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= The sequence (f, : n € w) is called Z-quasi-normal convergent to fon X if there
exists a sequence of positive reals (¢, : n € w) and &, 2, 0 such that
{n€w: |fu(z) — (z)| > en} €T for any z € X, denoted f, EELN I

(en: m € w) is called control sequence

= especially, if control sequence is (27" : n € w) we are talking about strongly

. . IQN
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Convergences

classical convergence = Z-convergence

QN-convergence = sZQN-convergence = ZQN-convergence

Similarly to M. Scheepers [8] we define

= (X)) = {A €X(X\{z}): z€{y: (Anew) A(n) = y}}
= I-T(X) = {A € “(X\ {z}) : A is Z-convergent to z} .

= Let O denote constant zero-value function on X.

= We will omit C,(X) from notation Z-I'¢(C,(X)) i.e., Z-I'o.
= We use I'g instead of Fin-I'g.
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Selection principle S1(P,R)

Let P and R be families of sets.

= X has (7) if for any P € P we can select a set R € R such that R C P. [7]

= Xhas [£] or Xis a [P, R]-space if for every (p, : n € w) € P there is
(N : m € w) such that (p,, : mew) e R.

= If P and R denote convergences then X is a [Py, Rp]-space if for every (p, : n € w)

such that p, z, p there is (n, : m € w) such that p,,, R, .

= X is an S;1(P,R)-space if for a sequence (U, : n € w) of elements of P we can
select a set U, € U, for each n € w such that (U, : n € w) is a member of R. [7]

Let Z, J be ideals on w. Then S1(Z-I'g, J-T'0) can be imagined by follow way

> I
faym — 0

fl,m
f2,m

f3,m

Frm

T
Fn,my =0
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Let X be a topological space. Then
(1) X is an S1(Z-T,T)-space if and only if X has [*.'] and S;(I',T).

(2) Cp(X) is an S1(Z-To, T'o)-space if and only if Cp(X) has [1520] and S1(To, T'o).

Lemma (V.S., J.Supina)

(1) For any countable w-cover U of X and its bijective enumeration (U, : n € w) there
is an ideal Z such that (U, : n € w) is an Z-y-cover.

(2) For any countable family of functions £ on X such that 0 € € \ {0} and its bijective enumeration
(fn : m € w) there is an ideal T such that f, Zo.
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Covering S1(P,R) and S1(P,R) for functions

Theorem (V.S.,J.Supina)

Let X be a Tychonoff topological space. The following statements are equivalent.
(a) X is an S1(92,T")-space.
(b) X is an S1(Z-I',T")-space for every ideal Z.

(d) X has | FF} for every ideal T.

)
(¢) Cp(X) is an S1(Z-T'o,T'o)-space for every ideal T.
)
(e) C

»(X) has [IIZEO] for every ideal T.

S1(0,T) —————— $(I, JT) ———— S1(I, Q)

I [

S1(Z-T,T) ——— S1(Z-1, J-T")

[

S1(Q,T)

Diagram. Covering selection principles.



Covering S1(P,R) and S1(P,R) for functions

Theorem (V.S.,J.Supina)

Let X be a Tychonoff topological space. The following statements are equivalent.
) X is an S1(Q,T")-space.

X is an S1(Z-T',T")-space for every ideal Z.
(c) C
d

(e) C

»(X) is an S1(Z-T'o,T'0)-space for every ideal T.
X has ["] for every ideal T.

»(X) has [I FO] for every ideal .

(a
(b
(

— D L T

S1(FCo,To) ————— S1(To, J-T'o) — S1(To, Q0) — Indz(X) =0

[ I

S1(Z-To,To) ———> S1(Z-To, J-To)

[

Fréchet

Diagram. Selection principles for functions.
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Monotonne version of S;(P,R) for functions

= We say that a sequence (f, : n € w) is monotone sequence if for any n € w
and z € X we have f(2) > fot1(z).

= Tg={4€“(Cp(X)\{0}): A is monotone and convergent to 0} .

= We say that a sequence (f, : n € w) is Z-monotone sequence
if {n: fo <L fm} €Z for every m € w.
= I-Tg = {A € “(Cp(X) \ {0}) : A is Z-monotone and Z-convergent to 0} .

Lemma (V.S., J.Supina)

Let X be a topological space.

(1) Cp(X) has the property S1(I'g', J-I'o) if and only if C,(X) has the property
Sl(Fin— gl, j—ro).

(2) C,(X) has the property [Jga;o] if and only if C,(X) has the property @g;‘z]

(3) Cp(X) has the property LJF(;‘};\IO] if and only if C,(X) has the property [57”(‘211:?0]




Monotonne version of S;(P,R) for functions

= We say that a sequence (f, : n € w) is monotone sequence if for any n € w
and z € X we have fn(2) > fot1(2).

= I'g'={4 €“(Cp(X)\ {0}) : A is monotone and convergent to 0} .

