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I : Basic definitions



Covering matrices

Definition

Let λ be a singular cardinal of cofinality θ.

A covering matrix for λ+ is a
matrix D = ⟨D(i , β) | i < θ, β < λ+⟩ such that:

1 For all β < λ+, the sequence ⟨D(i , β) | i < θ⟩ is ⊆-increasing and
its union is β.

2 For all β < γ < λ+ and all i < θ, there is j < θ such that
D(i , β) ⊆ D(j , β).

Proposition (Shelah)

There is a covering matrix D for λ+ such that

• for all β < λ+, there is i < θ such that D(i , β) contains a club in β;

• for all β < γ < λ+ and i < θ, if β ∈ D(i , γ), then D(i , β) ⊆ D(i , γ);

• for all β < λ+ and i < θ, |D(i , β)| < λ.
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A key lemma

Let us call a covering matrix satisfying the conclusion of the
previous proposition nice.

Lemma (Viale if 2θ < λ, LH-Stejskalová in general)

Let D be a nice covering matrix for λ+. Then, for every
x ∈ [λ+]<λ, there is a γx < λ+ such that, for all β ∈ [γx , λ

+) and
all sufficiently large i < θ, we have

D(i , β) ∩ x = D(i , γx) ∩ x .

Definition (Viale)

Suppose that D is a covering matrix for λ+. We say that CP(D)
holds if there is an unbounded A ⊆ λ+ such that, for all x ∈ [A]θ,
there are i < θ and β < λ+ such that x ⊆ D(i , β).
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II : Cardinal arithmetic



Meeting numbers

Definition

For cardinals θ < λ, the meeting number m(θ, λ) is the minimal size of a
family X ⊆ [λ]θ such that, for all y ∈ [λ]θ, there is x ∈ X such that
|x ∩ y | = θ.

Theorem (Matet)

Shelah’s Strong Hypothesis (SSH) is equivalent to the assertion that, for
all singular cardinals λ, m(cf(λ), λ) = λ+, which in turn is equivalent to
the assertion that m(ω, λ) = λ+ for all singular cardinals of cofinality ω.

Proposition

Suppose that λ is a singular cardinal of cofinality θ, m(θ, µ) ≤ λ+ for all
µ < λ, and there is a nice λ+-covering matrix D for which CP(D) holds.
Then m(θ, λ) = λ+.
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Guessing models and cardinal
arithmetic

Let us call a model M ≺ H(χ) a guessing model if |M| = ω1 ⊆ M and,
for all z ∈ M and d ⊆ z ,

if d ∩ x ∈ M for all x ∈ [z ]ω ∩M, then there is
e ∈ M such that e ∩M = d ∩M.
The Guessing Model Property (GMP) is the assertion that the set of
guessing models is stationary in Pω2H(χ) for all regular χ ≥ ω2.

Theorem (Viale, Krueger)

GMP implies that, for all singular cardinals λ of countable cofinality and
all covering matrices D satisfying the Key Lemma, CP(D) holds.

Corollary (LH-Stejskalová)

GMP implies the following:

1 Shelah’s Strong Hypothesis;

2 2ω1 =

{
2ω if cf(2ω) ̸= ω1

(2ω)+ if cf(2ω) = ω1.
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GMP implies the following:

1 Shelah’s Strong Hypothesis;

2 2ω1 =

{
2ω if cf(2ω) ̸= ω1

(2ω)+ if cf(2ω) = ω1.



Guessing models and cardinal
arithmetic

Let us call a model M ≺ H(χ) a guessing model if |M| = ω1 ⊆ M and,
for all z ∈ M and d ⊆ z , if d ∩ x ∈ M for all x ∈ [z ]ω ∩M, then there is
e ∈ M such that e ∩M = d ∩M.
The Guessing Model Property (GMP) is the assertion that the set of
guessing models is stationary in Pω2H(χ) for all regular χ ≥ ω2.

Theorem (Viale, Krueger)

GMP implies that, for all singular cardinals λ of countable cofinality and
all covering matrices D satisfying the Key Lemma, CP(D) holds.

Corollary (LH-Stejskalová)
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III: Tightness of Gδ-modifications



Gδ-modifications

Definition

Let X be a topological space.

1 X is Fréchet if, for every A ⊆ X and every y ∈ cl(A), there is
a sequence from A of length ω converging to y .

2 The tightness of X , t(X ), is the least cardinal κ such that,
whenever A ⊆ X and y ∈ cl(A), there is B ∈ [A]≤κ such that
y ∈ cl(B).

3 X is α1 if whenever we are given a point x ∈ X and countably
many sequences converging to x , there is a single sequence
converging to x containing all of those countably many
sequences mod finite.

4 The Gδ-modification of X , denoted by Xδ, is the space with
the same underlying set as X and with a base consisting of
the Gδ sets of X .
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1 X is Fréchet if, for every A ⊆ X and every y ∈ cl(A), there is
a sequence from A of length ω converging to y .

