Mathematical Institute SANU, Belgrade tane@mi.sanu.ac.rs

On ordered meet trees

We will focus on first order model theory of (colored) ordered trees: elimination of quantifiers ("geometric" description of definable sets) classification of countable models (Vaught's conjecture), dp-minimality,...

A meet tree is a partally ordered set (M, \trianglelefteq) in which predecessors of any element form a chain and every pair of elements $x, y \in M$ has infinium, denoted by $x \land y$; we also say that (M, \land) , which is interdefinable with (M, \trianglelefteq) , is a meet tree. A colored tree has (arbitrary) unary predicates added.

- $C(a) = \{x \in M \mid a \leq x\}$ is a *closed cone* centered at a;
- $a \triangleleft x \land y$ defines an equivalence relation on $C(a) \smallsetminus \{a\}$; the classes are called *open cones* centered at a. and $C_a(x)$ denotes the class of x.

An ordered tree is a structure $(M, \land, <)$ satisfying:

- (1) (M, \wedge) is a meet tree,
- (2) < extends \triangleleft and linearly orders M, and
- (3) All cones are <-convex.