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Some cardinal invariants at regular cardinals

Some cardinal invariants at regular cardinals

Definition
Letk > w be a regular cardinal. Letf, g € k*. f <* g means that
o <« :gla) <f(@} <«

Definition
We say that F C k* is =-unbounded if =g € KVf € F [f <* g].

Definition

b(k) = min{|F| : F C ¥“ A F is % -unbounded}.
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Some cardinal invariants at regular cardinals

Definition
We say that F C kK is x-dominating if Vg € «*3f € F g <* f]

Definition
d(«x) = min{|F|: F C ¥ and F is * -dominating}.
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Some cardinal invariants at regular cardinals

Definition
We say that F C kK is x-dominating if Vg € «*3f € F g <* f]

Definition
d(«x) = min{|F|: F C ¥ and F is * -dominating}.

For any regular k > w, k* < cf(b(k)) = b(k) < cf(d(k)) < d(k) < 2¥

@ These are the only relations between b(«x) and d(«) that are provable
in ZFC (Hechler for w; Cummings and Shelah for x > w).
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Some cardinal invariants at regular cardinals

@ When k > w, we can also use the club filter.

Definition

Letk > w be a regular cardinal. f <.; g means that{a < « : g(a) < f(a)} is
non-stationary. For F C k¥, we say that:

@ F is cl-unbounded if =g € «¥Vf € F[f <. g], and
@ F iscl-dominating ifVg € k3f € F g <a f].

| \

Definition
We define

bei(k) = min{|F| : F C & A F is cl-unbounded},
di(k) = min{|F| : F C ¥ and F is cl-dominating} .
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Some cardinal invariants at regular cardinals

Theorem (Cummings and Shelah)

For every regular cardinal k > w, b(k) = bci(k).
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Some cardinal invariants at regular cardinals

Theorem (Cummings and Shelah)

For every regular cardinal k > w, b(k) = bci(k).

Theorem (Cummings and Shelah)
If k > 2., is regular, then d(k) = d¢(x).

Does d(x) = de(x), for every regular uncountable k? In particular, does
d(w1) = dei(wr)?
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Some cardinal invariants at regular cardinals

Let k > w be regular.
@ ForA,B e P(x), A splits Bif BNA|=|BN (k\A)| =«
@ F C P(x) is called a splitting family if VB € [x]“JA € F [A splitsB].

s(k) = min{|F| : F C P(x) A F is a splitting family};

Theorem (Solomon)
wi < s(w) < dw).
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Some cardinal invariants at regular cardinals

Theorem (Suzuki)

For a regular k > w, s() > « iff k is strongly inaccessible and s(x) > «* iff k
is weakly compact.

@ So if x is not weakly compact, then s(k) < «* < b(x).
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Some cardinal invariants at regular cardinals

Theorem (Suzuki)
For a regular k > w, s() > « iff k is strongly inaccessible and s(x) > «* iff k
is weakly compact.

@ So if x is not weakly compact, then s(k) < «* < b(x).

Theorem (Zapletal)

If it is consistent to have a regular uncountable cardinal x such that
s(k) > k**, then it is also consistent that there is a k with o(k) > k.

Theorem (Ben-Neria and Gitik)
If o(x) = k™", then there is a forcing extension in which s(k) = «**.

@ « does not remain measurable in their model.
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Some cardinal invariants at regular cardinals

What is the consistency strength of the statement that « is a measurable
cardinal and s(k) = k™ ?
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Some cardinal invariants at regular cardinals

What is the consistency strength of the statement that « is a measurable
cardinal and s(k) = k™ ?

@ s(w) and b(w) are independent.

Theorem (Baumgartner and Dordal)
It is consistent to have s(w) < b(w).

Theorem (Shelah)
It is consistent to have w| = bH(w) < s(w) = w;.

@ Historically, Shelah’s result was the first published use of creature
forcing.
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Some cardinal invariants at regular cardinals

@ It turns out the w is the only regular cardinal for which the statement
b(k) < s(k) is consistent.

Theorem (R. and Shelah[2])

For any regular uncountable cardinal , s(k) < b(k).
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Some cardinal invariants at regular cardinals

@ It turns out the w is the only regular cardinal for which the statement
b(k) < s(k) is consistent.

Theorem (R. and Shelah[2])
For any regular uncountable cardinal , s(k) < b(k).

@ b(w) and d(w) are dual to each other
@ The dual of s(w) is r(w).

