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Introduction

Definition
A partial order (T , <T ) is a tree if for each t ∈ T ,
{s ∈ T : s <T t} is well ordered under the tree order.

A tree T
1 is non-trivial if each t ∈ T has two incompatible extensions;
2 does not split on the limit levels if for each limit α and

s, s′ ∈ T such that htT (s) = htT (s′) = α, if
{t ∈ T : t < s} = {t ∈ T : t < s′}, then s = s′.

In this talk, we will focus on trees of height ω1 that are
non-trivial and do not split on the limit levels.
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Introduction

Definition
A tree T is special if there exists g : T → ω such that g is
injective on chains.

Definition
A tree T is Baire if for any countable collection of open dense
sets {Un ⊂ T : n ∈ ω},

⋂
n Un is dense.

Remark
Note that a tree is Baire iff it is countably distributive as a
forcing notion, i.e. it does not add any new countable sequence
of ordinals.
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Introduction

Definition (Rado, Todorcevic)
RC (Rado’s Conjecture) abbreviates the following: any
nonspecial tree has a nonspecial subtree of size ≤ ℵ1.

Definition (Todorcevic)
RCb (Baire Rado’s Conjecture) abbreviates the following: any
Baire tree has a nonspecial subtree of size ≤ ℵ1.
RC → RCb.
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Introduction
The strength and limitations of RCb:

Theorem
RCb implies:

1 WRP([ω2]ω) (hence 2ω ≤ ω2) (Todorcevic) but not

WRP([ω3]ω) (Sakai)
2 For any regular λ ≥ ω2, every stationary subset of
λ ∩ cof (ω) reflects (Todorcevic) but not that any two
stationary subsets of ω2 ∩ cof (ω) reflect simultaneously (Z.)
and not that any stationary subset of ω3 ∩ cof (ω) reflects at
an ordinal of cofinality > ω1 (essentially Foreman-Magidor).

3 the Singular Cardinal Hypothesis (Todorcevic).
4 �(λ) fails for all regular λ ≥ ω2 (Todorcevic) and in fact
¬�(λ, ω) (Torres-Perez and Wu) and along with ¬CH,
¬�(λ, ω1) (Weiss) but not ¬�(λ, ω2) (Folklore).
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Introduction

Theorem (ctd)
RCb implies:

5 the Strong Chang’s Conjecture (Todorcevic).

6 the failure of MA (Todorcevic).
7 NSω1 is presaturated (Feng).

8
(
ω2
ω1

)
→
(
ω
ω

)1,1

ω

and
(
ω2
ω1

)
→
(

k
ω1

)1,1

ω

for any k ∈ ω,

namely ∀f : ω2 × ω1 → ω, there exist A ∈ [ω2]ω,B ∈ [ω1]ω

such that f � A× B is constant (Todorcevic from CC, or Z.
from the existence of a presaturated ideal) but not(
ω2
ω1

)
→
[
ω
ω1

]1,1

ω1

, aka for all f : ω2 × ω1 → ω1 there exist

A ∈ [ω2]ω and B ∈ [ω1]ω1 such that f ′′A× B 6= ω1 (Z.).
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Introduction

9 Along with ¬CH, implies ω2 has the strong tree property
(Torres-Pérez and Wu)

but not ω2 has the super tree
property (essentially Todorcevic and Viale-Weiss).

10 and more ...

Torres-Pérez asked: How much fragment of MA is compatible
with RC?
We are motivated by the second question with RC replaced by
RCb and MA replaced by PFA.
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Known models of RCb

RCb is known to be consistent with CH and ¬CH. The following
(due to Todorcevic) are models of RCb (in fact RC):

1 Coll(ω1, < κ) where κ is a strongly compact cardinal.
2 M(ω1, < κ) where κ is a strongly compact cardinal and the

forcing is the Mitchell forcing (mixed support iteration) to
get the tree property at ω2.

To show RCb holds in these models, it is crucial to prove
appropriate versions of “Baire preservation theorems”.
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Baire preservation lemma

Definition
A poset P is countably capturing if for any p ∈ P, any P-name of
a countable sequence of ordinals τ̇ , there exists another
P-name σ̇ such that |σ̇| ≤ ℵ0, and q ≤ p such that q 
P τ̇ = σ̇.

Remark
Here we think of each P-name τ̇ for a countable sequence of
ordinals as represented by a function fτ̇ whose domain is ω
such that for each n ∈ ω, fτ̇ (n) = {(αp,p) : p ∈ An} where An is
some antichain chain of P such that for each p ∈ An,
p 
P τ̇ = αp. By saying |σ̇| ≤ ℵ0, we really mean |fσ̇| ≤ ℵ0.

