Hereditarily indecomposable continua as Fraïssé limits

Adam Bartoš bartos@math.cas.cz

Institute of Mathematics, Czech Academy of Sciences

SETTOP 2022, Novi Sad, 22–25 August

Joint work with Wiesław Kubiś, part of the EXPRO project 20-31529X: Abstract Convergence Schemes And Their Complexities

• A continuum is a compact connected space.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have C ⊆ D or D ⊆ C or C ∩ D = Ø.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have C ⊆ D or D ⊆ C or C ∩ D = Ø.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have C ⊆ D or D ⊆ C or C ∩ D = Ø.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.
- By a theorem of Bing (1951), there is a unique arc-like hereditarily indecomposable continuum – the pseudo-arc P.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have C ⊆ D or D ⊆ C or C ∩ D = Ø.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.
- By a theorem of Bing (1951), there is a unique arc-like hereditarily indecomposable continuum – the pseudo-arc P.
- In a metric space, $x \approx_{\varepsilon} y$ means $d(x, y) < \varepsilon$. For maps $f, g: X \to Y$, $f \approx_{\varepsilon} g$ means $\sup_{x \in X} d(f(x), g(x)) < \varepsilon$.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have C ⊆ D or D ⊆ C or C ∩ D = Ø.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.
- By a theorem of Bing (1951), there is a unique arc-like hereditarily indecomposable continuum – the pseudo-arc P.
- In a metric space, $x \approx_{\varepsilon} y$ means $d(x, y) < \varepsilon$. For maps $f, g: X \to Y$, $f \approx_{\varepsilon} g$ means $\sup_{x \in X} d(f(x), g(x)) < \varepsilon$.
- Let *I* denote the category of all continuous surjections on I, let *σI* denote the category of all arc-like continua and continuous surjections.

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

For every ε > 0 there is an ε-crooked surjection I → I.

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

• For every $\varepsilon > 0$ there is an ε -crooked surjection $\mathbb{I} \to \mathbb{I}$.

 There is a general notion of ε-crooked map between metric compacta, based on ideas of Krasinkiewicz–Minc (1976) and Maćkowiak (1985), that simplifies to the definition above for I.

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

• For every $\varepsilon > 0$ there is an ε -crooked surjection $\mathbb{I} \to \mathbb{I}$.

- There is a general notion of ε-crooked map between metric compacta, based on ideas of Krasinkiewicz–Minc (1976) and Maćkowiak (1985), that simplifies to the definition above for I.
- A space X is crooked iff id_X is crooked, where crooked means ε-crooked for every ε > 0.

• If f is ε -crooked, then $f \circ g$ is ε -crooked.

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

Let $\langle X_*, f_* \rangle$ be a sequence of metric compact spaces with limit $\langle X_{\infty}, f_{*,\infty} \rangle$. The following conditions are equivalent:

1 X_{∞} is hereditarily indecomposable.

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** Every map $f_{n,\infty}$, $n \in \omega$, is crooked.

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** Every map $f_{n,\infty}$, $n \in \omega$, is crooked.
- If a crooked sequence, i.e. for every n ∈ ω and ε > 0 there is m ≥ n such that f_{n,m} is ε-crooked.

- If f is ε -crooked, then $f \circ g$ is ε -crooked.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

Let $\langle X_*, f_* \rangle$ be a sequence of metric compact spaces with limit $\langle X_{\infty}, f_{*,\infty} \rangle$. The following conditions are equivalent:

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** Every map $f_{n,\infty}$, $n \in \omega$, is crooked.
- If a crooked sequence, i.e. for every n ∈ ω and ε > 0 there is m ≥ n such that f_{n,m} is ε-crooked.

So to obtain a hereditarily indecomposable continuum, it is enough to build a crooked sequence.

• Irwin and Solecki (2006) introduced projective Fraïssé theory.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_Δ of connected finite linear graphs and quotient maps.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_Δ of connected finite linear graphs and quotient maps.
- \mathcal{I}_{Δ} has a Fraïssé limit \mathbb{P}_{Δ} the Cantor space endowed with a special closed equivalence \sim relation such that \mathbb{P}_{Δ}/\sim is the pseudo-arc \mathbb{P} .

