Baumgartner's Isomorphism Theorem for a Kurepa Line

Hossein Lamei Ramandi

University of Münster

August, 2022

イロト イ団ト イヨト イヨト

2

1/14

Introduction

Recall the following theorem from the 70's.

Theorem (Baumgartner)

It is consistent with ZFC that every two \aleph_1 -dense subsets of the reals are order isomorphic.

• A linear order L without endpoints is said to be $\underline{\kappa}$ -dense if for all x < y in L there are exactly κ many elements in between x, y.

• Baumgartner viewed his theorem, which is a consequence of PFA, as an extension of Cantor's famous theorem on the rationals: every two \aleph_0 -dense linear orders are isomorphic.

- Assume L is a linear order. Density of L is $\min\{|D|: D \subset L \text{ is dense }\}.$
- The analogue of Baumgartner's theorem for homogeneous linear orders of density \aleph_1 is closely related to Kurepa lines.

• A linear order is said to be homogeneous if every two non-empty open intervals are isomorphic.

イロト 不得 トイヨト イヨト

э.

Definition

A linear order is said to be Kurepa if

- $|L| \geq \aleph_2$,
- $\bullet\,$ the closure of any countable subset of L is countable, and
- density of L is \aleph_1
- There is a Kurepa line if and only if there is a Kurepa tree.

• If there is an inaccessible cardinal then it is consistent that there are no Kurepa trees (lines).

æ

イロト イ団ト イヨト イヨト

An isomorphism theorem for Kurepa lines

Theorem

It is consistent with CH there is a homogeneous Kurepa line K of size \aleph_2 such that whenever $L \subset K$ is \aleph_2 -dense and all $x \in L$ have uncountable cofinality and coinitiaity, then $L \simeq K$.

э

4/14

メロト メポト メヨト メヨト

Definition

Assume X is uncountable, $S \subset [X]^{\omega}$ and P is a forcing. We say that P is S-complete if for all suitable models M with $M \cap X \in S$ all decreasing (M, P)-generic ω -sequences of elements of P have a lower bound in P.

- \bullet This criteria is used in order to show certain sets remain stationary and ω_1 is preserved.
- In order to make sure \aleph_2 is preserved by our forcings, we use ideas behind Shelah's proper isomorphism condition machinery.

5/14

イロト 不得 トイヨト イヨト

Generating a candidate for ${\boldsymbol K}$

Definition

- ${\boldsymbol{Q}}$ is the poset consisting of all conditions ${\boldsymbol{q}}=(T_q,b_q)$ such that
 - T_q is a countable lexicographically ordered tree of height α_q+1 such that every element of it has an extension in the top level, and
 - b_q is a countable partial function from ω_2 onto the top level of T_q .

We let $q \leq p$ if:

- T_q is an end-extension of T_p ,
- $dom(b_q) \supset dom(b_p)$,
- for all $\xi \in dom(b_p)$, $b_p(\xi) \leq_{T_q} b_q(\xi)$

6/14

< ロ > < 同 > < 回 > < 回 >

- It is well known that Q is countably closed and under CH, has the $\aleph_2\text{-chain}$ condition.
- Assume $G \subset Q$ is generic.
- From now on $T = \bigcup \{T_q : q \in G\}.$
- $b_{\xi} = \{b_q(\xi) : q \in G\}$ is a cofinal branch of T.
- • $B(T) = \{b_{\xi} : \xi \in \omega_2\}$ is the set of all branches of T.
- $\bullet \Omega(T) \text{ is stationary in } [B(T)]^{\omega}.$

2

7/14

イロト イ団ト イヨト イヨト

Adding tree embeddings to \boldsymbol{T}

Definition

Suppose T is as above U a downward closed everywhere Kurepa subtree of T, and $C_U \subset \omega_2$ a club that is fast enough. The poset $Q_{T,U}$ is the set of all conditions $p = (f_p, \phi_p)$ such that

- $f_p: T \upharpoonright A_p \longrightarrow U \upharpoonright Ap$ is a level preserving tree isomorphism, where $A_P \subset \omega_1$ is countable and closed with $\max A_p = \alpha_p$,
- $\textbf{0} \hspace{0.1 cm} \phi_p \hspace{0.1 cm} \text{is a countable partial injection on} \hspace{0.1 cm} \omega_2 \hspace{0.1 cm} \text{such that}$
 - for all $\xi \in dom(\phi_p), b_{\phi_p}(\xi) \in B(U),$
 - **(2)** ϕ_p respects C_U
- if $dom(\phi_p)$ then $f_p(b_{\xi}(\alpha_p)) = b_{\phi_p(\xi)(\alpha_p)}$.

