω ω1 ω2 ω3 ω4 . . .

1 Boldface, above, are ZFC computations.
2 The chart above conjoins two applications of cohomology:
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while Ȟ1 powerfully summarizes what we do know about
the combinatorics of ω1.

3 Pictured, plainly, are phenomena of dimension.



Walks of
higher order

So wrong it’s
right!

Overview

Walks

and
cohomology

Higher
coherence

Higher walks

Conclusion

The plan today:

I’ll aim today to discuss

1 walks on the countable ordinals,

2 rho functions and nontrivial coherence as first Čech

cohomology,

3 higher Čech cohomology and higher nontrivial coherence,

and

4 higher-order walks.
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Walks on the countable ordinals

(Nonconstructive) input: a C-sequence 〈Cα |α ∈ ω1〉. Here
each Cα is a (minimal-ordertype) witness to the cofinality of α.

(Recursive) output: a finite walk, recorded as Tr(α, β), for any
α < β < ω1.
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An all and an only

[Walks,] despite [their] simplicity, can be used to derive virtually
all known other structures that have been defined so far on ω1.

- Stevo Todorcevic, Walks on Ordinals, p. 19

An interesting phenomenon that one realizes while analyzing
walks on ordinals is the special role of the first uncountable
ordinal ω1 in this theory. [...] The first uncountable cardinal is
the only cardinal on which the theory can be carried out
without relying on additional axioms of set theory.

- Stevo Todorcevic, Walks on Ordinals, p. 7

(Why should these facts be so?)
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rho functions

[Walks,] despite [their] simplicity, can be used to derive virtually

all known other structures that have been defined so far on ω1.

- Stevo Todorcevic, Walks on Ordinals

These “derivations” are largely by way of the rho functions; we

foreground two:

ρ2(α, β) = |Tr(α, β)| (“width”)

ρ1(α, β) = max{|Cξ ∩ α| : ξ ∈ Tr(α, β)} (“height”)
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nontrivial coherence

The outstanding feature of ρ1 is the following:

ρ1( · , β)�α =∗ ρ1( · , α) for all α < β < ω1 (1)

while there exists no ρ̃1 : ω1 → N such that

ρ̃1( · )�α =∗ ρ1( · , α) for all α < ω1 (2)

Here =∗ means equality modulo finite.

We say that ρ1 is coherent (1), but not trivial (2).

ρ2, also, satisfies (1) but not (2), if we read =∗ as equality
modulo locally constant functions.
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presheaves
Definition
A presheaf P on a topological space X is a contravariant
functor from τ(X ) to the category of abelian groups.

It is, in
other words, an assignment of a group P(U) to each
U ∈ τ(X ), together with homomorphisms pUV : P(U)→ P(V )
for each U ⊇ V in τ(X ), such that pUU = id and
pVW ◦ pUV = pUW for all U ⊇ V ⊇W in τ(X ).

Example
For any space X and group A, the functor DA : U 7→

⊕
U A is a

presheaf.

Example
The functor Ad = U 7→ {f : U → A | f is locally constant} is a
(pre)sheaf.
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Čech cohomology

Definition (Part 1)
Fix V = {Vα |α ∈ δ}, an open cover of X . Write Hn(V,P) for
the nth cohomology group of the cochain complex

→ L0(V,P)→ · · · → Lj(V,P) d j
−→ Lj+1(V,P)→ . . .

Here
Lj(V,P) =

∏
~α∈[δ]j+1

P(V~α),

where V~α = Vα0 ∩ · · · ∩ Vαj−1 . Write then p
~α~β

for pV~αV~β , and
define d j : Lj(V,P)→ Lj+1(V,P) by

d jf : ~α 7→
j+1∑
i=0

(−1)i p~αi~α(f (~αi ))
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Čech cohomology

Definition (Part 2)
Write V ≤ W if the open cover W refines V, i.e., if there exists
some rWV :W → V such that W ⊆ rWV(W ) for each
W ∈ W. The induced r∗WV : Hn(V,P)→ Hn(W,P) is
independent of the choice of refining map rWV . Hence these
r∗WV (V ≤ W) define, in turn, a direct limit

Ȟn(X ,P) := lim−→
V∈Cov(X)

Hn(V,P) (3)

This limit is the nth Čech cohomology group of X, with respect
to the presheaf P.
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A computation

Write Uω1 for ω1 = {α |α ∈ ω1} viewed as a cover.

