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Let F ,G be families of real-valued functions on a set X.

We say that X has a property DL(F , G) if any function from F is a discrete limit of
a sequence of functions from G.
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Let F ,G be families of real-valued functions on a set X.
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Convergence of 〈fn : n ∈ ω〉, fn, f : X → R

Pointwise convergence fn → f

(∀x ∈ X)(∀ε > 0)(∃n0)(∀n ∈ ω)(n ≥ n0 → |fn(x)− f(x)| < ε)

Monotone convergence fn ↗ f fn ↘ f

fn ↗ f ⇔ fn → f ∧ (∀n ∈ ω) fn ≤ fn+1

fn ↘ f ⇔ fn → f ∧ (∀n ∈ ω) fn ≥ fn+1

Quasi-normal (equal) convergence QN fn
QN−→ f

there exists 〈εn : n ∈ ω〉 converging to 0 such that

(∀x ∈ X)(∃n0)(∀n ∈ ω)(n ≥ n0 → |fn(x)− f(x)| < εn)

Discrete convergence D fn
D−→ f

(∀x ∈ X)(∃n0)(∀n ∈ ω)(n ≥ n0 → fn(x) = f(x))
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Let F ,G be families of real-valued functions on a set X.

We say that X has a property DL(F , G) if any function from F is a discrete limit of
a sequence of functions from G.



XR the family of all real-valued functions on X

X [0, 1] the family of all functions on X with values in [0, 1]

B the family of all Borel functions on X

B1 the family of all first Baire class functions on X

M∆0
2 the family of all ∆0

2-measurable functions on X

U the family of all upper semicontinuous functions on X

L the family of all lower semicontinuous functions on X

C(X) the family of all continuous functions on X

F ⊆ XR F̃ = F ∩ X [0, 1]
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Theorem
Let X be a normal space, f : X → R. The following are equivalent.

(1) f is a discrete limit of a sequence of continuous functions on X.

(2) f is a quasi-normal limit of a sequence of continuous functions on X.

(3) There is a sequence 〈Fn : n ∈ ω〉 of closed subsets of X such that f |Fn is
continuous on Fn for any n ∈ ω and X =

⋃
n∈ω Fn.
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Theorem
If A is an analytic subset of a Polish space then A has DL(M∆0

2, C(X)).
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Proposition
Any perfectly normal QN-space has DL(M∆0

2, C(X)).

Theorem
A perfectly normal space X is a QN-space if and only if X has Hurewicz property and
DL(B1, C(X)).
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Bukovský L., Recław I. and Repický M., Spaces not distinguishing convergences of real–valued functions, Topology

Appl. 112 (2001), 13–40.

Tsaban B. and Zdomskyy L., Hereditary Hurewicz spaces and Arhangel’skiı̌ sheaf amalgamations, J. Eur. Math. Soc. (JEMS), 14

(2012), 353–372.

Proposition
Any perfectly normal QN-space has DL(M∆0

2, C(X)).

Theorem
A perfectly normal space X is a QN-space if and only if X has Hurewicz property and
DL(B1, C(X)).



Jayne J.E. and Rogers C.A., First level Borel functions and isomorphisms, J. Math. Pures et Appl. 61 (1982), 177–205.

Theorem
If A is an analytic subset of a Polish space then A has DL(M∆0

2, C(X)).
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A topological space X is a QN-space if each sequence of continuous real-valued
functions converging to zero on X is converging quasi-normally.

I Tychonoff QN-space is zero-dimensional
I any QN-subset of a metric separable space is perfectly meager
I perfectly normal QN-space has Hurewicz property

I non(QN-space) = b

I b-Sierpiński set is a QN-space (exists under b = cov(N ) = cof(N ))

Recław I., Metric spaces not distinguishing pointwise and quasinormal convergence of real functions, Bull. Acad. Polon. Sci.

45 (1997), 287–289.

Miller A.W., On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), 233–267.

I perfectly normal QN-space is a σ-set
I the theory ZFC + “any QN-space is countable” is consistent
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Proposition
Let X be a perfectly normal space. The following are equivalent.

(1) X is a σ-set with DL(M∆0
2, C(X)).

(2) X possesses DL(B1, C(X)).

(3) X possesses DL(B, C(X)).
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Let F ,G be families of real-valued functions on a set X.

dec(F , G) denotes the minimal cardinal κ such that any function from F can be
decomposed into κ many functions from G.

