Some applications of covering matrices

Chris Lambie-Hanson

Institute of Mathematics Czech Academy of Sciences

SETTOP 2022

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Participation in the conference is supported by the OPVVV project CZ.02.2.69/ $0.0/0.0/18_054/0014664$ – Institute of Mathematics CAS goes for HR Award - implementation of the professional HR management.

This talk includes joint work with Šárka Stejskalová and with Assaf Rinot.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

I: Basic definitions

Definition

Let λ be a singular cardinal of cofinality θ .

Definition

Let λ be a singular cardinal of cofinality θ . A covering matrix for λ^+ is a matrix $\mathcal{D} = \langle D(i,\beta) \mid i < \theta, \ \beta < \lambda^+ \rangle$ such that:

Definition

Let λ be a singular cardinal of cofinality θ . A covering matrix for λ^+ is a matrix $\mathcal{D} = \langle D(i,\beta) \mid i < \theta, \ \beta < \lambda^+ \rangle$ such that:

 For all β < λ⁺, the sequence (D(i, β) | i < θ) is ⊆-increasing and its union is β.

Definition

Let λ be a singular cardinal of cofinality θ . A covering matrix for λ^+ is a matrix $\mathcal{D} = \langle D(i,\beta) \mid i < \theta, \ \beta < \lambda^+ \rangle$ such that:

- For all β < λ⁺, the sequence (D(i, β) | i < θ) is ⊆-increasing and its union is β.
- 2 For all $\beta < \gamma < \lambda^+$ and all $i < \theta$, there is $j < \theta$ such that $D(i, \beta) \subseteq D(j, \beta)$.

Definition

Let λ be a singular cardinal of cofinality θ . A covering matrix for λ^+ is a matrix $\mathcal{D} = \langle D(i,\beta) \mid i < \theta, \ \beta < \lambda^+ \rangle$ such that:

- For all β < λ⁺, the sequence (D(i, β) | i < θ) is ⊆-increasing and its union is β.
- 2 For all $\beta < \gamma < \lambda^+$ and all $i < \theta$, there is $j < \theta$ such that $D(i, \beta) \subseteq D(j, \beta)$.

Proposition (Shelah)

There is a covering matrix ${\mathcal D}$ for λ^+ such that

Definition

Let λ be a singular cardinal of cofinality θ . A covering matrix for λ^+ is a matrix $\mathcal{D} = \langle D(i,\beta) \mid i < \theta, \ \beta < \lambda^+ \rangle$ such that:

- For all β < λ⁺, the sequence (D(i, β) | i < θ) is ⊆-increasing and its union is β.
- 2 For all $\beta < \gamma < \lambda^+$ and all $i < \theta$, there is $j < \theta$ such that $D(i, \beta) \subseteq D(j, \beta)$.

Proposition (Shelah)

There is a covering matrix ${\mathcal D}$ for λ^+ such that

• for all $\beta < \lambda^+$, there is $i < \theta$ such that $D(i, \beta)$ contains a club in β ;

Definition

Let λ be a singular cardinal of cofinality θ . A covering matrix for λ^+ is a matrix $\mathcal{D} = \langle D(i,\beta) \mid i < \theta, \ \beta < \lambda^+ \rangle$ such that:

- For all β < λ⁺, the sequence (D(i, β) | i < θ) is ⊆-increasing and its union is β.
- 2 For all $\beta < \gamma < \lambda^+$ and all $i < \theta$, there is $j < \theta$ such that $D(i, \beta) \subseteq D(j, \beta)$.

Proposition (Shelah)

There is a covering matrix ${\mathcal D}$ for λ^+ such that

- for all $\beta < \lambda^+$, there is $i < \theta$ such that $D(i, \beta)$ contains a club in β ;
- for all $\beta < \gamma < \lambda^+$ and $i < \theta$, if $\beta \in D(i, \gamma)$, then $D(i, \beta) \subseteq D(i, \gamma)$;

Definition

Let λ be a singular cardinal of cofinality θ . A covering matrix for λ^+ is a matrix $\mathcal{D} = \langle D(i,\beta) \mid i < \theta, \ \beta < \lambda^+ \rangle$ such that:

- For all β < λ⁺, the sequence (D(i, β) | i < θ) is ⊆-increasing and its union is β.
- 2 For all $\beta < \gamma < \lambda^+$ and all $i < \theta$, there is $j < \theta$ such that $D(i, \beta) \subseteq D(j, \beta)$.

Proposition (Shelah)

There is a covering matrix ${\mathcal D}$ for λ^+ such that

- for all $\beta < \lambda^+$, there is $i < \theta$ such that $D(i, \beta)$ contains a club in β ;
- for all $\beta < \gamma < \lambda^+$ and $i < \theta$, if $\beta \in D(i, \gamma)$, then $D(i, \beta) \subseteq D(i, \gamma)$;
- for all $\beta < \lambda^+$ and $i < \theta$, $|D(i,\beta)| < \lambda$.

Let us call a covering matrix satisfying the conclusion of the previous proposition *nice*.

