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A key lemma

Let us call a covering matrix satisfying the conclusion of the
previous proposition nice.

Lemma (Viale if 2° < X\, LH-Stejskalovd in general)

Let D be a nice covering matrix for \*'. Then, for every
x € [ANT]<*, there is a yx < At such that, for all 3 € [yx, \") and
all sufficiently large i < 6, we have

D(i,B) N x = D(i,vx) N x.

Definition (Viale)

Suppose that D is a covering matrix for A™. We say that CP(D)
holds if there is an unbounded A C AT such that, for all x € [A]G,
there are i < 0 and 3 < AT such that x C D(i, 8).
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Meeting numbers

Definition

For cardinals § < A, the meeting number m(6, \) is the minimal size of a
family X C [\]? such that, for all y € [\]?, there is x € X such that
[xNy|=0.

Theorem (Matet)

Shelah’s Strong Hypothesis (SSH) is equivalent to the assertion that, for
all singular cardinals A, m(cf(\), \) = At, which in turn is equivalent to
the assertion that m(w, ) = AT for all singular cardinals of cofinality w.

Proposition

Suppose that X is a singular cardinal of cofinality 6, m(0, 1) < \* for all
< A, and there is a nice \*-covering matrix D for which CP(D) holds.
Then m(6,\) = A\T.
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forallze M and d C z, if dNx € M for all x € [z]* N M, then there is
e € M suchthateNn M =dnN M.

The Guessing Model Property (GMP) is the assertion that the set of
guessing models is stationary in P, H(x) for all regular x > wo.

Theorem (Viale, Krueger)
GMP implies that, for all singular cardinals \ of countable cofinality and
all covering matrices D satisfying the Key Lemma, CP(D) holds.
Corollary (LH-Stejskalova)
GMP implies the following:

1 Shelah’s Strong Hypothesis;

g ovi 2v if cf(2%) # wy
@)t ifef(2¢) = wi.
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Gs-modifications

Definition
Let X be a topological space.

1 X is Fréchet if, for every A C X and every y € cl(A), there is
a sequence from A of length w converging to y.

2 The tightness of X, t(X), is the least cardinal x such that,
whenever A C X and y € cl(A), there is B € [A]= such that
y € cl(B).

3 X is aq if whenever we are given a point x € X and countably
many sequences converging to x, there is a single sequence
converging to x containing all of those countably many
sequences mod finite.

4 The Gs-modification of X, denoted by Xj, is the space with
the same underlying set as X and with a base consisting of
the Gj sets of X.
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Background results

Theorem (Dow, Juhdsz, Soukup, Szentmikldssy, Weiss)
If X is a regular Lindelof space, then t(Xj) < 2t(X)

Theorem (DJSSW)

If there is a non-reflecting stationary subset of

Sk ={a < k| cf(a) =w}, then there is a Fréchet space X such
that t(Xs) = k.

Theorem (Usuba)

There is a normal countably tight space X such that t(Xs) > 2“.
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Work of Chen-Mertens and
Szeptycki

Theorem

Suppose that the P-ideal dichotomy holds. Then whenever X is a
Fréchet, ay- space, we have t(Xs) < N;.

Theorem

Suppose that k is a regular uncountable cardinal and (k) holds.
Then there is a Fréchet, ai-space X such that t(X5) = k.



A space from a covering matrix

Let A be singular of cofinality w, and let D be a nice covering
matrix for A*.



A space from a covering matrix

Let A be singular of cofinality w, and let D be a nice covering
matrix for A*. Define a topological space X with underlying set
AT U {0}



A space from a covering matrix

Let A be singular of cofinality w, and let D be a nice covering
matrix for A*. Define a topological space X with underlying set
AT U {oc}. Every point in AT is isolated, and the basic open sets
of oo are all sets of the form

Uig = {oc} UGN\ D(i,8) (i <w, B<AP).



A space from a covering matrix

Let A be singular of cofinality w, and let D be a nice covering
matrix for A*. Define a topological space X with underlying set
AT U {oc}. Every point in AT is isolated, and the basic open sets
of oo are all sets of the form

Uig = {oc} UGN\ D(i,8) (i <w, B<AP).

