Agnieszka Widz

Politechnika Lodzka, Polska
AgnieszkaWidzENFP@gmail.com

Given a function $f \in \omega^{\omega}$ we define family

$$
\mathbb{B}_{f}=\left\{B \in \operatorname{Borel}\left(2^{\omega}\right): \lim _{n \rightarrow \infty} f(n) \delta_{n}(B)=0\right\} / \mathcal{N}
$$

where $\delta_{n}(B)=\min \left\{\lambda(B \triangle C): C \in \mathcal{C}_{n}\right\}$ and \mathcal{C}_{n} stands for family of clopens which depends only on first n coordinates. One can think of B_{f} as a family of those subsets of 2^{ω}, which are well approximated by members of \mathcal{C}_{n}, with f responsible for speed of this approximation. It is easy to observe that each \mathbb{B}_{f} is a Boolean algebra. I will present some results concerning \mathbb{B}_{f} 's and their dependence of f, as well as motivations for considering such algebras. Those motivations are related to Efimov's problem.