Let us call a covering matrix satisfying the conclusion of the previous proposition *nice*.

Lemma (Viale if $2^{\theta} < \lambda$, LH-Stejskalová in general)

Let \mathcal{D} be a nice covering matrix for λ^+ .

Let us call a covering matrix satisfying the conclusion of the previous proposition *nice*.

Lemma (Viale if $2^{\theta} < \lambda$, LH-Stejskalová in general)

Let \mathcal{D} be a nice covering matrix for λ^+ . Then, for every $x \in [\lambda^+]^{<\lambda}$, there is a $\gamma_x < \lambda^+$ such that,

Let us call a covering matrix satisfying the conclusion of the previous proposition *nice*.

Lemma (Viale if $2^{\theta} < \lambda$, LH-Stejskalová in general)

Let \mathcal{D} be a nice covering matrix for λ^+ . Then, for every $x \in [\lambda^+]^{<\lambda}$, there is a $\gamma_x < \lambda^+$ such that, for all $\beta \in [\gamma_x, \lambda^+)$ and all sufficiently large $i < \theta$, we have

 $D(i,\beta) \cap x = D(i,\gamma_x) \cap x.$

Let us call a covering matrix satisfying the conclusion of the previous proposition *nice*.

Lemma (Viale if $2^{\theta} < \lambda$, LH-Stejskalová in general)

Let \mathcal{D} be a nice covering matrix for λ^+ . Then, for every $x \in [\lambda^+]^{<\lambda}$, there is a $\gamma_x < \lambda^+$ such that, for all $\beta \in [\gamma_x, \lambda^+)$ and all sufficiently large $i < \theta$, we have

$$D(i,\beta) \cap x = D(i,\gamma_x) \cap x.$$

Definition (Viale)

Suppose that \mathcal{D} is a covering matrix for λ^+ .

Let us call a covering matrix satisfying the conclusion of the previous proposition *nice*.

Lemma (Viale if $2^{\theta} < \lambda$, LH-Stejskalová in general)

Let \mathcal{D} be a nice covering matrix for λ^+ . Then, for every $x \in [\lambda^+]^{<\lambda}$, there is a $\gamma_x < \lambda^+$ such that, for all $\beta \in [\gamma_x, \lambda^+)$ and all sufficiently large $i < \theta$, we have

$$D(i,\beta) \cap x = D(i,\gamma_x) \cap x.$$

Definition (Viale)

Suppose that \mathcal{D} is a covering matrix for λ^+ . We say that $CP(\mathcal{D})$ holds if there is an unbounded $A \subseteq \lambda^+$ such that, for all $x \in [A]^{\theta}$, there are $i < \theta$ and $\beta < \lambda^+$ such that $x \subseteq D(i, \beta)$.

II : Cardinal arithmetic

Definition

For cardinals $\theta < \lambda$, the meeting number $m(\theta, \lambda)$ is the minimal size of a family $\mathcal{X} \subseteq [\lambda]^{\theta}$ such that, for all $y \in [\lambda]^{\theta}$, there is $x \in \mathcal{X}$ such that $|x \cap y| = \theta$.

Definition

For cardinals $\theta < \lambda$, the meeting number $m(\theta, \lambda)$ is the minimal size of a family $\mathcal{X} \subseteq [\lambda]^{\theta}$ such that, for all $y \in [\lambda]^{\theta}$, there is $x \in \mathcal{X}$ such that $|x \cap y| = \theta$.

Theorem (Matet)

Shelah's Strong Hypothesis (SSH) is equivalent to the assertion that, for all singular cardinals λ , $m(cf(\lambda), \lambda) = \lambda^+$,

Definition

For cardinals $\theta < \lambda$, the meeting number $m(\theta, \lambda)$ is the minimal size of a family $\mathcal{X} \subseteq [\lambda]^{\theta}$ such that, for all $y \in [\lambda]^{\theta}$, there is $x \in \mathcal{X}$ such that $|x \cap y| = \theta$.

Theorem (Matet)

Shelah's Strong Hypothesis (SSH) is equivalent to the assertion that, for all singular cardinals λ , $m(cf(\lambda), \lambda) = \lambda^+$, which in turn is equivalent to the assertion that $m(\omega, \lambda) = \lambda^+$ for all singular cardinals of cofinality ω .

Definition

For cardinals $\theta < \lambda$, the meeting number $m(\theta, \lambda)$ is the minimal size of a family $\mathcal{X} \subseteq [\lambda]^{\theta}$ such that, for all $y \in [\lambda]^{\theta}$, there is $x \in \mathcal{X}$ such that $|x \cap y| = \theta$.

Theorem (Matet)

Shelah's Strong Hypothesis (SSH) is equivalent to the assertion that, for all singular cardinals λ , $m(cf(\lambda), \lambda) = \lambda^+$, which in turn is equivalent to the assertion that $m(\omega, \lambda) = \lambda^+$ for all singular cardinals of cofinality ω .