Definition

For a family F C [«]“ and a set B € P(«), B is said to reap F if for every
A€eF,|[AnB|=|AN(k\B)| =«. We say that F C [«]* is unreaped if there
is no B € P(x) that reaps F.
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Some cardinal invariants at regular cardinals

@ F C [«]“is unreaped iff each B € P(«x) is decided by some member of
F.

Definition
1(k) = min{|F| : F C [«]“ and F is unreaped)}.
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Some cardinal invariants at regular cardinals

@ F C [«]“is unreaped iff each B € P(«x) is decided by some member of

F
F.

Definition

1(k) = min{|F| : F C [«]“ and F is unreaped)}.

The proof of s(w) < d(w) dualizes to the proof of b(w) < r(w).

Also r(w) and d(w) are independent.

Not clear if there is a good theory of duality at uncountable regular
cardinals too.

For example, Suzuki’s theorem says that s(x) is small unless « is
weakly compact.

So we might expect that r(x) is large below the first weakly compact
cardinal.
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Some cardinal invariants at regular cardinals

Is it consistent (relative to large cardinals) that there is some uncountable
regular cardinal k below the first weakly compact cardinal such that
(k) < 247

@ My conjecture is yes (so Suzuki’s theorem has no dual).
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Some cardinal invariants at regular cardinals

Is it consistent (relative to large cardinals) that there is some uncountable
regular cardinal k below the first weakly compact cardinal such that
(k) < 247

@ My conjecture is yes (so Suzuki’'s theorem has no dual).
@ The proof that for all x > w, s(x) < b(x) does not dualize.
@ But the theorem does have a partial dual:
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Some cardinal invariants at regular cardinals

Is it consistent (relative to large cardinals) that there is some uncountable
regular cardinal k below the first weakly compact cardinal such that
(k) < 247

@ My conjecture is yes (so Suzuki’'s theorem has no dual).
@ The proof that for all x > w, s(x) < b(x) does not dualize.
@ But the theorem does have a partial dual:

Theorem (R. + Shelah [3])
for all reqular cardinals k > 2, d(k) < t(k).

@ So for sufficiently large «, s(«x) < b(k) < d(x) < r(k) provably in ZFC.
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Some cardinal invariants at regular cardinals

Is D(N1) < t(Ny) provable? Is d(x) < t(x) provable for all regular x < 3,7

Is it consistent (relative to large cardinals) that v(w;) < 2™ ?
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Some cardinal invariants at regular cardinals

Is D(N1) < t(Ny) provable? Is d(x) < t(x) provable for all regular x < 3,7

Is it consistent (relative to large cardinals) that v(w;) < 2™ ?

_
_

@ This is related to an old question of Kunen about bases for uniform
ultrafilters.

Definition
Let k > w be regular. Let U be an ultrafilter on k. We say that:

@ U is uniform if every element of U has cardinality «;
@ FCP(k)isabase for U if Y ={BCk:3dA e F[A C B]}.
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Some cardinal invariants at regular cardinals

Definition

u(x) = min{|F| : F is a base for a uniform ultrafilter on «}.

@ Clearly 1(x) < u(x).
@ u(w) and s(w) are independent.
@ However for k > w, s(k) < b(k) < 1(k).
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Some cardinal invariants at regular cardinals

Definition

u(x) = min{|F| : F is a base for a uniform ultrafilter on «}.

@ Clearly 1(x) < u(x).
@ u(w) and s(w) are independent.
@ However for k > w, s(k) < b(k) < 1(k).

Question (Kunen)

Is it consistent that u(w;) < 2™ ?

Theorem (Garti and Shelah)
If k is supercompact, then u(x) < 2% is consistent.
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Some cardinal invariants at regular cardinals

Letk > w be a regular cardinal.
@ A, B € [«] are said to be almost disjoint or a.d. if|[A N B| < k.

@ Afamily o C [«]“ is said to be almost disjoint or a.d. if the members
of &7 are pairwise a.d.

@ Finally o/ C k] is called maximal almost disjoint or m.a.d. if </ is

an a.d. family, |</| = «, and </ cannot be extended to a larger a.d.
family in [«]“.
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Some cardinal invariants at regular cardinals

Letk > w be a regular cardinal.
@ A, B € [«] are said to be almost disjoint or a.d. if|[A N B| < k.

@ Afamily o C [«]“ is said to be almost disjoint or a.d. if the members
of &7 are pairwise a.d.