Theorem (LH-Rinot)

1 Xis a1,



A space from a covering matrix

Let A be singular of cofinality w, and let D be a nice covering
matrix for A*. Define a topological space X with underlying set
AT U {oc}. Every point in AT is isolated, and the basic open sets
of oo are all sets of the form

Uig = {oc} UGN\ D(i,8) (i <w, B<AP).

Theorem (LH-Rinot)

1 Xis a1,
2 t(X5) =\t
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Let A be singular of cofinality w, and let D be a nice covering
matrix for A*. Define a topological space X with underlying set
AT U {oc}. Every point in AT is isolated, and the basic open sets
of oo are all sets of the form

Uig = {oc} UGN\ D(i,8) (i <w, B<AP).

Theorem (LH-Rinot)

1 X isoq;

2 t(X5) =\t

3 if SCH fails at \, i.e., if X is strong limit and \* > A\, then
X is Fréchet.



Corollary

If SCH fails at X\, then there is a Fréchet, cvy-space X such that
t(X(j) =\t
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such that, for all x € X, x is connected in G to fewer than f-many
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Note that the chromatic number of G is always at most the
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If k is a regular, uncountable cardinal and there is a non-reflecting
stationary subset of S/, then there is a graph G = (k, E) such that

® G, = (o, EN[a]?) has countable coloring number for all
o < K,

o Col(G) = wy.
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Theorem (LH-Rinot)

Suppose that k is a regular, uncountable cardinal, and 0 < k is an
infinite cardinal such that k is not the successor of a singular
cardinal of cofinality cf(0). Suppose also that G = (k,E) is a
graph such that Col(G,) < 6 for all « < k. Then Col(G) < 6T.

Corollary

If 0 < k are infinite cardinals and G = (k, E) is a graph such that
Col(G,) < 0 for all a < K, then Col(G) < 61+,

Can we have G as in the corollary with Col(G) = 6717? The
simplest arrangement in which this could conceivably happen is
k= Ny,+1 and 6 = V.
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Theorem (LH-Rinot)

Suppose that (R,+1,R8,) = (R1,Ng). Then whenever G = (N,,41,E) is a
graph such that Col(G,) < Xg for all & < V11, we have Col(G) < N;.

This is not that surprising, since (N1, 8,,) = (X1,Ng) is a compactness
principle. Perhaps more surprising:

Theorem (LH-Rinot)

Suppose that \ is a singular cardinal and (1) holds. Then, whenever

6 < X and G = (A", E) is a graph such that Col(G,) < 6 for all a« < \*,
we have Col(G) < 0%. In fact, Oy can be replaced by the much weaker
assumption S € I[AT].

Conjecture

For all infinite cardinals 0 < &, if G = (k, ) is a graph such that
Col(G,) < 0 for all a < K, then Col(G) < 6+
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Lemma (Todorcevic)

If X is singular and [y holds, then there is a nice covering matrix
D for AT such that, for all « < 8 < \* and all j < cf()), there is
i < cf(\) such that D(j, ) Na € D(i, ).
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Suppose for a contradiction that cf(A\) = 6 < A, O, holds, and
G = (A1, E) is a graph such that Col(G) = 6" but
Col(G | ) <0 for all a < AT

Fix a covering matrix D as in the previous lemma. By Shelah’s
lemma, there is a stationary S C A" and, for each o € S, an
ordinal B, > « and a set x, € [04]9+ such that {7, B} € E for all
7 € X,. For each a € S, we can find 1, < & and i, < 6 such that
|Xa. N D (s Ma)| = 6. Find a stationary S’ C S and a single (i,7n)
such that (i, 7o) = (i,n) for all « € S'.

But |D(i,n)| < A, and there are unboundedly many 8 < A*, each
of which is connected to at least #-many elements of D(i,n). This
immediately yields an initial segment of G with coloring number
greater than 6. O



Thank you for your attention!