Proposition

Suppose that λ is a singular cardinal of cofinality θ ,

Definition

For cardinals $\theta < \lambda$, the meeting number $m(\theta, \lambda)$ is the minimal size of a family $\mathcal{X} \subseteq [\lambda]^{\theta}$ such that, for all $y \in [\lambda]^{\theta}$, there is $x \in \mathcal{X}$ such that $|x \cap y| = \theta$.

Theorem (Matet)

Shelah's Strong Hypothesis (SSH) is equivalent to the assertion that, for all singular cardinals λ , $m(cf(\lambda), \lambda) = \lambda^+$, which in turn is equivalent to the assertion that $m(\omega, \lambda) = \lambda^+$ for all singular cardinals of cofinality ω .

Proposition

Suppose that λ is a singular cardinal of cofinality θ , $m(\theta, \mu) \leq \lambda^+$ for all $\mu < \lambda$,

Definition

For cardinals $\theta < \lambda$, the meeting number $m(\theta, \lambda)$ is the minimal size of a family $\mathcal{X} \subseteq [\lambda]^{\theta}$ such that, for all $y \in [\lambda]^{\theta}$, there is $x \in \mathcal{X}$ such that $|x \cap y| = \theta$.

Theorem (Matet)

Shelah's Strong Hypothesis (SSH) is equivalent to the assertion that, for all singular cardinals λ , $m(cf(\lambda), \lambda) = \lambda^+$, which in turn is equivalent to the assertion that $m(\omega, \lambda) = \lambda^+$ for all singular cardinals of cofinality ω .

Proposition

Suppose that λ is a singular cardinal of cofinality θ , $m(\theta, \mu) \leq \lambda^+$ for all $\mu < \lambda$, and there is a nice λ^+ -covering matrix \mathcal{D} for which $CP(\mathcal{D})$ holds.

Definition

For cardinals $\theta < \lambda$, the meeting number $m(\theta, \lambda)$ is the minimal size of a family $\mathcal{X} \subseteq [\lambda]^{\theta}$ such that, for all $y \in [\lambda]^{\theta}$, there is $x \in \mathcal{X}$ such that $|x \cap y| = \theta$.

Theorem (Matet)

Shelah's Strong Hypothesis (SSH) is equivalent to the assertion that, for all singular cardinals λ , $m(cf(\lambda), \lambda) = \lambda^+$, which in turn is equivalent to the assertion that $m(\omega, \lambda) = \lambda^+$ for all singular cardinals of cofinality ω .

Proposition

Suppose that λ is a singular cardinal of cofinality θ , $m(\theta, \mu) \leq \lambda^+$ for all $\mu < \lambda$, and there is a nice λ^+ -covering matrix \mathcal{D} for which $CP(\mathcal{D})$ holds. Then $m(\theta, \lambda) = \lambda^+$.

▲□▶ ▲□▶ ▲国▶ ▲国▶ - 国 - のへで

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$,

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$, if $d \cap x \in M$ for all $x \in [z]^{\omega} \cap M$,

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$, if $d \cap x \in M$ for all $x \in [z]^{\omega} \cap M$, then there is $e \in M$ such that $e \cap M = d \cap M$.

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$, if $d \cap x \in M$ for all $x \in [z]^{\omega} \cap M$, then there is $e \in M$ such that $e \cap M = d \cap M$.

The Guessing Model Property (GMP) is the assertion that the set of guessing models is stationary in $\mathcal{P}_{\omega_2} \mathcal{H}(\chi)$ for all regular $\chi \ge \omega_2$.

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$, if $d \cap x \in M$ for all $x \in [z]^{\omega} \cap M$, then there is $e \in M$ such that $e \cap M = d \cap M$.

The Guessing Model Property (GMP) is the assertion that the set of guessing models is stationary in $\mathcal{P}_{\omega_2} \mathcal{H}(\chi)$ for all regular $\chi \ge \omega_2$.

Theorem (Viale, Krueger)

GMP implies that, for all singular cardinals λ of countable cofinality and all covering matrices D satisfying the Key Lemma, CP(D) holds.

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$, if $d \cap x \in M$ for all $x \in [z]^{\omega} \cap M$, then there is $e \in M$ such that $e \cap M = d \cap M$.

The Guessing Model Property (GMP) is the assertion that the set of guessing models is stationary in $\mathcal{P}_{\omega_2} \mathcal{H}(\chi)$ for all regular $\chi \geq \omega_2$.

Theorem (Viale, Krueger)

GMP implies that, for all singular cardinals λ of countable cofinality and all covering matrices D satisfying the Key Lemma, CP(D) holds.

Corollary (LH-Stejskalová)

GMP implies the following:

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$, if $d \cap x \in M$ for all $x \in [z]^{\omega} \cap M$, then there is $e \in M$ such that $e \cap M = d \cap M$.

The Guessing Model Property (GMP) is the assertion that the set of guessing models is stationary in $\mathcal{P}_{\omega_2} \mathcal{H}(\chi)$ for all regular $\chi \geq \omega_2$.

Theorem (Viale, Krueger)

GMP implies that, for all singular cardinals λ of countable cofinality and all covering matrices D satisfying the Key Lemma, CP(D) holds.

