Products of CW complexes

Andrew Brooke-Taylor

\author{

-
 UNIVERSITY OF LEEDS
}

CW complexes

For algebraic topology, even the spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of higher and higher dimension.

CW complexes

For algebraic topology, even the spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of higher and higher dimension.

For $n \in \mathbb{N}$, denote by

- D^{n} the closed ball of radius 1 about the origin in \mathbb{R}^{n} (the n-disc),
- D^{n} its interior, and
- S^{n-1} its boundary (the ($n-1$)-sphere).

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}\left[D^{n}\right]$ ("cells").

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}\left[D^{n}\right]$ ("cells").
(2) Closure-finiteness: For each $\varphi_{\alpha}, \varphi_{\alpha}\left[S^{n-1}\right]$ is contained in finitely many cells all of dimension less than n.

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}\left[D^{n}\right]$ ("cells").
(2) Closure-finiteness: For each $\varphi_{\alpha}, \varphi_{\alpha}\left[S^{n-1}\right]$ is contained in finitely many cells all of dimension less than n.
(3) Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi_{\alpha}\left[D^{n}\right]$ is closed.

CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions $\varphi_{\alpha}: D^{n} \rightarrow X$ (characteristic maps), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α, such that:
(1) $\varphi_{\alpha} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}\left[D^{n}\right]$ ("cells").
(2) Closure-finiteness: For each $\varphi_{\alpha}, \varphi_{\alpha}\left[S^{n-1}\right]$ is contained in finitely many cells all of dimension less than n.
(0) Weak topology: A set is closed if and only if its intersection with each closed cell $\varphi_{\alpha}\left[D^{n}\right]$ is closed.
We often denote $\varphi_{\alpha}\left[D^{n}\right]$ by e_{α}^{n} or just e_{α}.

Not necessarily metrizable

Not necessarily metrizable

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).

Not necessarily metrizable

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
X is not metrizable, as x_{0} does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with x_{0} at 0 . For every $f: \mathbb{N} \rightarrow \mathbb{N}$, consider the open neighbourhood $U\left(x_{0} ; f\right)$ of x_{0} whose intersection with $e_{X, n}^{1}$ is the interval $[0,1 /(f(n)+1))$.

These form a neighbourhood base, but for any countably many f_{i}, there is a g that is not dominated by any of them, so $U\left(x_{0} ; g\right)$ does not contain any of the $U\left(x_{0} ; f_{i}\right)$.

Trouble in paradise

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$,

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness,

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Trouble in paradise

Issue:

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^{m} \times D^{n} \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention

In this talk, $X \times Y$ is always taken to have the product topology, so " $X \times Y$ is a CW complex" means "the product topology on $X \times Y$ is the same as the weak topology".

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $\left[0, \frac{1}{g(n)}\right) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $\left[0, \frac{1}{g(n)}\right) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y, g}^{1}$ of Y :
Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{g(k)+1} \in e_{Y, g}^{1} \cap V$.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $\left[0, \frac{1}{g(n)}\right) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y, g}^{1}$ of Y :
Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{g(k)+1} \in e_{Y, g}^{1} \cap V$.

Then $\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$. So in the product topology, $\left(x_{0}, y_{0}\right) \in \bar{H}$.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is what you would expect.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\overline{e_{\alpha}^{n}}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\overline{e_{\alpha}^{n}}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\overline{e_{\alpha}^{n}}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\overline{e_{\alpha}^{n}}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\overline{e_{\alpha}^{n}}=\varphi_{\alpha}^{n}\left[D^{n}\right]$ is contained in A.
E.g.

For any CW complex X and $n \in \mathbb{N}$, the n-skeleton X^{n} of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X. By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition

Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x in X there is a subcomplex A of X with fewer than κ many cells such that x is in the interior of A. We write locally finite for locally less than \aleph_{0}, and locally countable for locally less than \aleph_{1}.

Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

\Leftarrow is trivial. For \Rightarrow, given any point w, recursively fill out to get an open (hence clopen) subcomplex containing w with fewer than κ many cells, using the fact that the cells are compact to control the number of cells along the way if $\kappa<2^{\aleph_{0}}$.

What was known

Suppose X and Y are CW complexes.

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on $[X$ or Y] is necessary."
Theorem (J. Milnor, 1956)
If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

What was known

Suppose X and Y are CW complexes.
Theorem (J.H.C. Whitehead, 1949)
If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."
Theorem (J. Milnor, 1956)
If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.
Theorem (Y. Tanaka, 1982)
If neither X nor Y is locally countable, then $X \times Y$ is not a CW complex.

What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)
Assuming the Continuum Hypothesis, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)
Assuming the Continuum Hypothesis, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)
Assuming $\mathfrak{b}=\aleph_{1}, X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Can we do better?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Can we do better?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Answer (follows from Tanaka's work)
No.

Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)
Yes!

Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency - we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.

Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency - we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.

