Products of CW complexes

Andrew Brooke-Taylor

For algebraic topology, even the spheres are hard.

So, focus on *CW complexes*: spaces built up by gluing on Euclidean discs of higher and higher dimension.

For algebraic topology, even the spheres are hard.

So, focus on *CW complexes*: spaces built up by gluing on Euclidean discs of higher and higher dimension.

For $n \in \mathbb{N}$, denote by

- D^n the closed ball of radius 1 about the origin in \mathbb{R}^n (the *n*-disc),
- \bullet D^n its interior, and
- S^{n-1} its boundary (the (n-1)-sphere).

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

• $\varphi_{\alpha} \upharpoonright \mathring{D}^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}[\mathring{D}^n]$ ("cells").

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

- $\varphi_{\alpha} \upharpoonright \mathring{D}^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}[\mathring{D}^n]$ ("cells").
- **②** Closure-finiteness: For each φ_{α} , $\varphi_{\alpha}[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

- $\varphi_{\alpha} \upharpoonright \stackrel{\circ}{D}^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}[\stackrel{\circ}{D}^n]$ ("cells").
- **②** Closure-finiteness: For each φ_{α} , $\varphi_{\alpha}[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.
- **3** Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi_{\alpha}[D^n]$ is closed.

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^n \to X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

- $\varphi_{\alpha} \upharpoonright \overset{\circ}{D}^n$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}[\overset{\circ}{D}^n]$ ("cells").
- **②** Closure-finiteness: For each φ_{α} , $\varphi_{\alpha}[S^{n-1}]$ is contained in finitely many cells all of dimension less than n.
- **1** Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi_{\alpha}[D^n]$ is closed.

We often denote $\varphi_{\alpha}[\overset{\circ}{D}^{n}]$ by e_{α}^{n} or just e_{α} .

Not necessarily metrizable

Not necessarily metrizable

Let X be the "star" with a central vertex x_0 and countably many edges $e^1_{X,n}$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Not necessarily metrizable

Let X be the "star" with a central vertex x_0 and countably many edges $e^1_{X,n}$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

X is not metrizable, as x_0 does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with x_0 at 0. For every $f: \mathbb{N} \to \mathbb{N}$, consider the open neighbourhood $U(x_0; f)$ of x_0 whose intersection with $e^1_{X,n}$ is the interval [0, 1/(f(n)+1)).

These form a neighbourhood base, but for any countably many f_i , there is a g that is not dominated by any of them, so $U(x_0; g)$ does not contain any of the $U(x_0; f_i)$.

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$,

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness,

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention

In this talk, $X \times Y$ is always taken to have the product topology, so " $X \times Y$ is a CW complex" means "the product topology on $X \times Y$ is the same as the weak topology".

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e^1_{Y,f}$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

Let X be the "star" with a central vertex x_0 and countably many edges $e^1_{X,n}$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e^1_{Y,f}$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Let X be the "star" with a central vertex x_0 and countably many edges $e^1_{X,n}$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e^1_{Y,f}$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e^1_{X,n} \times e^1_{Y,f} : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$.

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y,g}^1$ of Y:

Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{g(k)+1} \in e^1_{Y,g} \cap V$.

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y,g}^1$ of Y:

Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{g(k)+1} \in e^1_{Y,g} \cap V$.

Then
$$\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$$
. So in the product topology, $(x_0, y_0) \in \bar{H}$.

A subcomplex A of a CW complex X is what you would expect.

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\overline{e^n_\alpha} = \varphi^n_\alpha[D^n]$ is contained in A.

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\overline{e^n_\alpha} = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n-skeleton* X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\overline{e^n_\alpha} = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n-skeleton* X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e^n_\alpha \subseteq A$ then its closure $\overline{e^n_\alpha} = \varphi^n_\alpha[D^n]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n-skeleton* X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.

By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\overline{e_{\alpha}^{n}} = \varphi_{\alpha}^{n}[D^{n}]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.

By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition

Let κ be a cardinal. We say that a CW complex X is *locally less than* κ if for all x in X there is a subcomplex A of X with fewer than κ many cells such that x is in the interior of A. We write *locally finite* for locally less than \aleph_0 , and *locally countable* for locally less than \aleph_1 .

Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

 \Leftarrow is trivial. For \Rightarrow , given any point w, recursively fill out to get an open (hence clopen) subcomplex containing w with fewer than κ many cells, using the fact that the cells are compact to control the number of cells along the way if $\kappa < 2^{\aleph_0}$. \square

Suppose X and Y are CW complexes.

