Big Ramsey degrees and forbidden cycles

Martin Balko, David Chodounský, Jan Hubička, Matěj Konečný, Jaroslav Nešetřil, Lluís Vena

Charles University

speaker: D. Chodounský

Definition

Let A be a countable relational structure. We say that A has finite big Ramsey degrees if for every $n \in \omega$ there is $D(n) \in \omega$ such that for every finite coloring of $[\mathbf{A}]^{n}$ there is a copy \mathbf{B} of \mathbf{A} (inside of \mathbf{A}) such that $[\mathbf{B}]^{n}$ has at most $D(n)$ colors.

Example

- (ω, no structure)
- $(\mathbb{Q},<)$
- Random (Rado) graph
- Triangle free Henson graph \mathbb{H}_{3}
(Ramsey)
(Galvin, Laver, Devlin)
(Todorčević, Sauer)
(Dobrinen, Hubička)

Definition

A structure \mathbf{A} is universal for a class of structures \mathcal{C}
if \mathbf{A} contains a copy of every $\mathbf{B} \in \mathcal{C}$.

Proposition

If $\mathbf{A}, \mathbf{B} \in \mathcal{C}$ are both universal for \mathcal{C} and \mathbf{A} has finite big Ramsey degrees, then \mathbf{B} also has finite big Ramsey degrees.

Words and parametric spaces

Let Σ be a finite alphabet A word U of length n in Σ is a sequence of letters $U: n \rightarrow \Sigma$.
The set of all finite words in Σ is denoted Σ^{*}.
A parameter word over empty alphabet with parameters $\left\langle\lambda_{i}, i \in \omega\right\rangle$ is a sequence $x: \omega \rightarrow\left\{\lambda_{i}, i \in \omega\right\}$ such that each λ_{i} is in the range of x and for $i<j$ the first occurrence of λ_{i} is before the first occurrence of λ_{j}. We write $x \in[\emptyset]\binom{\omega}{\omega}$

Let $x \in[\emptyset]\binom{\omega}{\omega}$. The substitution function $S_{x}: \Sigma^{*} \rightarrow \Sigma^{*}$ is defined as follows. Suppose $U \in \Sigma^{*}$ of length n. For $i<n$ replace each occurrence of λ_{i} in x by $U(i)$, and truncate at the first occurrence of λ_{n}. The result is the word $S_{x}(U)$.

Big Ramsey degrees using parameter spaces

目 Jan Hubička, Big Ramsey degrees using parameter spaces, https://arxiv.org/abs/2009.00967

Let \mathcal{C} be a class of countable relational structures. To prove that universal structures in \mathcal{C} have finite big Ramsey degrees it is sufficient to do the following:

1. Choose a suitable finite alphabet Σ.
2. Find $\mathbf{A} \in \mathcal{C}, \mathbf{A}=\left(\Sigma^{*}, R\right)$ such that \mathbf{A} is universal.
3. Check that for every $x \in[\emptyset]\binom{\omega}{\omega}$ the substitution map $S_{X}: \Sigma^{*} \rightarrow \Sigma^{*}$ is a structural embedding of \mathbf{A} into itself.

Then the Carlson-Simpson theorem implies the desired conclusion.

Example - graphs

$\Sigma=\{\mathrm{e}, \mathrm{n}\}$
For $U, V \in \Sigma^{*},|U|<|V|$ declare that $(U, V) \in E$ iff $V(|U|)=\mathrm{e}$. This is called the passing number representation.

U| e | e | n | e | n | e |
| :--- | :--- | :--- | :--- | :--- | :--- |

V| n | n | n | e | e | n | e | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

W| n | e | e | n | e | n | n | n | e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Here $(U, V) \in E,(V, W) \in E,(U, W) \notin E$.

Lemma

$\left(\Sigma^{*}, E\right)$ is a universal countable graph.

Lemma

For every $x \in[\emptyset]\binom{\omega}{\omega}$ the substitution map $S_{x}: \Sigma^{*} \rightarrow \Sigma^{*}$ is a graph embedding.

Main Theorem

Let L be a finite language consisting of unary and binary symbols, and let \mathbf{K} be a countably-infinite irreducible structure. Assume that every countable structure \mathbf{A} has a completion to \mathbf{K} provided that every induced cycle in \mathbf{A} (seen as a substructure) has a completion to \mathbf{K} and every irreducible substructure of \mathbf{A} of size at most 2 embeds into \mathbf{K}. Then \mathbf{K} has finite big Ramsey degrees.

D-metric space

$D=\{1,2,3, \ldots, \mathfrak{d}\} \quad$ set of distances.
We write $\Delta(i, j, k)$ if $i, j, k \in D$ fulfill the triangle inequality (i.e. $i+j \geq k$, etc.).

A D-metric space is a pair (A, d) where $d:[A]^{2} \rightarrow D$ such that $\Delta(d(a, b), d(b, c), d(a, c))$ for each $a, b, c \in A$.
A partial D-metric space is a pair (B, d) where $\underset{d}{d}[A]^{2} \rightarrow D$ is a partial function and there exists $\bar{d} \supseteq d$ such that (B, \bar{d}) is a D-metric space. We call the space (B, \bar{d}) a completion of the partial space (B, d).
Proposition
Let $d:[A]^{2} \rightarrow D$ be a function. Then (A, d) is a partial D-metric space iff every induced cycle in (A, d) is a partial D-metric space.

Theorem
Universal countable D-metric spaces have finite big Ramsey degrees.

Theorem

Universal countable D-metric spaces have finite big Ramsey degrees. Let $\Sigma=D$.
Define $\left(\Sigma^{*}, d\right)$ as follows. Suppose $U, V \in \Sigma^{*}$.
If $|U|<|V|$ and $\Delta(U(i), V(i), V(|U|))$ for each $i<|U|$ then let $d(U, V)=V(|U|)$.
Otherwise leave $d(U, V)$ undefined.

U	2	2	4	...	4	1-3 5	2	4	
V	3	4	3	...	2	4 4 3		214	\ldots

Lemma

$\left(\Sigma^{*}, d\right)$ is a universal structure for D-metric spaces.
Lemma
$\left(\Sigma^{*}, d\right)$ is a partial D-metric space.

Lemma

$\left(\Sigma^{*}, d\right)$ is a partial D-metric space.

Proof.

Suppose $C=\left\langle U_{0}, U_{1}, \ldots, U_{\ell}\right\rangle$ is an induced cycle in $\left(\Sigma^{*}, d\right)$. Suppose U_{0} is the shortest word in the cycle.

For $k \in\{2,3, \ldots, \ell-1\}$ define $e\left(U_{0}, U_{k}\right)=U_{k}\left(\left|U_{0}\right|\right)$.
Notice that all triangles is $(C, d \cup e)$ are metric, and it a partial D-metric space.