2 The tightness of X , t(X ), is the least cardinal κ such that,
whenever A ⊆ X and y ∈ cl(A), there is B ∈ [A]≤κ such that
y ∈ cl(B).

3 X is α1 if whenever we are given a point x ∈ X and countably
many sequences converging to x , there is a single sequence
converging to x containing all of those countably many
sequences mod finite.

4 The Gδ-modification of X , denoted by Xδ, is the space with
the same underlying set as X and with a base consisting of
the Gδ sets of X .



Background results

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, Weiss)

If X is a regular Lindelöf space, then t(Xδ) ≤ 2t(X ).
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Corollary

If SCH fails at λ, then there is a Fréchet, α1-space X such that
t(Xδ) = λ+.



IV: Coloring numbers



Coloring numbers of graphs
Definition

Let G = (X ,E ) be a graph.

The coloring number of G , Col(G ), is
the least cardinal θ for which there exists a well-ordering ≺ of X
such that, for all x ∈ X , x is connected in G to fewer than θ-many
of its ≺-predecessors.

Note that the chromatic number of G is always at most the
coloring number of G .

Theorem (Shelah)

If κ is a regular, uncountable cardinal and there is a non-reflecting
stationary subset of Sκ

ω , then there is a graph G = (κ,E ) such that

• Gα := (α,E ∩ [α]2) has countable coloring number for all
α < κ;

• Col(G ) = ω1.
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Compactness for the coloring
number

Theorem (LH-Rinot)

Suppose that κ is a regular, uncountable cardinal, and θ < κ is an
infinite cardinal such that κ is not the successor of a singular
cardinal of cofinality cf(θ). Suppose also that G = (κ,E ) is a
graph such that Col(Gα) ≤ θ for all α < κ. Then Col(G ) ≤ θ+.

Corollary

If θ < κ are infinite cardinals and G = (κ,E ) is a graph such that
Col(Gα) ≤ θ for all α < κ, then Col(G ) ≤ θ++.

Can we have G as in the corollary with Col(G ) = θ++? The
simplest arrangement in which this could conceivably happen is
κ = ℵω+1 and θ = ℵ0.
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Compactness for the coloring
number

Theorem (LH-Rinot)

Suppose that (ℵω+1,ℵω) ↠ (ℵ1,ℵ0).

Then whenever G = (ℵω+1,E ) is a
graph such that Col(Gα) ≤ ℵ0 for all α < ℵω+1, we have Col(G ) ≤ ℵ1.

This is not that surprising, since (ℵω+1,ℵω) ↠ (ℵ1,ℵ0) is a compactness
principle. Perhaps more surprising:

Theorem (LH-Rinot)

Suppose that λ is a singular cardinal and □λ holds. Then, whenever
θ < λ and G = (λ+,E ) is a graph such that Col(Gα) ≤ θ for all α < λ+,
we have Col(G ) ≤ θ+. In fact, □λ can be replaced by the much weaker

assumption Sλ+

θ+ ∈ I [λ+].

Conjecture

For all infinite cardinals θ < κ, if G = (κ,E ) is a graph such that
Col(Gα) ≤ θ for all α < κ, then Col(G ) ≤ θ+.
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Key lemmas

Lemma (Shelah)

Suppose that κ is a regular cardinal, G = (κ,E ) is a graph, and
µ < κ is infinite.

Let

Sµ(G ) := {α < κ | (∃β ≥ α) |{η < α | {η, β} ∈ E}| ≥ µ}

1 If Sµ(G ) is stationary, then Col(G ) > µ.

2 If Sµ(G ) is nonstationary and Col(G ↾ α) ≤ µ for all α < κ,
then Col(G ) ≤ µ.

Lemma (Todorcevic)

If λ is singular and □λ holds, then there is a nice covering matrix
D for λ+ such that, for all α < β < λ+ and all j < cf(λ), there is
i < cf(λ) such that D(j , β) ∩ α ⊆ D(i , α).
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Sketch of proof.

Suppose for a contradiction that cf(λ) = θ < λ, □λ holds, and
G = (λ+,E ) is a graph such that Col(G ) = θ++ but
Col(G ↾ α) ≤ θ for all α < λ+.

Fix a covering matrix D as in the previous lemma. By Shelah’s
lemma, there is a stationary S ⊆ λ+ and, for each α ∈ S , an
ordinal βα ≥ α and a set xα ∈ [α]θ

+
such that {η, βα} ∈ E for all

η ∈ xα. For each α ∈ S , we can find ηα < α and iα < θ such that
|xα ∩ D(iα, ηα)| ≥ θ. Find a stationary S ′ ⊆ S and a single (i , η)
such that (iα, ηα) = (i , η) for all α ∈ S ′.

But |D(i , η)| < λ, and there are unboundedly many β < λ+, each
of which is connected to at least θ-many elements of D(i , η). This
immediately yields an initial segment of G with coloring number
greater than θ.
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Thank you for your attention!