= We say that a sequence (f, : n € w) is Z-monotone sequence
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Monotonne version of S;(P,R) for functions

= We say that a sequence (f,: n € w) is monotone sequence if for any n € w
and z € X we have f.(z) > fut1(2).

= I'g'={4 €“(Cp(X)\ {0}) : A is monotone and convergent to 0} .

= \We say that a sequence (f, : n € w) is Z-monotone sequence
if {n: fu £ fm} €T for every m € w.
= I-T'g = {A € “(Cp(X) \ {0}) : A is Z-monotone and Z-convergent to 0} .

S1(I'e’,To) = S1(Tg', J-To)

S1(Z-T'o, J-T'o) = S1(Z-I'g', T-To)
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Conection between coverings and functions

= We say that a topological space X has [J-Hurewicz property if for each sequence
(Un : n € w) of open covers of X there are finite V,, C Uy, n € w such that for each
zeX {ncw: ¢ UVu} € T3]
= P. Szewczak and B. Tsaban [10] showed
Hurewicz — J-Hurewicz —> Menger.

Proposition (V.S., J.Supina)

If X is a perfectly normal topological space then the following are equivalent.
Moreover, if X is arbitrary topological space then (a) = (b).

(a) Cp(X) has LJF(SNO].

(b) Cu(X) has the property S1(I'g', J-To).

(c) X possesses a [J-Hurewicz property.
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= We say that a topological space X has [7-Hurewicz property if for each sequence

(Un : n € w) of open covers of X there are finite V,, C Uy, n € w such that for each
zeX {ncw: z¢UVu} € T3]

= P. Szewczak and B. Tsaban [10] showed

Hurewicz — J-Hurewicz —> Menger.

Hurewicz = Si1(I'g’,To) —— S1(I'g', J-T'o) ———> Menger

| T

$1(Z-T§,To) —— S1(Z-T5, J-To)

T

S (I—Fo, F())

Diagram. Monotonic selection principles for functions.
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Theorem (L. Bukovsky, P. Das, J.Supina.[1])

Let Z, J be ideals on w. If X is a normal topological space then the following are
equivalent.

Moreover, the equivalence (a) = (b) holds for arbitrary topological space X.
(a) Cp(X) has {555130].
(b) Cp(X) is an S1(Z-T'o, J-T'o)-space.

(c) X is an Si(Z-T*", J-T")-space.



Conection between coverings and functions

Theorem (L. Bukovsky, P. Das, J.Supina.[1])

Let Z, J be ideals on w. If X is a normal topological space then the following are
equivalent.

Moreover, the equivalence (a) = (b) holds for arbitrary topological space X.
(a) Cp(X) has {555130].
(b) Cp(X) is an S1(Z-T'o, J-T'o)-space.

(c) X is an Si(Z-T*", J-T")-space.

» As a corollary L. Bukovsky, P. Das and J. 5. obtained the ideal version of Scheepers’
result [9].

Sl(I—F, j—F) — 51 (I—FSh, j—F) < Sq (I—Fo, j—Fo) — Sl(I—Fg‘, J—Fo).



Conection between coverings and functions

Hurewicz = S1(I'g',To) ————— > S1(I'g', J-T'g) ———» Menger

/ /

S1(Tg,g) ——————— S1(To, J-Tg) ———> S1(T'0,0) —> Indz(X) =0

/ / /

S1(I,T) S1(D, JT) —— S (I, Q)

S1(Z-I'g', To) —|S1(Z-Tg, T-To)

/ /

|
S1(Z-To,Tg) ——— | S1(Z-T'o, I-To) —> [j,p%]

/ /

$1(ZT,T) —————— §1(ZT, JT) — [Z1]

[

S1(Q,T)

Diagram. The overall relations of investigated properties.
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= non(S:(Z-T', J-T')-space) denotes the minimal cardinality of a perfectly normal
space which is not an S1(Z-I", J-I')-space.

Let A C P(w).
= a sequence s € “A will be called an A-slalom.
» a function o € “w J-goes through A-slalom s if {n: @(n) € s(n)} € T,
i.e, {n: ¢o(n) ew\s(n)} e J.
= We say that ¢ goes through Z-slalom instead of ¢ Fin-goes through Z-slalom.

b =min {|R|: R C “w, (VFin-slalom s)(3¢ € R) = (¢ goes through s)} .
AZ,J) = min {|R\ : R contains Z%slaloms, (Vo € “w)(3s € R) —(¢ J-goes through s)}
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Cardinal invariants

= non(S:(Z-T', J-T')-space) denotes the minimal cardinality of a perfectly normal
space which is not an S1(Z-I", J-I')-space.

Let A C P(w).
= a sequence s € “A will be called an A-slalom.
» a function o € “w J-goes through A-slalom s if {n: @(n) € s(n)} € T,
i.e, {n: ¢o(n) ew\s(n)} e J.
= We say that ¢ goes through Z-slalom instead of ¢ Fin-goes through Z-slalom.

b =min {|R|: R C “w, (VFin-slalom s)(3¢ € R) = (¢ goes through s)} .
AZ,J) = min {|R\ : R contains Z%slaloms, (Vo € “w)(3s € R) —(¢ J-goes through s)}
cov'(Z) =min {|A| : ACZA(VSE [w]“)(FA€A) [SNA|=w}.