Remark
Any proper forcing is countably capturing.
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Baire preservation lemma

Lemma
Let P be countably capturing and Q be countably distributive.
Then TFAE:

1 
P Q̌ is countably distributive
2 
Q P̌ is countably capturing.

Sketch of one direction.
2) implies 1): Let G × H be generic for P×Q and let τ̇ be a
(P×Q)-name of a countable sequence of ordinals. We need to
show (τ̇)G×H is in V [G]. Since 
Q P is countably capturing, in
V [H] (view (τ̇)H as a P-name), there exists a nice P-name σ̇
with |σ̇| ≤ ℵ0 such that in V [H][G], (τ̇)H×G = (σ̇)G. Since Q is
countably distributive, σ̇ ∈ V . But then (τ̇)H×G = (σ̇)G ∈ V [G].
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First try: Separate RCb from RC

Definition
Let σR denote the tree consisting of bounded subsets of R well
ordered by the natural order on R. The tree is ordered by
end-extension.

Observation

1 σR is nonspecial (Kurepa);
2 σR is not Baire;

Given a tree T , let S(T ) denote the Baumgartner specializing
poset of T . More precisely, it contains finite functions s : T → ω
that are injective on chains.

Theorem (Baumgartner)
S(T ) is c.c.c iff T does not contain an uncountable branch.
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First try: Separate RCb from RC

Let κ be a strongly compact cardinal. Let 〈Pi , Q̇j : i ≤ κ, j < κ〉
be finite support iteration of c.c.c forcing of length κ such that

Pi Q̇i = S(σR).

Remark
This iteration is Baire preserving. The reason is S(σR) is Baire
indestructibly c.c.c.
In VPκ , all < κ-sized subset of σR is special and any Baire tree
T , there exists a nonspecial subtree of size < κ.
But we need to collapse κ to ℵ2! No problem! We can do a
mixed support iteration in the style of Mitchell.

Corollary (Z.)
RCb does not imply RC.
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Enlarge the fragment

The model presented above is not satisfactory: it only contains
a small fragment of MA. There are a lot more forcings that
preserve Baire trees that are not included.

Recall for a Suslin tree S, the Suslinity of S is preserved under
CS-iteration.
Ambitious: For a fixed Baire tree T , what if we try to iterate
proper forcings that preserve the Baireness of T? Is the
property preserved under CS-iteration?



13/23

Enlarge the fragment

The model presented above is not satisfactory: it only contains
a small fragment of MA. There are a lot more forcings that
preserve Baire trees that are not included.
Recall for a Suslin tree S, the Suslinity of S is preserved under
CS-iteration.

Ambitious: For a fixed Baire tree T , what if we try to iterate
proper forcings that preserve the Baireness of T? Is the
property preserved under CS-iteration?



13/23

Enlarge the fragment

The model presented above is not satisfactory: it only contains
a small fragment of MA. There are a lot more forcings that
preserve Baire trees that are not included.
Recall for a Suslin tree S, the Suslinity of S is preserved under
CS-iteration.
Ambitious: For a fixed Baire tree T , what if we try to iterate
proper forcings that preserve the Baireness of T? Is the
property preserved under CS-iteration?



14/23

No. :-(

For any Aronszajn tree T and any stationary subset S ⊂ ω1, the
S-specializing poset Q(T ,S), due to Shelah, is a proper forcing
that adds a regressive function on S, namely in V Q(T ,S), there
exists S1 ⊂ S such that S −S1 is nonstationary and a function f
defined on T � S1 such that f (t) < htT (t) and any
t <T t ′ ∈ dom(f ), f (t) 6= f (t ′).

Example
Let T be a Suslin tree. Let tnSn = ω1 be a decomposition of ω1
into stationary subsets. The CS-iteration of proper forcings
〈Pi , Q̇j : i ≤ ω, j < ω〉 such that 
Pi Q̇i = Q(T ,Si) satisfies the
property that 
Pi T is Baire for i < ω but 
Pω T is special.
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S-specializing poset Q(T ,S), due to Shelah, is a proper forcing
that adds a regressive function on S, namely in V Q(T ,S), there
exists S1 ⊂ S such that S −S1 is nonstationary and a function f
defined on T � S1 such that f (t) < htT (t) and any
t <T t ′ ∈ dom(f ), f (t) 6= f (t ′).

Example
Let T be a Suslin tree. Let tnSn = ω1 be a decomposition of ω1
into stationary subsets. The CS-iteration of proper forcings
〈Pi , Q̇j : i ≤ ω, j < ω〉 such that 
Pi Q̇i = Q(T ,Si) satisfies the
property that 
Pi T is Baire for i < ω but 
Pω T is special.
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Semi-strongly proper forcings

Definition (Shelah)
A poset P is semi-strongly proper if for sufficiently large regular
λ, for any M ≺ H(λ) containing P, for any countable sequence
of dense subsets 〈Dn : n ∈ ω〉 of P ∩M and any p ∈ P ∩M,
there exists q ≤ p, such that for all n ∈ ω, q 
 Dn ∩ Ġ 6= ∅. We
say such q is semi-strongly generic for M and 〈Dn : n ∈ ω〉 (or
just 〈Dn : n ∈ ω〉 if M is clear from the context). Note that we
don’t require Dn = D ∩M for some D ∈ M.
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Lemma
Semi-strongly proper forcings preserve Baire trees.

