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Preliminaries

X will be a Polish space and G will be a locally compact Polish
group.

A continuous action of G on X is a continuous map G × X → X
such that

• 1G · x = x for all x ∈ X ,

• g · (h · x) = (gh) · x for all x ∈ X and g , h ∈ G .

The induced orbit equivalence relation EX
G on X is given by

x EX
G y if there is a g ∈ G such that g · x = y .
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Motivation

Consider all continuous free actions of a locally compact group G
on Polish spaces such that the induced orbit equivalence relation is
non-smooth. Is there a small basis for these actions under
G -embedibility? Similarly, is there such a basis for topologically
weakly mixing actions, topologically strong mixing actions etc?
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Definitions

• For non-empty open subsets U,V of X define:
∆(U,V ) = {g ∈ G | (g · U) ∩ V 6= ∅}.
• The action is topologically transitive if ∆(U,V ) 6= ∅ for all

non-empty open subsets U,V of X .

• Let F be a subset of P(Gd). Then a continuous action of G
on X is F-recurrent if ∆(U,U)d ∈ F for all non-empty open
subsets U of X .

• If S is a subset of P(Gd), define
FS = {F ∈ P(Gd) | ∀S ∈ S F ∩ S 6= ∅}.
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Weakly mixing

An action of G on X is weakly mixing, if for all non-empty open
subsets U0,U1,U2,U3 of X the set ∆(U0,U1) ∩∆(U2,U3) is
non-empty.

Equivalently, the diagonal product action of G on X × X is
topologically transitive.
Let D ⊂ G be a countable dense subgroup of G .
Let S be the family of subsets of G 2 of the form
Sg ,f = {(h, ghf ) : h ∈ G )} for (g , f ) ∈ D.

Proposition

The action of G on X is weakly mixing iff it is FS-recurrent and
topologically transitive.
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Proof.

If the action is weakly mixing, then it is topologically transitive.

Let
U ⊆ X be non-empty open and (g , f ) ∈ D2. Then
∆(U,U) ∩∆(f −1U, gU) = ∆(U,U) ∩ g∆(U,U)f 6= ∅, so
∆(U,U)2 ∩ Sg ,f 6= ∅.
If the action is topologically transitive and FS -recurrent, take
non-empty open sets U0,U1,U2,U3 and find (by topological
transitivity) a non-empty open set V and fi ∈ D for i < 4 such
that fiV ⊆ Ui for i < 4. Note that the fact that
∆(V ,V )2 ∩ Sf −1

1 f3,f
−1
2 f0
6= ∅ shows that

∆(f0V , f1V ) ∩∆(f1V , f2V ) 6= ∅.
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Cocycle

• Let E be an equivalence relation on X . A cocycle ρ is a map
from E to G such that ρ(x , z) = ρ(x , y)ρ(y , z) for all
x E y E z .

• For a cocycle ρ : E → G the equivalence relation Eρ is defined
by x Eρ y iff x E y and ρ(x , y) = 1.
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Definition

Suppose d > 0 and λ : d × N→ G . Define for n ∈ N and

s ∈ (d × 2)n λs = λ
s(0)(1)
(s(0)(0),0)...λ

s(n−1)(1)
(s(n−1)(0),n−1). Define a cocycle

ρλ : IG × E0|(d × 2)N → G by
ρλ((g , s_x), (h, t_x)) = gλsλ

−1
t h−1 for s, t ∈ (d × 2)n and

x ∈ (d × 2)N.
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Lemma

Suppose G is a locally compact Polish group, X is a locally
compact Polish space, G acts continuously on X , E is a Borel
equivalence relation containing EG

X , ρ : E → G is a Borel cocycle
such that ρ(g · x , x) = g for all g ∈ G and x ∈ X. Suppose
furthermore, that the Eρ-saturation of every open set U ⊆ X is
open and that Eρ is closed in X × X. Than the quotient topology
on X/Eρ is locally compact and Polish and the induced action of
G on X/Eρ is continuous.
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Theorem (Miller, I.)

Suppose that d > 1 and S is a countable set of subsets of Gd .
Then for every topologically transitive and FS-recurrent free action
with non-smooth induced orbit equivalence relation, there is a
sequence λ : d × N→ G such that Eρλ is closed, the action of G
on G × (d × 2)N/Eρλ embeds into the action of G on X and is
F-transitive. Furthermore, there are continuum many pairwise
incompatible actions with these properties.

Manuel Inselmann joint work with Benjamin Miller Universiät Wien



Corollary (Miller, I.)

For every topologically weakly mixing action of G with no open
orbit, there is a sequence λ : 2× N→ G such that Eρλ is closed,
the action of G on G × (2× 2)N/Eρλ embeds into the action of G
on X and is topologically weakly mixing. Furthermore, there are
continuum many pairwise incompatible actions with these
properties. In addition, if G is abelian, then there is a regular and
σ-finite measure on G × (2× 2)N/Eρλ for which the action of G is
weakly mixing.

Manuel Inselmann joint work with Benjamin Miller Universiät Wien



Other mixing notions

• The action of G on X is topologically mixing if it is
topological transitive and Fmixing -recurrent, where
Fmixing = {F ⊆ G : F c is precompact}.
• X is mildly mixing if every diagonal product action with a

topological transitive action is again topological transitive.
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Thank you!
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