Corollary (LH-Stejskalová)

GMP implies the following:

1 Shelah's Strong Hypothesis;

Let us call a model $M \prec H(\chi)$ a guessing model if $|M| = \omega_1 \subseteq M$ and, for all $z \in M$ and $d \subseteq z$, if $d \cap x \in M$ for all $x \in [z]^{\omega} \cap M$, then there is $e \in M$ such that $e \cap M = d \cap M$.

The Guessing Model Property (GMP) is the assertion that the set of guessing models is stationary in $\mathcal{P}_{\omega_2}H(\chi)$ for all regular $\chi \ge \omega_2$.

Theorem (Viale, Krueger)

GMP implies that, for all singular cardinals λ of countable cofinality and all covering matrices D satisfying the Key Lemma, CP(D) holds.

Corollary (LH-Stejskalová)

GMP implies the following:

1 Shelah's Strong Hypothesis;

2
$$2^{\omega_1} = \begin{cases} 2^{\omega} & \text{if } \operatorname{cf}(2^{\omega}) \neq \omega_1 \\ (2^{\omega})^+ & \text{if } \operatorname{cf}(2^{\omega}) = \omega_1. \end{cases}$$

III: Tightness of G_{δ} -modifications

G_{δ} -modifications

Definition

Let X be a topological space.

G_{δ} -modifications

Definition

Let X be a topological space.

1 X is *Fréchet* if, for every $A \subseteq X$ and every $y \in cl(A)$, there is a sequence from A of length ω converging to y.
G_{δ} -modifications

Definition

Let X be a topological space.

- 1 X is *Fréchet* if, for every $A \subseteq X$ and every $y \in cl(A)$, there is a sequence from A of length ω converging to y.
- 2 The *tightness* of X, t(X), is the least cardinal κ such that, whenever $A \subseteq X$ and $y \in cl(A)$, there is $B \in [A]^{\leq \kappa}$ such that $y \in cl(B)$.

G_{δ} -modifications

Definition

Let X be a topological space.

- 1 X is *Fréchet* if, for every $A \subseteq X$ and every $y \in cl(A)$, there is a sequence from A of length ω converging to y.
- 2 The *tightness* of X, t(X), is the least cardinal κ such that, whenever $A \subseteq X$ and $y \in cl(A)$, there is $B \in [A]^{\leq \kappa}$ such that $y \in cl(B)$.
- 3 X is α₁ if whenever we are given a point x ∈ X and countably many sequences converging to x, there is a single sequence converging to x containing all of those countably many sequences mod finite.

G_{δ} -modifications

Definition

Let X be a topological space.

- 1 X is *Fréchet* if, for every $A \subseteq X$ and every $y \in cl(A)$, there is a sequence from A of length ω converging to y.
- 2 The *tightness* of X, t(X), is the least cardinal κ such that, whenever $A \subseteq X$ and $y \in cl(A)$, there is $B \in [A]^{\leq \kappa}$ such that $y \in cl(B)$.
- 3 X is α₁ if whenever we are given a point x ∈ X and countably many sequences converging to x, there is a single sequence converging to x containing all of those countably many sequences mod finite.
- 4 The G_{δ} -modification of X, denoted by X_{δ} , is the space with the same underlying set as X and with a base consisting of the G_{δ} sets of X.

Background results

・ロト・4回ト・4回ト・4回ト・4回ト

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, Weiss)

If X is a regular Lindelöf space, then $t(X_{\delta}) \leq 2^{t(X)}$.

Background results

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, Weiss)

If X is a regular Lindelöf space, then $t(X_{\delta}) \leq 2^{t(X)}$.

Theorem (DJSSW)

If there is a non-reflecting stationary subset of $S_{\omega}^{\kappa} := \{ \alpha < \kappa \mid cf(\alpha) = \omega \}$, then there is a Fréchet space X such that $t(X_{\delta}) = \kappa$.

Background results

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, Weiss)

If X is a regular Lindelöf space, then $t(X_{\delta}) \leq 2^{t(X)}$.

Theorem (DJSSW)

If there is a non-reflecting stationary subset of $S_{\omega}^{\kappa} := \{ \alpha < \kappa \mid cf(\alpha) = \omega \}$, then there is a Fréchet space X such that $t(X_{\delta}) = \kappa$.

Theorem (Usuba)

There is a normal countably tight space X such that $t(X_{\delta}) > 2^{\omega}$.

Work of Chen-Mertens and Szeptycki

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Theorem

Suppose that the P-ideal dichotomy holds. Then whenever X is a Fréchet, α_1 - space, we have $t(X_{\delta}) \leq \aleph_1$.

Work of Chen-Mertens and Szeptycki

Theorem

Suppose that the P-ideal dichotomy holds. Then whenever X is a Fréchet, α_1 - space, we have $t(X_{\delta}) \leq \aleph_1$.

Theorem

Suppose that κ is a regular uncountable cardinal and $\Box(\kappa)$ holds. Then there is a Fréchet, α_1 -space X such that $t(X_{\delta}) = \kappa$.