There are at least two proofs. Here is the “cheesy” one: for any
Baire tree T and any semi-strongly proper P, 
T P is
semi-strongly proper, hence by the Baire preservation lemma,

P T is Baire.

Theorem (Shelah)
CS-iteration of s.s.p forcings is s.s.p.
Hence we get CON(RCb + MAω1(s.s.p)) for free.
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Still not good enough

Many natural Baire preserving forcings are not s.s.p: Laver
forcing, S(σR) (we hope that the fragment is strong enough to
falsify RC) etc.

Definition
A proper poset P is Baire indestructible if for any Baire tree T ,

T P̌ is proper. We call this class Baire Indestructibly Proper
(BIP).

Remark
It is possible to have an improper P and a Baire tree T such
that 
T P is proper. However, the latter implies that in V for
sufficiently large regular λ,
{M ∈ [H(λ)]ω : P is proper with respect to M} is stationary.
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Preservation theorem for BIP forcings

Lemma
Let T be a Baire tree and 〈Pi , Q̇j : i ≤ α, j < α〉 be a countable
support iteration of proper forcings such that for each i < α,

T×Pi Q̇i is proper. Then 
T Pα is proper.

Corollary
CS iteration of BIP forcings is BIP. Thus CS iteration of BIP
preserves Baire trees.
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Preservation theorem for BIP forcings

Illustration of the main idea of the proof of the Key Lemma
using two-step iteration (there is an easier argument for this
case, but this idea also works in the limit case).

Fix R = P ∗ Q̇, M ≺ H(λ) containing R and a countable
collection C of dense subsets of either R ∩M or P ∩M.

Definition (Shelah)
We say C is closed under operations if for any D ∈ C such that
D is a dense subset of R ∩M and any (p, q̇) ∈ M ∩ R,
AD,(p,q̇) = {r ∈ P∩M : r ⊥ p∨∃q̇′ r ′ =def (r , q̇′) ∈ D, r ′ ≤ (p, q̇)}
is also in the collection.
Let C0 ⊂ C be the collection of dense subsets of P ∩M, C1 ⊂ C
be the corresponding one for R ∩M. For any generic G ⊂ P
and any D ∈ C1, let (D)G denote {(q̇)G : ∃p ∈ G (p, q̇) ∈ D}.
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Preservation theorem for BIP forcings

Assume C is closed under operations.

Lemma (Shelah)
Fix some q ∈ P that is semi-strongly generic for M and C0,
q 
Pγ Q̇ is semi-strongly proper for M[Ġ] and

(C1)Ġ =def {(D)Ġ : D ∈ C1}.
Then there exists ṙ such that (q, ṙ) is semi-strongly generic for
M and C1.
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Key lemma in the simplified scenario

Sketch of the Key Lemma:
Let H ⊂ T be generic over V . Let λ be a sufficiently large
regular cardinal containing R = P ∗ Q̇ and other relevant
objects such that M ′ = M ∩ H(λ)V ≺ H(λ)V .

Let C0 be the
collection of D ∩M = D ∩M ′ where D ∈ M is a dense subset of
P, and C1 be the collection of D ∩M = D ∩M ′ where D ∈ M is
a dense subset of R. Notice C0,C1 ∈ V and C0 ∪ C1 is closed
under operations.
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Claim
In V , P is semi-strongly generic with respect to M ′ and C0.

Sketch.
Use the fact that 
T P is proper.

Claim
In V , for any q ∈ P that is semi-strongly generic for M ′ and C0,
q 
P Q̇ is semi-strongly proper for M ′[Ġ] and (C1)Ġ.

Sketch.
Use the fact that in V [H], 
P Q̇ is proper for M[Ġ].
Finally, we use Shelah’s lemma in V to see that R = P ∗ Q̇ is
semi-strongly proper for M ′ and C1. This implies that in V [H], R
is proper for M.
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Sketch.
Use the fact that in V [H], 
P Q̇ is proper for M[Ġ].
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Conclusion and questions

Theorem (Z.)
RCb is compatible with MAω1(BIP).

MAω1(BIP) implies ¬RC: S(σR) is BIP.

Question

1 Can we separate RC and RCb with a model of CH?
2 Enlarge the fragment of PFA that is compatible with RCb.
3 Is RCb + CH consistent with �(λ, ω1) when λ > ω2?
4 ... Thank you!
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