An element
of H1(Uω1 ,DZ) is represented by a 1-cocycle f , i.e. an f for
which

f (α, β) : α→ ⊕αZ, for α ≤ β < ω1

with

f (β, γ)�α −f (α, γ) + f (α, β) = 0, for all α ≤ β ≤ γ < ω1

f : (α, β) 7→ ρ1( · , β)�α − ρ1( · , α) fits the bill.
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A computation
[f ] ∈ H1(Uω1 ,DZ) is zero iff there exists some g with

g(α) : α→ ⊕αZ

such that

g(β)�α −g(α) = f (α, β) for all α ≤ β < ω1

This in our case would entail that

(ρ1( · , β)− g(β))�α= ρ1( · , α)− g(α)

Write then ρ̃1 for

lim−→
α∈ω1

ρ1( · , α)− g(α)

ρ̃1 is then a function ω1 → Z differing from each ρ1( ·α) by
g(α), i.e., on only finitely many coordinates – but there is no
such function. Hence 0 6= [f ] ∈ H1(Uω1 ,DZ).
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Ȟ1(ω1)

By precisely the same line of argument, ρ2 witnesses that

H1(Uω1 ,Zd ) 6= 0.

This is not a coincidence:

Theorem
H1(Uω1 ,DA) is the group of coherent families of functions

{ϕβ : β → A |β ∈ ω1}, quotiented by the group of trivial

families of functions {ϕβ : β → A |β ∈ ω1}. Moreover,

H1(Uω1 ,DA) ∼= Ȟ1(ω1,DA) ∼= Ȟ1(ω1,Ad )
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Ȟn(ωk)

This entirely generalizes:

Theorem
Hn(Uωk ,DA) is the group of n-coherent families of functions
{ϕβ : β → A |β ∈ ωk}, quotiented by the group of n-trivial
families of functions {ϕβ : β → A |β ∈ ωk}. Moreover,

Hn(Uωk ,DA) ∼= Ȟn(ωk ,DA) ∼= Ȟn(ωk ,Ad )

for all natural numbers k and n.
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n-coherence
Definition
For n ∈ N, a family Φn = {ϕ~α : α0 → A | ~α ∈ [ε]n} is
n-coherent if

n∑
i=0

(-1)iϕ~αi =∗ 0

for all ~α ∈ [ε]n+1.

Φ1 is 1-trivial if it is trivial.
For n > 1, Φn is n-trivial if there exists a
Ψn−1 = {ψ~α : α0 → A | ~α ∈ [ε]n−1} such that

n−1∑
i=0

(-1)iψ~αi =∗ ϕ~α

for all ~α ∈ [ε]n.
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A vanishing theorem
Unlike nontrivial coherence — which has a Handbook of Set
Theory chapter all its own, for example — higher non-n-trivial
n-coherence for hasn’t really been studied at all.

A main reason
for this is the following reworking of Goblot’s 1967 Vanishing
Theorem:

Theorem
Ȟn(ωk ,P) = 0, for any presheaf of functions P and n > k.

Non-2-trivial 2-coherence, for example, is imperceptible below
ω2. (The n = 1 case of the theorem takes the more familiar
form of the observation that any countable coherent family of
functions is trivial.)
See the theorem as the zeros of the chart from before:
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(again)

...
...

...
...

...
...

Ȟ3 0 0 0 nonzero consistently nonzero . . .
Ȟ2 0 0 nonzero consistently nonzero consistently nonzero . . .
Ȟ1 0 nonzero independent independent independent . . .
Ȟ0 nonzero nonzero nonzero nonzero nonzero . . .

ω ω1 ω2 ω3 ω4 . . .

The natural next question is whether Ȟn(ωn,Ad ) vanishes.

And if ω1 is any guide, this is really a question of “higher order
walks.”
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Higher walks
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A hint

In 1972, Barry Mitchell showed Goblot’s theorem sharp:

Theorem (Mitchell, 1972)
The homological dimension of ωn is n + 1.

The argument is for our purposes essentially opaque.

For reasons perhaps clear, I labored for a few years to make it

concrete (in other words, again, to do things wrong...)

This work has pointed insistently to the following sorts of

structures:
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Higher walks
Fix a C -sequence 〈Cγ | γ < ω2〉.

