Moscow, IITP, Russia kanovei@iitp.ru

A model in which wellorderings of the reals first appear at a given projective level

Joint work with Vassily Lyubetsky

Theorem. Let $n \ge 3$. There is a generic extension L[G] of L in which it is true that there is a good lightface Δ_n^1 wellordering of the reals, but there is no any boldface Σ_{n-1}^1 wellordering of the reals.

We make use of the model L[G] defined in [1] in which the Separation principle holds for lightface Σ_n^1 sets of integers (for a given $n \geq 3$). The model extends L by a generic transfinite sequence of reals x_{α} , $\alpha < \omega_1^L$. Each x_{α} is P_{α} -generic over L, where $P_{\alpha} \in L$ is a forcing that consists of perfect trees and is rather similar to Jensen's forcing as in [2, 28A]. The sequence of reals x_{α} turns out to be Δ_n^1 in the extension, which allows to define a good Δ_n^1 wellordering of the reals. On the other hand, a special, generic in some sense construction of P_{α} in L allows to obscure the mutual differences between these forcing notions in such a way that no Σ_{n-1}^1 wellordering even of the set of all reals x_{α} exists in the extension.

A weaker result has just appeared in [2]. It has the negative part in the form of nonexistence of good Δ_{n-1}^1 wellorderings of the reals.

- Kanovei, V., Lyubetsky, A., Models of set theory in which separation theorem fails. Izvestiya: Mathematics, Vol. 85 No. 6 (2021), 1181–1219.
- [2] Jech, T., Set theory, Springer, 2003.
- [3] Kanovei, V., Lyubetsky, A., A model in which wellorderings of the reals first appear at a given projective level. Axioms, Vol. nn No. n (2022), 1–13.