Let λ be singular of cofinality $\omega,$ and let $\mathcal D$ be a nice covering matrix for $\lambda^+.$

Let λ be singular of cofinality ω , and let \mathcal{D} be a nice covering matrix for λ^+ . Define a topological space X with underlying set $\lambda^+ \cup \{\infty\}$.

Let λ be singular of cofinality ω , and let \mathcal{D} be a nice covering matrix for λ^+ . Define a topological space X with underlying set $\lambda^+ \cup \{\infty\}$. Every point in λ^+ is isolated, and the basic open sets of ∞ are all sets of the form

$$U_{i,\beta} := \{\infty\} \cup (\lambda^+ \setminus D(i,\beta))$$
 $(i < \omega, \ \beta < \lambda^+).$

Let λ be singular of cofinality ω , and let \mathcal{D} be a nice covering matrix for λ^+ . Define a topological space X with underlying set $\lambda^+ \cup \{\infty\}$. Every point in λ^+ is isolated, and the basic open sets of ∞ are all sets of the form

$$U_{i,eta} := \{\infty\} \cup (\lambda^+ \setminus D(i,eta)) \qquad (i < \omega, \ eta < \lambda^+).$$

Theorem (LH-Rinot)

1 X is α_1 ;

Let λ be singular of cofinality ω , and let \mathcal{D} be a nice covering matrix for λ^+ . Define a topological space X with underlying set $\lambda^+ \cup \{\infty\}$. Every point in λ^+ is isolated, and the basic open sets of ∞ are all sets of the form

$$U_{i,eta} := \{\infty\} \cup (\lambda^+ \setminus D(i,eta)) \qquad (i < \omega, \ eta < \lambda^+).$$

Theorem (LH-Rinot)

1 X is α_1 ;

2
$$t(X_{\delta}) = \lambda^+;$$

Let λ be singular of cofinality ω , and let \mathcal{D} be a nice covering matrix for λ^+ . Define a topological space X with underlying set $\lambda^+ \cup \{\infty\}$. Every point in λ^+ is isolated, and the basic open sets of ∞ are all sets of the form

$$U_{i,\beta} := \{\infty\} \cup (\lambda^+ \setminus D(i,\beta))$$
 $(i < \omega, \ \beta < \lambda^+).$

Theorem (LH-Rinot)

- 1 X is α_1 ;
- 2 $t(X_{\delta}) = \lambda^+;$
- 3 if SCH fails at λ, i.e., if λ is strong limit and λ^ω > λ⁺, then X is Fréchet.

Corollary

If SCH fails at λ , then there is a Fréchet, α_1 -space X such that $t(X_{\delta}) = \lambda^+$.

IV: Coloring numbers

Definition

Let G = (X, E) be a graph.

Definition

Let G = (X, E) be a graph. The coloring number of G, Col(G), is the least cardinal θ for which there exists a well-ordering \prec of X such that, for all $x \in X$, x is connected in G to fewer than θ -many of its \prec -predecessors.

Definition

Let G = (X, E) be a graph. The coloring number of G, Col(G), is the least cardinal θ for which there exists a well-ordering \prec of X such that, for all $x \in X$, x is connected in G to fewer than θ -many of its \prec -predecessors.

Note that the chromatic number of G is always at most the coloring number of G.

Definition

Let G = (X, E) be a graph. The coloring number of G, Col(G), is the least cardinal θ for which there exists a well-ordering \prec of X such that, for all $x \in X$, x is connected in G to fewer than θ -many of its \prec -predecessors.

Note that the chromatic number of G is always at most the coloring number of G.

Theorem (Shelah)

If κ is a regular, uncountable cardinal and there is a non-reflecting stationary subset of S_{ω}^{κ} , then there is a graph $G = (\kappa, E)$ such that

Definition

Let G = (X, E) be a graph. The coloring number of G, Col(G), is the least cardinal θ for which there exists a well-ordering \prec of X such that, for all $x \in X$, x is connected in G to fewer than θ -many of its \prec -predecessors.

Note that the chromatic number of G is always at most the coloring number of G.

Theorem (Shelah)

If κ is a regular, uncountable cardinal and there is a non-reflecting stationary subset of S_{ω}^{κ} , then there is a graph $G = (\kappa, E)$ such that

G_α := (α, E ∩ [α]²) has countable coloring number for all α < κ;

Definition

Let G = (X, E) be a graph. The coloring number of G, Col(G), is the least cardinal θ for which there exists a well-ordering \prec of X such that, for all $x \in X$, x is connected in G to fewer than θ -many of its \prec -predecessors.

Note that the chromatic number of G is always at most the coloring number of G.

Theorem (Shelah)

If κ is a regular, uncountable cardinal and there is a non-reflecting stationary subset of S_{ω}^{κ} , then there is a graph $G = (\kappa, E)$ such that

G_α := (α, E ∩ [α]²) has countable coloring number for all α < κ;

•
$$\operatorname{Col}(G) = \omega_1$$
.

Theorem (LH-Rinot)

Suppose that κ is a regular, uncountable cardinal, and $\theta < \kappa$ is an infinite cardinal such that κ is not the successor of a singular cardinal of cofinality $cf(\theta)$.