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_Δ of connected finite linear graphs and quotient maps.
- *I*_Δ has a Fraïssé limit ℙ_Δ the Cantor space endowed with a special closed equivalence ~ relation such that ℙ_Δ/~ is the pseudo-arc ℙ.
- They characterized P as the unique arc-like continuum such that for every continuous surjections f, g: P → Y onto an arc-like continuum Y and ε > 0, there is a homeomorphism h: P → P such that f ≈_ε g ∘ h.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_Δ of connected finite linear graphs and quotient maps.
- \mathcal{I}_{Δ} has a Fraïssé limit \mathbb{P}_{Δ} the Cantor space endowed with a special closed equivalence \sim relation such that \mathbb{P}_{Δ}/\sim is the pseudo-arc \mathbb{P} .
- They characterized P as the unique arc-like continuum such that for every continuous surjections f, g: P → Y onto an arc-like continuum Y and ε > 0, there is a homeomorphism h: P → P such that f ≈_ε g ∘ h.
- It follows that P maps onto every arc-like continuum as well as that every continuous surjection P → P is arbitrarily close to a homeomorphism.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_Δ of connected finite linear graphs and quotient maps.
- *I*_Δ has a Fraïssé limit ℙ_Δ the Cantor space endowed with a special closed equivalence ~ relation such that ℙ_Δ/~ is the pseudo-arc ℙ.
- They characterized P as the unique arc-like continuum such that for every continuous surjections f, g: P → Y onto an arc-like continuum Y and ε > 0, there is a homeomorphism h: P → P such that f ≈_ε g ∘ h.
- It follows that P maps onto every arc-like continuum as well as that every continuous surjection P → P is arbitrarily close to a homeomorphism.
- The characterization condition above looks like an approximate version of projective homogeneity.

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$).

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$). We say that an \mathcal{L} -object U is

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$). We say that an \mathcal{L} -object U is

• cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$). We say that an \mathcal{L} -object U is

- cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,
- homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L} -maps $f, g: U \to X$ to a \mathcal{K} -object and $\varepsilon > 0$ there is an automorphism $h: U \to U$ such that $f \approx_{\varepsilon} g \circ h$,

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$). We say that an \mathcal{L} -object U is

- cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,
- homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L} -maps $f, g: U \to X$ to a \mathcal{K} -object and $\varepsilon > 0$ there is an automorphism $h: U \to U$ such that $f \approx_{\varepsilon} g \circ h$,
- projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -map $g \colon Y \to X$, \mathcal{L} -map $f \colon U \to Y$, and $\varepsilon > 0$ there is an \mathcal{L} -map $h \colon U \to X$ such that $f \approx_{\varepsilon} g \circ h$.

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$). We say that an \mathcal{L} -object U is

- cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,
- homogeneous in ⟨𝕂, 𝑘⟩ if for every 𝑘-maps 𝑘, 𝑘: 𝑘 → 𝑋 to a 𝑘 -object and ε > 0 there is an automorphism 𝑘: 𝑘 → 𝑘 such that 𝑘 ≈_ε 𝑘 𝑘,
- projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -map $g \colon Y \to X$, \mathcal{L} -map $f \colon U \to Y$, and $\varepsilon > 0$ there is an \mathcal{L} -map $h \colon U \to X$ such that $f \approx_{\varepsilon} g \circ h$.

The pair $\langle \mathcal{K}, \mathcal{L} \rangle$ is a free completion if it satisfies certain conditions (L1), (L2), (F1), (F2), (C) assuring that \mathcal{L} arised essentially by freely and continuously adding all limits of sequences to \mathcal{K} .

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

1 *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** U is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **2** *U* is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an $\mathcal{L}\text{-object }U.$

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **2** *U* is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).
Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **2** *U* is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).
- 4 U is cofinal and projective in \mathcal{L} .

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **2** *U* is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).
- 4 U is cofinal and projective in \mathcal{L} .
- **5** U is an \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** U is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **2** *U* is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).