@ Finally o/ C k] is called maximal almost disjoint or m.a.d. if </ is

an a.d. family, |</| = «, and </ cannot be extended to a larger a.d.
family in [«]“.

Definition

a(k) = min {|.</| : & C [«]“ and </ is m.a.d.}.
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Some cardinal invariants at regular cardinals

Theorem (Rothberger)
For any regular k > w, b(x) < a(k).

Theorem (Shelah)

It is consistent to have 81 = b(w) < a(w) = N, = s(w). It is also consistent
to have X; = b(w) = a(w) < s(w).
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Some cardinal invariants at regular cardinals

Theorem (Rothberger)
For any regular k > w, b(x) < a(k).

Theorem (Shelah)

It is consistent to have 81 = b(w) < a(w) = N, = s(w). It is also consistent
to have X; = b(w) = a(w) < s(w).

@ It turns out that w is the only regular k where b(x) = k* < k™ = a(k) is
consistent.

Theorem (R. + Shelah)

If k > w is regular, then b(x) = «* implies a(x) = «*.
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Some cardinal invariants at regular cardinals

Theorem (Blass, Hyttinen, and Zhang)

Let k > w be regular. If d(x) = ", then a(x) = k*.
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Some cardinal invariants at regular cardinals

Theorem (Blass, Hyttinen, and Zhang)

Let k > w be regular. If d(x) = ", then a(x) = k*.

Question (Roitman)
Does d(w) = N imply that a(w) = X1 ?

Theorem (Shelah)
It is consistent to have 8, = d(w) < a(w) = N3.

@ He actually gave two different proofs of Con(d(w) < a(w)).

@ The first proof used ultrapowers and needed a measurable cardinal 6
to produce a model with 6 < d(w) < a(w).

@ The other proof used templates and produced a model with d(w) = N;.
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Some cardinal invariants at regular cardinals

@ The first proof also works for u(w).

Theorem (Shelah)

Suppose there is a measurable cardinal 6. Then there is a c.c.c. forcing
extension in which 6 < uw(w) < a(w).
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Some cardinal invariants at regular cardinals

@ The first proof also works for u(w).

Theorem (Shelah)

Suppose there is a measurable cardinal 6. Then there is a c.c.c. forcing
extension in which 6 < uw(w) < a(w).

What is the consistency strength of w(w) < a(w)?
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Consistency results

Consistency results

@ R. + Shelah used the method of Boolean ultrapowers to get several
consistency results involving a(x).

Theorem (R. + Shelah [1])

For any regular k > w, d(k) < a(k) is consistent relative to a supercompact
cardinal.

@ This is analogous to Shelah’s first result that d(w) < a(w) is consistent
relative to a measurable.

@ The consistency of b(x) < a(x) for uncountable « was also unknown
before this result.
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Consistency results

More specifically, suppose Ky < « = k=¥ < 6§ and that 6 is supercompact.
Then there is a forcing extension in which 6 < b(k) = d(k) < a(k).

@ We can also arrange b(x) and d(x) to be different.

Theorem (R. + Shelah [1])

Suppose Ny < k = k¥ < 0 and that 0 is supercompact. Then there is a
forcing extension in which 6 < b(k) < d(k) < a(k).
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Consistency results

More specifically, suppose Ky < « = k=¥ < 6§ and that 6 is supercompact.
Then there is a forcing extension in which 6 < b(k) = d(k) < a(k).

@ We can also arrange b(x) and d(x) to be different.

Theorem (R. + Shelah [1])

Suppose Ny < k = k¥ < 0 and that 0 is supercompact. Then there is a
forcing extension in which 6 < b(k) < d(k) < a(k).

Question
What is the consistency strength of the statement that there is an
uncountable regular cardinal k for which d(x) < a(x), or even b(k) < a(x)?

| N\
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Consistency results

For uncountable regular «, does b(x) = «** imply that a(x) = «**?
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Consistency results

For uncountable regular «, does b(x) = «** imply that a(x) = «**?

Theorem (R. + Shelah [1])

If k is a Laver indestructible supercompact cardinal, then u(x) < a() is
consistent relative to a supercompact cardinal above k. More specifically,
suppose that k < 6, that 6 is supercompact, and that k is Laver
indestructible supercompact. Then there is a forcing extension in which
0 < u(k) < a(x).

@ This is analogous to Shelah’s that 6§ < u(w) < a(w) is consistent if 8 is
measurable.

