Big Ramsey degrees and forbidden cycles

Martin Balko, David Chodounský, Jan Hubička, Matěj Konečný, Jaroslav Nešetřil, Lluís Vena

Charles University

speaker: D. Chodounský

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Definition

Let A be a countable relational structure. We say that A has finite big Ramsey degrees if for every $n \in \omega$ there is $D(n) \in \omega$ such that for every finite coloring of $[A]^n$ there is a copy **B** of **A** (inside of **A**) such that $[\mathbf{B}]^n$ has at most D(n) colors.

Example

- \blacktriangleright (ω , no structure)
- ► (ℚ, <)
- Random (Rado) graph
- \blacktriangleright Triangle free Henson graph \mathbb{H}_3

(Ramsey)

(Galvin, Laver, Devlin)

(Todorčević, Sauer)

(Dobrinen, Hubička)

Definition

A structure **A** is universal for a class of structures Cif **A** contains a copy of every $\mathbf{B} \in C$.

Proposition

If $\mathbf{A}, \mathbf{B} \in \mathcal{C}$ are both universal for \mathcal{C} and \mathbf{A} has finite big Ramsey degrees, then **B** also has finite big Ramsey degrees.

Words and parametric spaces

Let Σ be a finite alphabet A word U of length n in Σ is a sequence of letters U: $n \to \Sigma$. The set of all finite words in Σ is denoted Σ^* .

A parameter word over empty alphabet with parameters $\langle \lambda_i, i \in \omega \rangle$ is a sequence $x : \omega \to \{\lambda_i, i \in \omega\}$ such that each λ_i is in the range of xand for i < j the first occurrence of λ_i is before the first occurrence of λ_j . We write $x \in [\emptyset] {\omega \atop \omega}$

Let $x \in [\emptyset] {\omega \choose \omega}$. The substitution function $S_x : \Sigma^* \to \Sigma^*$ is defined as follows. Suppose $U \in \Sigma^*$ of length *n*. For i < n replace each occurrence of λ_i in *x* by U(i), and truncate at the first occurrence of λ_n . The result is the word $S_x(U)$.

Big Ramsey degrees using parameter spaces

Jan Hubička, *Big Ramsey degrees using parameter spaces*, https://arxiv.org/abs/2009.00967

Let C be a class of countable relational structures. To prove that universal structures in C have finite big Ramsey degrees it is sufficient to do the following:

- 1. Choose a suitable finite alphabet Σ .
- 2. Find $A \in C$, $A = (\Sigma^*, R)$ such that A is universal.
- 3. Check that for every $x \in [\emptyset] {\omega \atop \omega}$ the substitution map $S_x \colon \Sigma^* \to \Sigma^*$ is a structural embedding of **A** into itself.

Then the Carlson-Simpson theorem implies the desired conclusion.

Example - graphs

 $\Sigma=\{\,e,n\,\}$

For $U, V \in \Sigma^*$, |U| < |V| declare that $(U, V) \in E$ iff V(|U|) = e. This is called the *passing number representation*.

$$U = e n e n e$$

$$V n n n e e n e$$

$$W n e e n e n n e$$

Here $(U, V) \in E$, $(V, W) \in E$, $(U, W) \notin E$.

Lemma

 (Σ^*, E) is a universal countable graph.

Lemma

For every $x \in [\emptyset] {\omega \choose \omega}$ the substitution map $S_x \colon \Sigma^* \to \Sigma^*$ is a graph embedding.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main Theorem

Let *L* be a finite language consisting of unary and binary symbols, and let **K** be a countably-infinite irreducible structure. Assume that every countable structure **A** has a completion to **K** provided that every induced cycle in **A** (seen as a substructure) has a completion to **K** and every irreducible substructure of **A** of size at most 2 embeds into **K**. Then **K** has finite big Ramsey degrees.

D-metric space

 $D = \{1, 2, 3, \dots, \mathfrak{d}\}$ set of distances. We write $\Delta(i, j, k)$ if $i, j, k \in D$ fulfill the triangle inequality (i.e. $i + j \ge k$, etc.).

A D-metric space is a pair (A, d) where $d : [A]^2 \to D$ such that $\Delta(d(a, b), d(b, c), d(a, c))$ for each $a, b, c \in A$.

A partial *D*-metric space is a pair (B, d) where d; $[A]^2 \to D$ is a partial function and there exists $\overline{d} \supseteq d$ such that (B, \overline{d}) is a *D*-metric space. We call the space (B, \overline{d}) a completion of the partial space (B, d).

Proposition

Let $d: [A]^2 \to D$ be a function. Then (A, d) is a partial D-metric space iff every induced cycle in (A, d) is a partial D-metric space.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem Universal countable D-metric spaces have finite big Ramsey degrees.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Theorem

Universal countable D-metric spaces have finite big Ramsey degrees.

Let $\Sigma = D$.

Define (Σ^*, d) as follows. Suppose $U, V \in \Sigma^*$.

If |U| < |V| and $\Delta(U(i), V(i), V(|U|))$ for each i < |U| then let d(U, V) = V(|U|). Otherwise leave d(U, V) undefined.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lemma

 (Σ^*, d) is a universal structure for D-metric spaces.

Lemma (Σ^*, d) is a partial D-metric space.

Lemma

 (Σ^*, d) is a partial D-metric space.

Proof.

Suppose $C = \langle U_0, U_1, \dots, U_\ell \rangle$ is an induced cycle in (Σ^*, d) . Suppose U_0 is the shortest word in the cycle.

For $k \in \{2, 3, ..., \ell - 1\}$ define $e(U_0, U_k) = U_k(|U_0|)$. Notice that all triangles is $(C, d \cup e)$ are metric, and it a partial *D*-metric space.