Theorem (LH-Rinot)

Suppose that κ is a regular, uncountable cardinal, and $\theta < \kappa$ is an infinite cardinal such that κ is not the successor of a singular cardinal of cofinality $cf(\theta)$. Suppose also that $G = (\kappa, E)$ is a graph such that $Col(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$.

Theorem (LH-Rinot)

Suppose that κ is a regular, uncountable cardinal, and $\theta < \kappa$ is an infinite cardinal such that κ is not the successor of a singular cardinal of cofinality $cf(\theta)$. Suppose also that $G = (\kappa, E)$ is a graph such that $Col(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$. Then $Col(G) \leq \theta^+$.

Theorem (LH-Rinot)

Suppose that κ is a regular, uncountable cardinal, and $\theta < \kappa$ is an infinite cardinal such that κ is not the successor of a singular cardinal of cofinality $cf(\theta)$. Suppose also that $G = (\kappa, E)$ is a graph such that $Col(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$. Then $Col(G) \leq \theta^+$.

Corollary

If $\theta < \kappa$ are infinite cardinals and $G = (\kappa, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$, then $\operatorname{Col}(G) \leq \theta^{++}$.

Theorem (LH-Rinot)

Suppose that κ is a regular, uncountable cardinal, and $\theta < \kappa$ is an infinite cardinal such that κ is not the successor of a singular cardinal of cofinality $cf(\theta)$. Suppose also that $G = (\kappa, E)$ is a graph such that $Col(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$. Then $Col(G) \leq \theta^+$.

Corollary

If $\theta < \kappa$ are infinite cardinals and $G = (\kappa, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$, then $\operatorname{Col}(G) \leq \theta^{++}$.

Can we have G as in the corollary with $Col(G) = \theta^{++}$?

Theorem (LH-Rinot)

Suppose that κ is a regular, uncountable cardinal, and $\theta < \kappa$ is an infinite cardinal such that κ is not the successor of a singular cardinal of cofinality $cf(\theta)$. Suppose also that $G = (\kappa, E)$ is a graph such that $Col(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$. Then $Col(G) \leq \theta^+$.

Corollary

If $\theta < \kappa$ are infinite cardinals and $G = (\kappa, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$, then $\operatorname{Col}(G) \leq \theta^{++}$.

Can we have G as in the corollary with $\operatorname{Col}(G) = \theta^{++}$? The simplest arrangement in which this could conceivably happen is $\kappa = \aleph_{\omega+1}$ and $\theta = \aleph_0$.

Theorem (LH-Rinot)

Suppose that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Theorem (LH-Rinot)

Suppose that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$. Then whenever $G = (\aleph_{\omega+1}, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \aleph_0$ for all $\alpha < \aleph_{\omega+1}$, we have $\operatorname{Col}(G) \leq \aleph_1$.

Theorem (LH-Rinot)

Suppose that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$. Then whenever $G = (\aleph_{\omega+1}, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \aleph_0$ for all $\alpha < \aleph_{\omega+1}$, we have $\operatorname{Col}(G) \leq \aleph_1$.

This is not that surprising, since $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$ is a compactness principle. Perhaps more surprising:

Theorem (LH-Rinot)

Suppose that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$. Then whenever $G = (\aleph_{\omega+1}, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \aleph_0$ for all $\alpha < \aleph_{\omega+1}$, we have $\operatorname{Col}(G) \leq \aleph_1$.

This is not that surprising, since $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$ is a compactness principle. Perhaps more surprising:

Theorem (LH-Rinot)

Suppose that λ is a singular cardinal and \Box_{λ} holds.

Theorem (LH-Rinot)

Suppose that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$. Then whenever $G = (\aleph_{\omega+1}, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \aleph_0$ for all $\alpha < \aleph_{\omega+1}$, we have $\operatorname{Col}(G) \leq \aleph_1$.

This is not that surprising, since $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$ is a compactness principle. Perhaps more surprising:

Theorem (LH-Rinot)

Suppose that λ is a singular cardinal and \Box_{λ} holds. Then, whenever $\theta < \lambda$ and $G = (\lambda^+, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \theta$ for all $\alpha < \lambda^+$, we have $\operatorname{Col}(G) \leq \theta^+$.

Theorem (LH-Rinot)

Suppose that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$. Then whenever $G = (\aleph_{\omega+1}, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \aleph_0$ for all $\alpha < \aleph_{\omega+1}$, we have $\operatorname{Col}(G) \leq \aleph_1$.

This is not that surprising, since $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$ is a compactness principle. Perhaps more surprising:

Theorem (LH-Rinot)

Suppose that λ is a singular cardinal and \Box_{λ} holds. Then, whenever $\theta < \lambda$ and $G = (\lambda^+, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \theta$ for all $\alpha < \lambda^+$, we have $\operatorname{Col}(G) \leq \theta^+$. In fact, \Box_{λ} can be replaced by the much weaker assumption $S_{\theta^+}^{\lambda^+} \in I[\lambda^+]$.