Fundamental in higher walks are terms of the form Cβγ , with
β < γ < ω2. These are defined as follows:

Cβγ := π−1(Cotp(Cγ∩β))

where π is the order-isomorphism Cγ ∩ β → otp(Cγ ∩ β). The
principle of a three-coordinate “walk” on (α, β, γ) is the
following:

1 If β is in Cγ , “step” to min(Cβγ\α).
2 If β is not in Cγ , “step” to min(Cγ\β).

In case (1), one has then the triples (α,min(Cβγ\α), γ) and
(α,min(Cβγ\α), β) on which to repeat the process. In case
(2), the triples are (α,min(Cγ\α), γ) and (α, β,min(Cγ\α)).
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Higher walks

Just like the two-coordinate walks, higher walks are recursive
on the input of a C -sequence.

They’re more than “just an idea”: they derive from a more
elaborate algebraic ZFC construction of non-2-trivial 2-coherent
families of functions on ω2.

In particular, the three-coordinate Tr2( · , · , · ) implicit in the
previous slide exhibits the sort of coherence relations that
Tr( · , α) and Tr( · , β) do in the classical case. Only this time
it’s between Tr2( · , α, β) and Tr2( · , β, γ) and Tr2( · , α, γ).

And all that I’m describing extends naturally to any finite n.
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Higher walks
A more careful record of those algebraic constructions would
include the sign and branching as well:

for σ ∈ 2<ω and
α < β < γ, let

TR2(±, σ, α, β, γ) =

Case: β ∈ Cγ :

{ (∓, σ,min(Cβγ\α)) }
∪ TR2(±, σ_0, α,min(Cβγ(α)), γ)
∪ TR2(∓, σ_1, α,min(Cβγ(α)), β)

Case: β /∈ Cγ :

{ (±, σ,Cγ(β)) }
∪ TR2(±, σ_0, α,min(Cγ\β)), γ)
∪ TR2(±, σ_1, α, β,min(Cγ\β)
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Higher walks
These generalize the classical case: for σ ∈ 1<ω and α < β let

TR1(±, σ, α, β) =

{ (∓, σ,min(Cβ\α)) } ∪ TR1(±, σ_0, α,min(Cβ\α))

In that case, though, it was pointless to record the constant
data of sign (±), while the choice-of-step data (σ) appeared
simply as an index (|σ| = i for βi ∈ Tr(α, β)). (Compare how,
in more geometric contexts, orientation only assumes its full
importance in dimensions greater than two.) The n = 1 case of
the following, then, is the classical ρ2:

ρn
2(~α) := neg(TRn(~α))− pos(TRn(~α))

where neg and pos simply count the number of negative and
positive terms, respectively, in TRn(~α).
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Higher cohomology groups

Theorem
ρn

2( · ) is n-coherent (modulo locally constant functions).

Conjecture
ρn

2( · ) is non-n-trivial as well — and, hence, witnesses that
Ȟn(ωn,Zd ) 6= 0.

Coarser related methods, in the meantime, establish the
following:

Theorem
Ȟn(ωn,DA) 6= 0, for A =

⊕
ωn Z, for all n ≥ 0.
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If we expand our assumptions

Theorem (B., Lambie-Hanson)
Suppose V = L, and n ≥ 1, and κ ≥ ℵn is a regular cardinal
that is not weakly compact.

Then Ȟn(κ,Ad ) 6= 0, for any
nontrivial abelian group A. In particular, there exists a
A-valued non-n-trivial n-coherent family of functions on κ.

Theorem (Todorcevic)
Assume the P-Ideal Dichotomy, and let A be an abelian group.
Then Ȟ1(ε,Ad ) 6= 0 if and only if the cofinality of ε is ω1.
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What I’m saying
What I want most essentially to tell you — particularly those of
you thinking of triangles, or ω2, or colorings, particularly in
ZFC — is that these Cβγ-structures are extraordinarily
productive and rich.

I encourage people to play with them. I’m interested in
whatever you find. I do not worry that any of us will exhaust
their possibilities.
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Last thoughts and suggestions
This body of research might be viewed as addressing most
fundamentally the question

Why can we say so much and so little, respectively,
about the ZFC combinatorics of ω1 and of higher ωn?

(Guiding, for me, has been a statement of Todorcevic’s:

They each have their own lives...)

For this is a situation calling ultimately either for remedy or for
explanation. And emergent in an approach centered on
dimension are compelling generalizations of the ω1 case, namely

rich and distinctive ZFC combinatorics
fundamentally expressive of the topology of ωn,

for each n ∈ N.
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