4 U is cofinal and projective in \mathcal{L} .

5 U is an \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

Such object U is unique up to isomorphism and is called the Fraïssé limit.

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **2** *U* is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).
- 4 U is cofinal and projective in \mathcal{L} .
- **5** U is an \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

Such object U is unique up to isomorphism and is called the Fraïssé limit.

Moreover, a Fraïssé sequence in \mathcal{K} exists, and so the Fraïssé limit exists, if and only if \mathcal{K} is directed, dominated by a countable subcategory, and has the amalgamation property (for every $f, g \in \mathcal{K}$ and $\varepsilon > 0$ there are $f', g' \in \mathcal{K}$ with $f' \circ f \approx_{\varepsilon} g' \circ g$).

 (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory *K* ⊆ MCont_s we define *σK* ⊆ MCont_s, the closure of *K* under limits of *K*-sequences, limit-factorizing maps, and local closure.

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory *K* ⊆ MCont_s we define *σK* ⊆ MCont_s, the closure of *K* under limits of *K*-sequences, limit-factorizing maps, and local closure.
- For every full *P* ⊆ CPol_s, *σP* is the full subcategory consisting of all *P*-like continua, ⟨*P*, *σP*⟩ is a free completion, and *P* is a Fraïssé category, and so the Fraïssé limit exists, if and only if *P* has the amalgamation property.

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory *K* ⊆ MCont_s we define *σK* ⊆ MCont_s, the closure of *K* under limits of *K*-sequences, limit-factorizing maps, and local closure.
- For every full $\mathcal{P} \subseteq \mathbf{CPol}_s$, $\sigma \mathcal{P}$ is the full subcategory consisting of all \mathcal{P} -like continua, $\langle \mathcal{P}, \sigma \mathcal{P} \rangle$ is a free completion, and \mathcal{P} is a Fraïssé category, and so the Fraïssé limit exists, if and only if \mathcal{P} has the amalgamation property.
- By a result of Russo (1979) there is no cofinal object in σP unless P ⊆ {*, I, S}.

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory *K* ⊆ MCont_s we define *σK* ⊆ MCont_s, the closure of *K* under limits of *K*-sequences, limit-factorizing maps, and local closure.
- For every full $\mathcal{P} \subseteq \mathbf{CPol}_s$, $\sigma \mathcal{P}$ is the full subcategory consisting of all \mathcal{P} -like continua, $\langle \mathcal{P}, \sigma \mathcal{P} \rangle$ is a free completion, and \mathcal{P} is a Fraïssé category, and so the Fraïssé limit exists, if and only if \mathcal{P} has the amalgamation property.
- By a result of Russo (1979) there is no cofinal object in $\sigma \mathcal{P}$ unless $\mathcal{P} \subseteq \{*, \mathbb{I}, \mathbb{S}\}$.
- It turns out $\sigma \mathcal{P}$ has a Fraïssé limit if and only if $\mathcal{P} \subseteq \{*, \mathbb{I}\}$ (and the limit is \mathbb{P} or *), and it has a cofinal object if and only if $\mathcal{P} \subseteq \{*, \mathbb{I}, \mathbb{S}\}$ (and the cofinal object is the universal pseudo-solenoid \mathbb{P}_{Π} if $\mathbb{S} \in \mathcal{P}$).

• \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *I*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *I*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.
- Hence, the Fraïssé limit is a hereditarily indecomposable arc-like continuum, and so ℙ by Bing's theorem.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *I*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.
- Hence, the Fraïssé limit is a hereditarily indecomposable arc-like continuum, and so ℙ by Bing's theorem.

Theorem (somewhat folklore)

For every \mathcal{I} -map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ -crooked $f \in \mathcal{I}$ there is $h \in \mathcal{I}$ with $f \approx_{\varepsilon} g \circ h$.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *I*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.
- Hence, the Fraïssé limit is a hereditarily indecomposable arc-like continuum, and so ℙ by Bing's theorem.