Theorem (LH-Rinot)

Suppose that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$. Then whenever $G = (\aleph_{\omega+1}, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \aleph_0$ for all $\alpha < \aleph_{\omega+1}$, we have $\operatorname{Col}(G) \leq \aleph_1$.

This is not that surprising, since $(\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0)$ is a compactness principle. Perhaps more surprising:

Theorem (LH-Rinot)

Suppose that λ is a singular cardinal and \Box_{λ} holds. Then, whenever $\theta < \lambda$ and $G = (\lambda^+, E)$ is a graph such that $\operatorname{Col}(G_\alpha) < \theta$ for all $\alpha < \lambda^+$, we have $\operatorname{Col}(G) \leq \theta^+$. In fact, \Box_{λ} can be replaced by the much weaker assumption $S_{a+}^{\lambda^+} \in I[\lambda^+]$.

Conjecture

For all infinite cardinals $\theta < \kappa$, if $G = (\kappa, E)$ is a graph such that $\operatorname{Col}(G_{\alpha}) \leq \theta$ for all $\alpha < \kappa$, then $\operatorname{Col}(G) \leq \theta^+$.
Lemma (Shelah)

Suppose that κ is a regular cardinal, $G = (\kappa, E)$ is a graph, and $\mu < \kappa$ is infinite.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つくぐ

Lemma (Shelah)

Suppose that κ is a regular cardinal, $G = (\kappa, E)$ is a graph, and $\mu < \kappa$ is infinite. Let

 $S_{\mu}(G) := \{ \alpha < \kappa \mid (\exists \beta \ge \alpha) \mid \{ \eta < \alpha \mid \{\eta, \beta\} \in E \} \mid \ge \mu \}$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つくぐ

Lemma (Shelah)

Suppose that κ is a regular cardinal, $G = (\kappa, E)$ is a graph, and $\mu < \kappa$ is infinite. Let

$$S_{\mu}(G) := \{ \alpha < \kappa \mid (\exists \beta \ge \alpha) \mid \{ \eta < \alpha \mid \{\eta, \beta\} \in E\} \mid \ge \mu \}$$

1 If $S_{\mu}(G)$ is stationary, then $\operatorname{Col}(G) > \mu$.

Lemma (Shelah)

Suppose that κ is a regular cardinal, $G = (\kappa, E)$ is a graph, and $\mu < \kappa$ is infinite. Let

$$S_{\mu}(G) := \{ \alpha < \kappa \mid (\exists \beta \ge \alpha) \mid \{ \eta < \alpha \mid \{\eta, \beta\} \in E\} \mid \ge \mu \}$$

- 1 If $S_{\mu}(G)$ is stationary, then $\operatorname{Col}(G) > \mu$.
- If S_µ(G) is nonstationary and Col(G ↾ α) ≤ µ for all α < κ, then Col(G) ≤ µ.

Lemma (Shelah)

Suppose that κ is a regular cardinal, $G = (\kappa, E)$ is a graph, and $\mu < \kappa$ is infinite. Let

$$S_{\mu}(G) := \{ \alpha < \kappa \mid (\exists \beta \ge \alpha) \mid \{ \eta < \alpha \mid \{\eta, \beta\} \in E\} \mid \ge \mu \}$$

- 1 If $S_{\mu}(G)$ is stationary, then $\operatorname{Col}(G) > \mu$.
- If S_µ(G) is nonstationary and Col(G ↾ α) ≤ µ for all α < κ, then Col(G) ≤ µ.

Lemma (Todorcevic)

If λ is singular and \Box_{λ} holds, then there is a nice covering matrix \mathcal{D} for λ^+ such that, for all $\alpha < \beta < \lambda^+$ and all $j < \operatorname{cf}(\lambda)$, there is $i < \operatorname{cf}(\lambda)$ such that $D(j,\beta) \cap \alpha \subseteq D(i,\alpha)$.

Suppose for a contradiction that $cf(\lambda) = \theta < \lambda$, \Box_{λ} holds, and $G = (\lambda^+, E)$ is a graph such that $Col(G) = \theta^{++}$ but $Col(G \upharpoonright \alpha) \le \theta$ for all $\alpha < \lambda^+$.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Suppose for a contradiction that $cf(\lambda) = \theta < \lambda$, \Box_{λ} holds, and $G = (\lambda^+, E)$ is a graph such that $Col(G) = \theta^{++}$ but $Col(G \upharpoonright \alpha) \le \theta$ for all $\alpha < \lambda^+$.

Fix a covering matrix \mathcal{D} as in the previous lemma.

Suppose for a contradiction that $cf(\lambda) = \theta < \lambda$, \Box_{λ} holds, and $G = (\lambda^+, E)$ is a graph such that $Col(G) = \theta^{++}$ but $Col(G \upharpoonright \alpha) \le \theta$ for all $\alpha < \lambda^+$.