X is usually a Polish space.
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Theorem
(a) Let X be a topological space. Then

DL(U , C(X)) ≡ DL(L, C(X)) ≡ DL(Ũ , C(X)) ≡ DL(L̃, C(X)) ≡
(∀Y ⊆ X) DL(U , C(Y )) ≡ (∀Y ⊆ X) DL(L, C(Y )).

(b) Let X be a perfectly normal space. Then

DL(U , L) ≡ DL(L, U ) ≡ DL(L, C(X)) ≡ DL(B1, C(X)) ≡ DL(B, C(X)).
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I Fσ-measurable function f : X → [0, 1]

I Lindenbaum’s Theorem: there are lower semicontinuous functions g : [0, 1]→ [0, 1],
h : X → [0, 1] such that f = g ◦ h

I for h: 〈Fn : n ∈ ω〉 of closed subsets ofX, h|Fn is continuous on Fn, X =
⋃
n∈ω

Fn

I f |Fn = g ◦ h|Fn is lower semicontinuous on Fn

I for g: 〈Fn,m : m ∈ ω〉 of closed subsets of X, f |Fn,m = g ◦ h|Fn,m is continuous
on Fn,m, Fn =

⋃
m∈ω

Fn,m
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Baire 1899:

B0(X) = C(X)

Bα(X) =

{
f : fn → f ∧ fn ∈

⋃
β<α

Bβ(X)

}
Young 1910:

L0(X) = U0(X) = C(X)

Lα(X) =

{
f : fn ↗ f ∧ fn ∈

⋃
β<α

Uβ(X)

}

Uα(X) =

{
f : fn ↘ f ∧ fn ∈

⋃
β<α

Lβ(X)

}

C(X) B1 B2 Bα

L1 L2 Lα

U1 U2 Uα

· · · · · ·



MΣ0
α(X) =

{
f : (∀U open in [0, 1]) f−1(U) ∈ Σ0

α(X)
}

MΣ0
α(X) =

{
f : (∀r ∈ [0, 1]) f−1((r, 1]) ∈ Σ0

α(X)
}

MΣ0
α(X) =

{
f : (∀r ∈ [0, 1]) f−1([0, r)) ∈ Σ0

α(X)
}

Bα(X) = MΣ0
α+1(X)

Lα(X) = MΣ0
α(X)

Uα(X) = MΣ0
α(X)

MΣ0
1 MΣ0

2 MΣ0
3 MΣ0

α

MΣ0
1 MΣ0

2 MΣ0
α

MΣ0
1 MΣ0

2 MΣ0
α

· · · · · ·

CSÁSZÁR, Á., LACZKOVICH, M.: Some remarks on discrete Baire classes, Acta Math. Acad. Sci. Hung. 33 (1979), 51-70.

SIKORSKI, R.: Funkcje Rzeczywiste I, Panstwowe Wydawnictwo Naukowe 1958.
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Theorem (A. Lindenbaum)
Let X be a perfectly normal topological space, α < ω1. Then there exists a
g ∈ L1([0, 1]) such that

Lα+1(X) = g ◦Uα(X, [0, 1]).

Corollary
Let X be a perfectly normal topological space, α < ω1. Then we have

Lα+1 = L1 ◦Uα = L1 ◦ Lα = L1 ◦Bα

Uα+1 = U1 ◦ Lα = U1 ◦Uα = U1 ◦Bα

Theorem (A. Lindenbaum)
Let X be a perfectly normal topological space, 0 < α, β < ω1. Then

Lβ+α(X) = Lα([0, 1]) ◦ Lβ(X, [0, 1]).
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Set S ⊆ [0, 1], dense in [0, 1], φ : ωS→ T ⊆ [0, 1] is a homeomorphism.

Definition
Let X be a topological space, (fi)i<ω be a sequence of functions from X [0, 1]. The
coding function of (fi)i<ω from X to ω [0, 1] is defined by

f(x) = (fi(x))i<ω .

Proposition
Let X be a perfectly normal topological space, α < ω1, (fi)i<ω be a sequence of
functions from Lα(X,S). Then φ ◦ f ∈ Lα(X).

Proposition
The function s : ω [0, 1]→ [0, 1] defined by

s((ti)i<ω) = sup {ti : i < ω}

is in L1(ω [0, 1]).
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