Dilip Raghavan (Joint work with Saharon Shelah) Cardinal invariants above the continuum



Consistency results

Definition

Suppose 6 supercompact, 0 < u = u<? < u* < x. B, .0 is the completion of
Fn(y, 1, 0) = {f : dom(f) € [x]*’ and ran(f) C u} ordered by reverse
inclusion.
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Consistency results

Definition

Suppose 6 supercompact, 0 < u = u<? < u* < x. B, .0 is the completion of
Fn(y, 1, 0) = {f : dom(f) € [x]*’ and ran(f) C u} ordered by reverse
inclusion.

@ Build a #-complete optimal ultrafilter D on 8B, ,, ¢4 (using the fact that ¢
is supercompact).

@ For getting a model with b(k) = d(k) < a(k), fix the usual iteration P for
forcing b(x) = d(k) = u*.
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Consistency results

Definition

Suppose 6 supercompact, 0 < u = u<? < u* < x. B, .0 is the completion of
Fn(y, 1, 0) = {f : dom(f) € [x]*’ and ran(f) C u} ordered by reverse
inclusion.

@ Build a #-complete optimal ultrafilter D on 8B, ,, ¢4 (using the fact that ¢
is supercompact).

@ For getting a model with b(k) = d(k) < a(k), fix the usual iteration P for
forcing b(x) = d(k) = u*.

@ Let Q = PlBuwel/p.

@ Forcing with Q preserves b(x) = d(k) = u* and makes a(k) = cf(y).
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A ZFC result

An application of PCF theory

For any regular k > 3,,, d(k) < t(x).

Definition

Let k > w be a regular cardinal. If A € [«]*, then we define a function
sS4 : kK = A by setting sa(@) = min(A \ (@ + 1)), for each a € «.

| A

Definition

Let E; C E; both be clubs in k. For each ¢ € «, define
set(E1, &) = {¢ < sg,(é) : & < ). Define set(Ea, Ey) = U {set(E1,€) : € € Ea}

v
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A ZFC result

@ Assume « > 3. Let F C [«]“ be such that F is unreaped and
|F| = r(k).
@ We will need the revised GCH

Let k and A be cardinals. Define 1! to be

min {|P] : P C [A]%* and Yu € [A1*FPy C P[Pl < k andu = |_|Pol}.

The operation A¥! is sometimes referred to as the weak power.
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A ZFC result

@ Assume « > 3. Let F C [«]“ be such that F is unreaped and
|F| = r(k).
@ We will need the revised GCH

Let k and A be cardinals. Define 1! to be

min {|P] : P C [A]%* and Yu € [A1*FPy C P[Pl < k andu = |_|Pol}.

The operation A¥! is sometimes referred to as the weak power.

@ Easy exercise: GCH is equivalent to the statement that for all regular
cardinals « < 4, A = .

@ The revised GCH, which is a theorem of ZFC says that for “lots of
pairs” of regular cardinals we have AX1 = 2.
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A ZFC result

Theorem (Shelah; The Revised GCH)

If 8 is a strong limit uncountable cardinal, then for every A > 6, there exists
o < 6 such that for every o < k < 6, AX = 2.

Corollary

| A\

Letu > 3, be any cardinal. There exists an uncountable regular cardinal
0 < 3, and a family P  [u]*? such that || < u and for each u € [u]’, there
exists v € P with the property that v C u and |v| > .

v
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A ZFC result

@ Applying this with u = r(«), fix an uncountable regular cardinal 8 < 2,
and a family P C [0 x F1=? such that || < u and P has the property
that for each u € [0 x F]?, there exists v € P satisfying v C u and
vl = No.
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A ZFC result

@ Applying this with u = r(«), fix an uncountable regular cardinal 8 < 2,
and a family P C [0 x F1=? such that || < u and P has the property
that for each u € [0 x F]?, there exists v € P satisfying v C u and
[v] > No.

@ Fix M < H(y) containing everything relevant with |M| = yand F € M.

@ M N «* is a dominating family (this shows d(x) < u).
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A ZFC result

@ Applying this with u = r(«), fix an uncountable regular cardinal 8 < 2,
and a family P C [0 x F1=? such that || < u and P has the property
that for each u € [0 x F]?, there exists v € P satisfying v C u and
[v] > No.

@ Fix M < H(y) containing everything relevant with |M| = yand F € M.

@ M N «* is a dominating family (this shows d(x) < u).