Fix a covering matrix \mathcal{D} as in the previous lemma. By Shelah's lemma, there is a stationary $S \subseteq \lambda^+$ and, for each $\alpha \in S$, an ordinal $\beta_{\alpha} \geq \alpha$ and a set $x_{\alpha} \in [\alpha]^{\theta^+}$ such that $\{\eta, \beta_{\alpha}\} \in E$ for all $\eta \in x_{\alpha}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose for a contradiction that $cf(\lambda) = \theta < \lambda$, \Box_{λ} holds, and $G = (\lambda^+, E)$ is a graph such that $Col(G) = \theta^{++}$ but $Col(G \upharpoonright \alpha) \le \theta$ for all $\alpha < \lambda^+$.

Fix a covering matrix \mathcal{D} as in the previous lemma. By Shelah's lemma, there is a stationary $S \subseteq \lambda^+$ and, for each $\alpha \in S$, an ordinal $\beta_{\alpha} \geq \alpha$ and a set $x_{\alpha} \in [\alpha]^{\theta^+}$ such that $\{\eta, \beta_{\alpha}\} \in E$ for all $\eta \in x_{\alpha}$. For each $\alpha \in S$, we can find $\eta_{\alpha} < \alpha$ and $i_{\alpha} < \theta$ such that $|x_{\alpha} \cap D(i_{\alpha}, \eta_{\alpha})| \geq \theta$.

Suppose for a contradiction that $cf(\lambda) = \theta < \lambda$, \Box_{λ} holds, and $G = (\lambda^+, E)$ is a graph such that $Col(G) = \theta^{++}$ but $Col(G \upharpoonright \alpha) \le \theta$ for all $\alpha < \lambda^+$.

Fix a covering matrix \mathcal{D} as in the previous lemma. By Shelah's lemma, there is a stationary $S \subseteq \lambda^+$ and, for each $\alpha \in S$, an ordinal $\beta_{\alpha} \geq \alpha$ and a set $x_{\alpha} \in [\alpha]^{\theta^+}$ such that $\{\eta, \beta_{\alpha}\} \in E$ for all $\eta \in x_{\alpha}$. For each $\alpha \in S$, we can find $\eta_{\alpha} < \alpha$ and $i_{\alpha} < \theta$ such that $|x_{\alpha} \cap D(i_{\alpha}, \eta_{\alpha})| \geq \theta$. Find a stationary $S' \subseteq S$ and a single (i, η) such that $(i_{\alpha}, \eta_{\alpha}) = (i, \eta)$ for all $\alpha \in S'$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose for a contradiction that $cf(\lambda) = \theta < \lambda$, \Box_{λ} holds, and $G = (\lambda^+, E)$ is a graph such that $Col(G) = \theta^{++}$ but $Col(G \upharpoonright \alpha) \le \theta$ for all $\alpha < \lambda^+$.

Fix a covering matrix \mathcal{D} as in the previous lemma. By Shelah's lemma, there is a stationary $S \subseteq \lambda^+$ and, for each $\alpha \in S$, an ordinal $\beta_{\alpha} \geq \alpha$ and a set $x_{\alpha} \in [\alpha]^{\theta^+}$ such that $\{\eta, \beta_{\alpha}\} \in E$ for all $\eta \in x_{\alpha}$. For each $\alpha \in S$, we can find $\eta_{\alpha} < \alpha$ and $i_{\alpha} < \theta$ such that $|x_{\alpha} \cap D(i_{\alpha}, \eta_{\alpha})| \geq \theta$. Find a stationary $S' \subseteq S$ and a single (i, η) such that $(i_{\alpha}, \eta_{\alpha}) = (i, \eta)$ for all $\alpha \in S'$.

But $|D(i, \eta)| < \lambda$, and there are unboundedly many $\beta < \lambda^+$, each of which is connected to at least θ -many elements of $D(i, \eta)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose for a contradiction that $cf(\lambda) = \theta < \lambda$, \Box_{λ} holds, and $G = (\lambda^+, E)$ is a graph such that $Col(G) = \theta^{++}$ but $Col(G \upharpoonright \alpha) \le \theta$ for all $\alpha < \lambda^+$.

Fix a covering matrix \mathcal{D} as in the previous lemma. By Shelah's lemma, there is a stationary $S \subseteq \lambda^+$ and, for each $\alpha \in S$, an ordinal $\beta_{\alpha} \geq \alpha$ and a set $x_{\alpha} \in [\alpha]^{\theta^+}$ such that $\{\eta, \beta_{\alpha}\} \in E$ for all $\eta \in x_{\alpha}$. For each $\alpha \in S$, we can find $\eta_{\alpha} < \alpha$ and $i_{\alpha} < \theta$ such that $|x_{\alpha} \cap D(i_{\alpha}, \eta_{\alpha})| \geq \theta$. Find a stationary $S' \subseteq S$ and a single (i, η) such that $(i_{\alpha}, \eta_{\alpha}) = (i, \eta)$ for all $\alpha \in S'$.

But $|D(i,\eta)| < \lambda$, and there are unboundedly many $\beta < \lambda^+$, each of which is connected to at least θ -many elements of $D(i,\eta)$. This immediately yields an initial segment of G with coloring number greater than θ .

Thank you for your attention!