Theorem (somewhat folklore)

For every \mathcal{I} -map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ -crooked $f \in \mathcal{I}$ there is $h \in \mathcal{I}$ with $f \approx_{\varepsilon} g \circ h$.

 So on the other hand, every crooked *I*-sequence is Fraïssé, every hereditarily indecomposable arc-like continuum is a Fraïssé limit, and Bing's theorem follows by uniqueness of Fraïssé limits.

Together, we obtain:

Theorem

Together, we obtain:

Theorem

The pseudo-arc $\mathbb P$ is characterized (up to a homeomorphism) by any of the following conditions.

1 \mathbb{P} is a hereditarily indecomposable arc-like continuum.

Theorem

- **1** \mathbb{P} is a hereditarily indecomposable arc-like continuum.
- 2 P is a homogeneous object in σ*I*, i.e. for every continuous surjections *f*, *g* : P → Y onto an arc-like continuum and ε > 0 there is a homeomorphism *h*: P → P such that *f* ≈_ε *g* ∘ *h*.

Theorem

- **1** \mathbb{P} is a hereditarily indecomposable arc-like continuum.
- 2 P is a homogeneous object in σ*I*, i.e. for every continuous surjections *f*, *g* : P → Y onto an arc-like continuum and ε > 0 there is a homeomorphism *h*: P → P such that *f* ≈_ε *g h*.
- **3** \mathbb{P} is a homogeneous object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $Y = \mathbb{I}$).

Theorem

- **1** \mathbb{P} is a hereditarily indecomposable arc-like continuum.
- 2 P is a homogeneous object in σ*I*, i.e. for every continuous surjections *f*, *g* : P → *Y* onto an arc-like continuum and ε > 0 there is a homeomorphism *h*: P → P such that *f* ≈_ε *g h*.
- **3** \mathbb{P} is a homogeneous object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $Y = \mathbb{I}$).
- P is a projective object in σ*I*, i.e. for every continuous surjections f: P → Y and g: Y → X between arc-like continua and ε > 0 there is a continuous surjection h: P → X such that f ≈_ε g ∘ h.

Theorem

The pseudo-arc $\mathbb P$ is characterized (up to a homeomorphism) by any of the following conditions.

- **1** \mathbb{P} is a hereditarily indecomposable arc-like continuum.
- 2 P is a homogeneous object in σ*I*, i.e. for every continuous surjections *f*, *g* : P → Y onto an arc-like continuum and ε > 0 there is a homeomorphism *h*: P → P such that *f* ≈_ε *g h*.
- **3** \mathbb{P} is a homogeneous object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $Y = \mathbb{I}$).
- Image P is a projective object in σI, i.e. for every continuous surjections f: P → Y and g: Y → X between arc-like continua and ε > 0 there is a continuous surjection h: P → X such that f ≈_ε g ∘ h.

5 \mathbb{P} is a projective object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $X = Y = \mathbb{I}$).

• Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that S does not have AP, and so there is no Fraïssé limit.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that S does not have AP, and so there is no Fraïssé limit.
- Recall that every continuous map f: S → S has a degree deg(f) ∈ Z and that deg: S → Z is a functor.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that S does not have AP, and so there is no Fraïssé limit.
- Recall that every continuous map f: S → S has a degree deg(f) ∈ Z and that deg: S → Z is a functor.
- Let Π denote the set of all primes, let P ⊆ Π, and let S_P ⊆ S consist of maps f with deg(f) ≠ 0 whose all prime divisors are in P.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that ${\mathcal S}$ does not have AP, and so there is no Fraïssé limit.
- Recall that every continuous map f: S → S has a degree deg(f) ∈ Z and that deg: S → Z is a functor.
- Let Π denote the set of all primes, let P ⊆ Π, and let S_P ⊆ S consist of maps f with deg(f) ≠ 0 whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that ${\mathcal S}$ does not have AP, and so there is no Fraïssé limit.
- Recall that every continuous map f: S → S has a degree deg(f) ∈ Z and that deg: S → Z is a functor.
- Let Π denote the set of all primes, let P ⊆ Π, and let S_P ⊆ S consist of maps f with deg(f) ≠ 0 whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.
- We have proved that $\langle S_P, \sigma S_P \rangle$ is a free completion.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that S does not have AP, and so there is no Fraïssé limit.
- Recall that every continuous map f: S → S has a degree deg(f) ∈ Z and that deg: S → Z is a functor.
- Let Π denote the set of all primes, let P ⊆ Π, and let S_P ⊆ S consist of maps f with deg(f) ≠ 0 whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.
- We have proved that $\langle S_P, \sigma S_P \rangle$ is a free completion.
- Hence, every $\langle S_P, \sigma S_P \rangle$ has a Fraïssé limit \mathbb{P}_P .