@ It may be assumed that for any club E; C «, there exists a club
E, CE;suchthatforall Be F, BZ" set(E,, E;) (otherwise there is an
easy argument).
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A ZFC result

@ Applying this with u = r(«), fix an uncountable regular cardinal 8 < 2,
and a family P C [0 x F1=? such that || < u and P has the property
that for each u € [0 x F]?, there exists v € P satisfying v C u and
[v] > No.

@ Fix M < H(y) containing everything relevant with |M| = yand F € M.

@ M N «* is a dominating family (this shows d(x) < u).

@ It may be assumed that for any club E; C «, there exists a club
E, CE;suchthatforall Be F, BZ" set(E,, E;) (otherwise there is an
easy argument).

@ Since F is an unreaped family, it follows that for each club E; C «,
there exist a club E, C Ey and a B € F such that B C* «k \ set (E», E}).
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A ZFC result

@ Let f € ¥“ be a fixed function.
@ Construct a sequence <<Ei,El.1,B,~) : i < 6) so that the following
conditions are satisfied at each i < 6:
@ E and E] are both clubs in «, E! C E;, and Yj < i[Ei C Ejl];
Q B;cFand B C «\ set (!, Ey);
@ ifi=0,then E; = {a < k : ais closed under f}.
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A ZFC result

Let f € ¥ be a fixed function.

Construct a sequence <<El~,El.1,B,~) : i < 6) so that the following
conditions are satisfied at each i < 9:

@ E and E] are both clubs in «, E! C E;, and Yj < i[Ei C Ejl];
Q B;cFand B C «\ set (!, Ey);
@ ifi=0,then E; = {a < k : ais closed under f}.

define u : 8 — F by setting u(i) = B; forall i € 6.

By the choice of  and M, we can find a sub-function w C u in M so
that otp(dom(w)) = w.

Let (i, : n € w) be the strictly increasing enumeration of dom(w).
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A ZFC result

@ By regularity of k, there exists a function g € M N «* with the property
that for each « € «, Vi € dom(w) [B; N [a, g(@)) # 0].
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A ZFC result

@ By regularity of k, there exists a function g € M N «* with the property
that for each « € «, Vi € dom(w) [B; N [a, g(@)) # 0].
@ Find ¢ < « so that for each n € w:
@ B, \6C«k\ set(Eiln,Ein);
Q min(E;) <6
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A ZFC result

@ By regularity of k, there exists a function g € M N «* with the property
that for each « € «, Vi € dom(w) [B; N [a, g(@)) # 0].
@ Find ¢ < « so that for each n € w:
@ B, \6C«k\ set(Eiln,Ein);
Q min(E;) <6
@ We will show that for any a > ¢, f(@) < g(@).
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A ZFC result

@ Fix @ > ¢ and define &, = sup(E;, N (@ + 1)).
@ Then &, € E;, and they are non-increasing.
@ There exist £ and N € w such that Vn > N [§, = £].
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A ZFC result

Fix & > ¢ and define &, = sup(E;, N (a + 1)).

Then &, € E;, and they are non-increasing.

There exist £ and N € w such that Vn > N [£, = £].
Fix B € B;, N [a, g(@)).
Then B ¢ set (EL , E;,).

Note & = &y € Ejy,, CEL .

Hence g ¢ [f, s, ())-
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A ZFC result

Fix & > ¢ and define &, = sup(E;, N (a + 1)).

Then &, € E;, and they are non-increasing.

There exist £ and N € w such that Vn > N [£, = £].
Fix B € B;, N [a, g(@)).
Then B ¢ set (EL , E;,).

Note & = &y € Ejy,, CEL .

Hence 8 ¢ [f, SE;, (g)).
On the otherhand, ¢ <a <B. Hence £ < a < SE;, (§) < B < g(a).
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A ZFC result

Fix & > ¢ and define &, = sup(E;, N (a + 1)).

Then &, € E;, and they are non-increasing.

There exist £ and N € w such that Vn > N [£, = £].
Fix B € B;, N [a, g(@)).
Then B ¢ set (EL , E;,).

Note ¢ = éx+1 € Eiy,, CE] .
Hence 8 ¢ [f, SE;, (g)).

On the other hand, § < @ < B. Hence & < a < s, () < B < g(a).
Finally, since sg, (£) € Ejy C Eo, sg,,(£) is closed under f.
Therefore, f(a) < s, (§) < B < g(a).
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