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then $X \times Y$ is not a CW complex.

What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming the Continuum Hypothesis, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming the Continuum Hypothesis, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming $\mathfrak{b} = \aleph_1$, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Can we do better?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Can we do better?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Answer (follows from Tanaka's work)

No.

Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)

Yes!

Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.

Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.

Recall

- For $f, g \in \mathbb{N}^{\mathbb{N}}$, we write $f \leq^* g$ if for all but finitely many $n \in \mathbb{N}$, $f(n) \leq g(n)$.
- The bounding number $\mathfrak b$ is the least cardinality of a set of functions that is unbounded with respect to \leq^* , i.e. such that no one g is \geq^* them all, i.e.,

$$\mathfrak{b}=\min\{|\mathcal{F}|:\mathcal{F}\subseteq\mathbb{N}^\mathbb{N}\wedge\forall g\in\mathbb{N}^\mathbb{N}\exists f\in\mathcal{F}\neg(f\leq^*g)\}.$$

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e^1_{Y,f}$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Folklore based on Dowker, 1952)

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and \mathfrak{b} many edges $e_{Y,f}^1$ $(f \in \mathcal{F})$ emanating from it (and the other ends) where $\mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}}$ is unbounded w.r.t. \leq^* .

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathcal{F} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Dowker, 1952)

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges e_{X}^{1} of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y,\sigma}^1$ of Y:

Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{g(k)+1} \in e^1_{Y,g} \cap V$.

Then
$$\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$$
. So in the product topology, $(x_0, y_0) \in \bar{H}$.

Example (Folklore based on Dowker, 1952)

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathcal{F} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges e_{X}^{1} of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$. Take $f \in \mathcal{F}$ such that $f \nleq^* g$.

Consider the edge $e_{Y,f}^1$ of Y:

Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{f(k)+1} \in e^1_{Y,f} \cap V$ and f(k) > g(k).

Then
$$\left(\frac{1}{f(k)+1}, \frac{1}{f(k)+1}\right) \in U \times V \cap H$$
. So in the product topology, $(x_0, y_0) \in \bar{H}$.

Products of CW complexes

Is this harder-working Dowker example optimal?

Is this harder-working Dowker example optimal?

Yes!

A complete characterisation

Theorem (B.-T.)

Let X and Y be CW complexes. Then $X \times Y$ is a CW complex if and only if one of the following holds:

- X or Y is locally finite.
- **②** One of X and Y is locally countable, and the other is locally less than \mathfrak{b} .

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

To show: X locally countable and Y locally less than $\mathfrak{b}\Rightarrow X\times Y$ is a CW complex.

• Want to avoid a Dowker-style topology mismatch — want to construct U and V such that $U \times V$ is a neighbourhood of a point of interest (x_0, y_0) , that avoids a bad set H.

To show: X locally countable and Y locally less than $\mathfrak{b}\Rightarrow X\times Y$ is a CW complex.

- Want to avoid a Dowker-style topology mismatch want to construct U
 and V such that U × V is a neighbourhood of a point of interest (x₀, y₀),
 that avoids a bad set H.
- Natural first attempt: inductively, for each cell of Y, find a function $f: \mathbb{N} \to \mathbb{N}$ giving a good neighbourhood of x_0 . There are fewer than \mathfrak{b} of these, so dominate them all with a single g and use that.

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

- Want to avoid a Dowker-style topology mismatch want to construct U and V such that $U \times V$ is a neighbourhood of a point of interest (x_0, y_0) , that avoids a bad set H.
- Natural first attempt: inductively, for each cell of Y, find a function $f: \mathbb{N} \to \mathbb{N}$ giving a good neighbourhood of x_0 . There are fewer than \mathfrak{b} of these, so dominate them all with a single g and use that.
- But that doesn't work $f \leq^* g$ isn't good enough, you really want $f \leq g$.

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

- Want to avoid a Dowker-style topology mismatch want to construct U and V such that $U \times V$ is a neighbourhood of a point of interest (x_0, y_0) , that avoids a bad set H.
- Natural first attempt: inductively, for each cell of Y, find a function $f: \mathbb{N} \to \mathbb{N}$ giving a good neighbourhood of x_0 . There are fewer than \mathfrak{b} of these, so dominate them all with a single g and use that.
- But that doesn't work $f \leq^* g$ isn't good enough, you really want $f \leq g$.
- Instead, through the induction, build up g on the X side as a limit of Hechler conditions — finite initial sequences, along with functions you promise to dominate thereafter. This works.