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that ${\mathcal S}$ does not have AP, and so there is no Fraïssé limit.
- Recall that every continuous map f: S → S has a degree deg(f) ∈ Z and that deg: S → Z is a functor.
- Let Π denote the set of all primes, let P ⊆ Π, and let S_P ⊆ S consist of maps f with deg(f) ≠ 0 whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.
- We have proved that $\langle S_P, \sigma S_P \rangle$ is a free completion.
- Hence, every $\langle S_P, \sigma S_P \rangle$ has a Fraïssé limit \mathbb{P}_P .
- But what is \mathbb{P}_P and what is σS_P (it is not full in σS)?

• Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s: \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s: \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s: \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s: \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let *T* denote the category of types and *T*-maps. There is a contravariant type functor *T*: *σS* → *T* extending the degree.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s: \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let *T* denote the category of types and *T*-maps. There is a contravariant type functor *T*: *σS* → *T* extending the degree.
- By Fearnley (1972) there is exactly one hereditarily indecomposable circle-like continuum of each type *S*, the *S*-adic pseudo-solenoid.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s: \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let *T* denote the category of types and *T*-maps. There is a contravariant type functor *T*: *σS* → *T* extending the degree.
- By Fearnley (1972) there is exactly one hereditarily indecomposable circle-like continuum of each type *S*, the *S*-adic pseudo-solenoid.
- These include the pseudo-arc (type 0), the pseudo-circle (type 1), the universal pseudo-solenoid (type Π[∞]), and more generally *P*-adic pseudo-solenoids (type P[∞] for P ⊆ Π).

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s: \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let *T* denote the category of types and *T*-maps. There is a contravariant type functor *T*: *σS* → *T* extending the degree.
- By Fearnley (1972) there is exactly one hereditarily indecomposable circle-like continuum of each type *S*, the *S*-adic pseudo-solenoid.
- These include the pseudo-arc (type 0), the pseudo-circle (type 1), the universal pseudo-solenoid (type Π[∞]), and more generally *P*-adic pseudo-solenoids (type P[∞] for P ⊆ Π).
- A circle-like continuum X is an σS_P-object iff T(X) ≤ P[∞]. A continuous surjection f: X → Y between σS_P-objects is a σS_P-map iff T(f) is a multiplication by t ≤ P[∞].

 By absorption, the Fraïssé sequence in S_P is of type P[∞] and is crooked since there are arbitrarily crooked continuous surjections S → S of any degree.
- By absorption, the Fraïssé sequence in S_P is of type P[∞] and is crooked since there are arbitrarily crooked continuous surjections S → S of any degree.
- Hence, the Fraïssé limit P_P of ⟨S_P, σS_P⟩ is the P-adic pseudo-solenoid by the uniqueness result by Fearnley (1972).

- By absorption, the Fraïssé sequence in S_P is of type P[∞] and is crooked since there are arbitrarily crooked continuous surjections S → S of any degree.
- Hence, the Fraïssé limit P_P of ⟨S_P, σS_P⟩ is the P-adic pseudo-solenoid by the uniqueness result by Fearnley (1972).
- On the other hand, it follows from a theorem by Kawamura (1989) that an S_P-sequence of type P[∞] is crooked if and only if it is Fraïssé in S_P.