Recall

- For $f, g \in \mathbb{N}^{\mathbb{N}}$, we write $f \leq^{*} g$ if for all but finitely many $n \in \mathbb{N}$, $f(n) \leq g(n)$.
- The bounding number \mathfrak{b} is the least cardinality of a set of functions that is unbounded with respect to \leq^{*}, i.e. such that no one g is \geq^{*} them all, i.e.,

$$
\mathfrak{b}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}} \wedge \forall g \in \mathbb{N}^{\mathbb{N}} \exists f \in \mathcal{F} \neg\left(f \leq^{*} g\right)\right\}
$$

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ ($n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and $2^{\aleph_{0}}$ many edges $e_{Y, f}^{1}\left(f \in \mathbb{N}^{\mathbb{N}}\right)$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Folklore based on Dowker, 1952)

Let X be the "star" with a central vertex x_{0} and countably many edges $e_{X, n}^{1}$ $(n \in \mathbb{N}$) emanating from it (and the countably many "other end" vertices of those edges).
Let Y be the "star" with a central vertex y_{0} and \mathfrak{b} many edges $e_{Y, f}^{1}(f \in \mathcal{F})$ emanating from it (and the other ends) where $\mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}}$ is unbounded w.r.t. \leq^{*}.

Consider the subset of $X \times Y$

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathcal{F}\right\}
$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $\left[0, \frac{1}{g(n)}\right) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y, g}^{1}$ of Y :
Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{g(k)+1} \in e_{Y, g}^{1} \cap V$.

Then $\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$. So in the product topology, $\left(x_{0}, y_{0}\right) \in \bar{H}$.

Example (Folklore based on Dowker, 1952)

$$
H=\left\{\left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X, n}^{1} \times e_{Y, f}^{1}: n \in \mathbb{N}, f \in \mathcal{F}\right\}
$$

Let $U \times V$ be a member of the open neighbourhood base about $\left(x_{0}, y_{0}\right)$ in the product topology on $X \times Y$ - so $x_{0} \in U$ an open subset of X, and $y_{0} \in V$ an open subset of Y.

Consider the edges $e_{X, n}^{1}$ of X :
Let $g: \mathbb{N} \rightarrow \mathbb{N}^{+}$be an increasing function such that $\left[0, \frac{1}{g(n)}\right) \subset e_{X, n}^{1} \cap U$ for every $n \in \mathbb{N}$. Take $f \in \mathcal{F}$ such that $f \not \mathbb{Z}^{*} g$.

Consider the edge $e_{Y, f}^{1}$ of Y :
Let $k \in \mathbb{N}$ be sufficiently large that $\frac{1}{f(k)+1} \in e_{Y, f}^{1} \cap V$ and $f(k)>g(k)$.
Then $\left(\frac{1}{f(k)+1}, \frac{1}{f(k)+1}\right) \in U \times V \cap H$. So in the product topology, $\left(x_{0}, y_{0}\right) \in \bar{H}$.

Is this harder-working Dowker example optimal?

Is this harder-working Dowker example optimal?

Yes!

A complete characterisation

Theorem (B.-T.)
Let X and Y be CW complexes. Then $X \times Y$ is a CW complex if and only if one of the following holds:
(1) X or Y is locally finite.
(2) One of X and Y is locally countable, and the other is locally less than \mathfrak{b}.

Key features of the proof

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

Key features of the proof

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

- Want to avoid a Dowker-style topology mismatch - want to construct U and V such that $U \times V$ is a neighbourhood of a point of interest $\left(x_{0}, y_{0}\right)$, that avoids a bad set H.

Key features of the proof

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

- Want to avoid a Dowker-style topology mismatch - want to construct U and V such that $U \times V$ is a neighbourhood of a point of interest $\left(x_{0}, y_{0}\right)$, that avoids a bad set H.
- Natural first attempt: inductively, for each cell of Y, find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ giving a good neighbourhood of x_{0}. There are fewer than \mathfrak{b} of these, so dominate them all with a single g and use that.

Key features of the proof

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

- Want to avoid a Dowker-style topology mismatch - want to construct U and V such that $U \times V$ is a neighbourhood of a point of interest $\left(x_{0}, y_{0}\right)$, that avoids a bad set H.
- Natural first attempt: inductively, for each cell of Y, find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ giving a good neighbourhood of x_{0}. There are fewer than \mathfrak{b} of these, so dominate them all with a single g and use that.
- But that doesn't work - $f \leq^{*} g$ isn't good enough, you really want $f \leq g$.

Key features of the proof

To show: X locally countable and Y locally less than $\mathfrak{b} \Rightarrow X \times Y$ is a CW complex.

- Want to avoid a Dowker-style topology mismatch - want to construct U and V such that $U \times V$ is a neighbourhood of a point of interest $\left(x_{0}, y_{0}\right)$, that avoids a bad set H.
- Natural first attempt: inductively, for each cell of Y, find a function $f: \mathbb{N} \rightarrow \mathbb{N}$ giving a good neighbourhood of x_{0}. There are fewer than \mathfrak{b} of these, so dominate them all with a single g and use that.
- But that doesn't work - $f \leq^{*} g$ isn't good enough, you really want $f \leq g$.
- Instead, through the induction, build up g on the X side as a limit of Hechler conditions - finite initial sequences, along with functions you promise to dominate thereafter. This works.