Ez,j:minﬂA\: AQI/\Ag;(J}
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Cardinal invariants

= J. Supina’s results [12]: A(Fin, J) = by and
if 7y <g Zr and J1 <kp J2 then \(Z2, J1) < AN(Z1, J2).
Theorem (V.S., J.Supina)
(1) IfZ Lk J then )\(I, j) < min{Ez,J, bj}

(2) IfT £x J and J <k T then \(Z,J) = min{tz, 7, \(J,J)}.
(3) IfZ is tall then A\(Z,Fin) = min{cov*(Z), b}.

0

"

by = A(Fin, J)

b = X(Fin, Fin) XNZ,T)
min{cov*(Z), b}=A(Z, Fin)

+

p

Diagram. Cardinal \(Z, J).



Critical cardinality

Theorem (V.S., J.Supina)
Let Z, J be ideals on w, D being a discrete topological space. Then the following statements are equivalent.

(a) D isan S1(Z-T', J-T')-space.

Ir

(b) Cp(D) has [sJQIgo]'

(¢c) C,(D) has the property S1(Z-I'o, J-I'o)

(d) Cp(D) has the property S1(Z-I'g', J-I'o).

(e) |D| < XZ,T).

Theorem (A. Kwela—M. Repicky)
Let D be a discrete topological space. Then the following statements are equivalent.
(a) |D| < cov*(Z).
QN
(b) Cy(D) has ['R°].

(c) Cp(D) has [1520].

(d) D has the property [*:"].
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» Let Z,J C P(w) be ideals.
(1) non(S1(Z-T'o, J-T'o)) = non(S1 (Z-I'Y, J-To)) = non([sgglgo]) =\Z,J).
(2) non(S1(Io, J-I'o)) = non(S1(I'Y, J-To)) = non([sjgoNo]) =b.
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» Let Z,J C P(w) be ideals.

(1) non(S1(Z-T'o, J-T'o)) = non(S1 (Z-I'Y, J-To)) = non([sgglgo]) =\Z,J).
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Critical cardinality

» Let Z,J C P(w) be ideals.
(1) non(S1(Z-T'o, J-T'o)) = non(S1 (Z-I'Y, J-To)) = non([sgglgo]) =\Z,J).
(2) non(S1(Io, J-I'o)) = non(S1(I'Y, J-To)) = non([sjgoNo]) =b.

= If Z is tall then
(3) non(S1(Z-T,T)) = non(S1(Z-T'o, I'o)) = non(S1 (Z-Ig', T'o)) = non([Gr°]) =
min{cov*(Z), b}.

4) (A. Kwela—M. Repicky) non([IQ °]) = non([*! FO]) = non([5]) = cov*(2).

(
= Consistency
(1) If b = c then non(S;(Z-I',T")) = cov*(Z) for every tall ideal Z.
(2) If b < cov*(Z) then non(S1(Z-I',T)) < cov*(Z) for every tall ideal Z.
(3) If p=0b then non(S;(Z-I',T")) = b.
(4) If cov*(Z) < b then non(Sl(I I,T)) < b.
(5) If by < 0 then non(Sy(Z-T, 7-T)) < 0.



Conclusion

Proposition (V.S., J.Supina)

(1)
(2)

Ifp < b there is an S1(I",T")-space X such that C,(X) is not an S1(U-I'G', I'o)-space.
If cov*(Z) < b there is an S;(I",T")-space X such that C,(X) is not

an S1(Z-I'g',To)-space.

For any b-Sierpinski set S there is an ultrafilter U such that S such that C,(S) is not
an S1(U-T'o,To)-space (but S is an S1(T',T")-space).

If b < by then there is an Sy (I',U-T")-space X such that C,(X) is not

an S1(T'g’, T'o)-space.

If by <0 then there is an S1(T", Q2)-space X such that C,(X) is not

an S1(I'g', J-T'o)-space.

If b < cov™(Z) then there is an [Z-I',T'] -space X such that C,(X) is not
an S1(Z-I'g’,To)-space.



Conclusion

Hurewicz = S1(I'g',To) ————— > S1(I'g', T-T'g) ——— Menger

/!

S1(To,To) ———

/

S1(T,T)

AN

/

S1(Z-T'g,To)

/

/

— S1(To, J-To) —X— S1(To, Qo) — Indz(X) =0

/ /

S1(I, J-I) ———— S1(I, Q)

$1(Z-rg',To) ——|——|S1(Z-Tg", J-To)

/

I.To

—  |s1(@Te,TTo) —> [J—Fo]

/

$1(ZT,T) —————— §1(ZT, JT) — [Z1]

[

$1(2,T)

Diagram. The overall relations of investigated properties.
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