- By absorption, the Fraïssé sequence in S_P is of type P[∞] and is crooked since there are arbitrarily crooked continuous surjections S → S of any degree.
- Hence, the Fraïssé limit P_P of ⟨S_P, σS_P⟩ is the P-adic pseudo-solenoid by the uniqueness result by Fearnley (1972).
- On the other hand, it follows from a theorem by Kawamura (1989) that an S_P-sequence of type P[∞] is crooked if and only if it is Fraïssé in S_P.
- Hence, the uniqueness of the *P*-adic pseudo-solenoid follows from the uniqueness of the Fraïssé limit.

Together, we obtain:

Theorem

Together, we obtain:

Theorem

The *P*-adic pseudo-solenoid \mathbb{P}_P is characterized by any of the following conditions.

 P_P is a hereditarily indecomposable circle-like continuum of type P[∞].

Together, we obtain:

Theorem

- P_P is a hereditarily indecomposable circle-like continuum of type P[∞].
- **2** \mathbb{P}_P is a homogeneous object in σS_P (or $\langle S_P, \sigma S_P \rangle$).

Together, we obtain:

Theorem

- P_P is a hereditarily indecomposable circle-like continuum of type P[∞].
- **2** \mathbb{P}_P is a homogeneous object in σS_P (or $\langle S_P, \sigma S_P \rangle$).
- **3** \mathbb{P}_P is a projective object in σS_P (or $\langle S_P, \sigma S_P \rangle$).

Together, we obtain:

Theorem

- P_P is a hereditarily indecomposable circle-like continuum of type P[∞].
- **2** \mathbb{P}_P is a homogeneous object in σS_P (or $\langle S_P, \sigma S_P \rangle$).
- **3** \mathbb{P}_P is a projective object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- Every σS-map P_Π → Y onto a non-planar circle-like continuum is a σS_Π-map, and so homogeneity applies.

Together, we obtain:

Theorem

- P_P is a hereditarily indecomposable circle-like continuum of type P[∞].
- **2** \mathbb{P}_P is a homogeneous object in σS_P (or $\langle S_P, \sigma S_P \rangle$).
- **3** \mathbb{P}_P is a projective object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- Every σS-map P_Π → Y onto a non-planar circle-like continuum is a σS_Π-map, and so homogeneity applies.
- As a by-product we easily obtain the known facts that \mathbb{P}_{Π} continuously maps onto every circle-like continuum and that every continuous surjection $\mathbb{P}_{\Pi} \to \mathbb{P}_{\Pi}$ is a near-homeomorphism.

Together, we obtain:

Theorem

The *P*-adic pseudo-solenoid \mathbb{P}_P is characterized by any of the following conditions.

- P_P is a hereditarily indecomposable circle-like continuum of type P[∞].
- **2** \mathbb{P}_P is a homogeneous object in σS_P (or $\langle S_P, \sigma S_P \rangle$).
- **3** \mathbb{P}_P is a projective object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- Every σS-map P_Π → Y onto a non-planar circle-like continuum is a σS_Π-map, and so homogeneity applies.
- As a by-product we easily obtain the known facts that \mathbb{P}_{Π} continuously maps onto every circle-like continuum and that every continuous surjection $\mathbb{P}_{\Pi} \to \mathbb{P}_{\Pi}$ is a near-homeomorphism.

[arXiv:2208.06886]

Together, we obtain:

Theorem

The *P*-adic pseudo-solenoid \mathbb{P}_P is characterized by any of the following conditions.

- P_P is a hereditarily indecomposable circle-like continuum of type P[∞].
- **2** \mathbb{P}_P is a homogeneous object in σS_P (or $\langle S_P, \sigma S_P \rangle$).
- **3** \mathbb{P}_P is a projective object in σS_P (or $\langle S_P, \sigma S_P \rangle$).
- Every σS-map P_Π → Y onto a non-planar circle-like continuum is a σS_Π-map, and so homogeneity applies.
- As a by-product we easily obtain the known facts that \mathbb{P}_{Π} continuously maps onto every circle-like continuum and that every continuous surjection $\mathbb{P}_{\Pi} \to \mathbb{P}_{\Pi}$ is a near-homeomorphism.

[arXiv:2208.06886]

Thank you.