Politechnika Lodzka, Polska AgnieszkaWidzENFP@gmail.com

Given a function $f \in \omega^{\omega}$ we define family

$$\mathbb{B}_f = \{ B \in \mathsf{Borel}(2^\omega) \colon \lim_{n \to \infty} f(n)\delta_n(B) = 0 \} / \mathcal{N},$$

where $\delta_n(B) = \min\{\lambda(B \triangle C) \colon C \in C_n\}$ and C_n stands for family of clopens which depends only on first n coordinates. One can think of B_f as a family of those subsets of 2^{ω} , which are well approximated by members of C_n , with f responsible for speed of this approximation. It is easy to observe that each \mathbb{B}_f is a Boolean algebra. I will present some results concerning \mathbb{B}_f 's and their dependence of f, as well as motivations for considering such algebras. Those motivations are related to Efimov's problem.