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Non-existence
(1977) There is a generic extension with no P-points (Shelah).
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Non-extendibility

Let U be a filter (base).

How to prove that U is not extendible to a P-point?
Find sequence of finite partitions of w.

(D= (DL, D}, ..., DY 1 new)

such that for each selector ¢: w — w

each pseudo-intersection of <D,C,(")> belongs to U/*.

How to show that each pseudo-intersection of a sequence (D,, | n € w)
isinU*?

For each f: w — w find an increasing sequence (b, € w1 n € w)
such that f(n) < b, and {J,c,, (Dn N [bn, bry1)) € U™
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Proposition

LetU be a non-principal ultrafilter.
PS® forces that U cannot be extended to a P-point.

Fact
The forcing PS® is proper and has the Sacks property.
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Lemma

If m > n?, then for each C € [m]" there exists s € m such that
CN(C—{s})=0 mod m.



Independent reals

Forre [w]“let l,(r)={x€c€wi|xNrl=n}



Independent reals

Forre [w]“let l,(r)={x€c€wi|xNrl=n}

DX(r) = U{lj(r) 1 j=k modn}



Independent reals

Forre[w]”let I,(r)={x€wi|xNr|=n}

D¥(r) = U{Ij(r) 1 j=k modn}

Fact

Let k < n# 1, and r be a Silver generic real over V.
Then DX(r) is an independent real over V.

le. DX(r) M A # ) for each A € [w]” N V.