We let $p \leq q$ if $f_q \subset f_p$, $f_p \upharpoonright T_q = f_q$ and $\phi_p \subset \phi_q$.

This forcing is $\Omega(T)\text{-complete}$ and satisfies the $\Omega(T)\text{-completeness}$ isomorphism condition.

2

8/14

Definition

A club $C \subset \omega_2$ is fast enough for U and T if it is the set of all $\sup(M_{\xi} \cap \omega_2)$ where $\langle M_{\xi} : \xi \in \omega_2 \rangle$ is a continuous \in -chain of \aleph_1 -sized elementary submodels of H_{θ} such that

- U, T are in M_0
- for all $\xi \in \omega_1$, $\xi \cup \omega_1 \subset M_{\xi}$

• for all $\xi \in \omega_1$, the sequence up to ξ is in $M_{\xi+1}$

Let ϕ be a partial function on ω_2 and $C \subset \omega_2$. We say ϕ respects C whenever $\xi < \alpha$ is equivalent to $\phi(\xi) < \alpha$ for all $\xi \in dom(\phi)$ and $\alpha \in C$.

9/14

(日) (四) (日) (日) (日)

Making small dense sets biembeddable

Definition

Assume T is as above and X, Y are two subsets of ω_2 such that $|X| = |Y| = \aleph_1$ and the closure of both $\{b_{\xi} : \xi \in X\}$, $\{b_{\xi} : \xi \in Y\}$ have cardinality \aleph_2 . Let $U = \bigcup \{b_{\xi} : \xi \in X\}$ and $V = \bigcup \{b_{\xi} : \xi \in Y\}$. $\mathcal{F}_{XY}(=\mathcal{F})$ is the poset consisting of all conditions $p = (f_p, \phi_p)$ for which the following hold:

- $f_p: U \upharpoonright A_p \longrightarrow V \upharpoonright A_p$ is a lex order and level preserving tree isomorphism where $A_p \subset \omega_1$ is countable and closed with $\max A_p = \alpha_p$.
- **Q** ϕ_p is a countable partial injection from ω_2 to ω_2 such that:
 - () ϕ_p respects a fast enough club,
 - () for all $\xi \in dom(\phi_p)$, if $\xi \in X$ then $\phi_p(\xi) \in Y$, and
 - the map $b_{\xi} \mapsto b_{\phi_p(\xi)}$ is lexicographic order preserving.
- **O** For all $t \in T_{\alpha_p}$ there are at most finitely many $\xi \in (\phi_p)$ with $t \in b_{\xi}$.
- For all $\xi \in (\phi_p)$, $f_p(b_{\xi}(\alpha_p)) = b_{\phi_p(\xi)}(\alpha_p)$.
- We let $q \leq p$ if $f_p \subset f_q$, $A_q \cap \alpha_p = A_p$ and $\phi_p \subset \phi_q$.

This forcing is $\Omega(T)$ -complete but it does not satisfy $\Omega(T)$ -cic.

By iterating these posets over a model of GCH we can get reach a model in which the following hold.

- T is Kurepa.
- T is club isomorphic to all of its everywhere Kurepa subtrees and has no Aronszajn subtree.
- $\bigcirc \ \Omega(T) \text{ is stationary.}$
- If X, Y are two suborders of K = B(T) and |X| = |Y| = ℵ₁ and their closure has cardinality ℵ₂ then X embeds into Y as a linear order.

メロト メポト メヨト メヨト

For all \aleph_2 -dense $L \subset K$ we add an \aleph_2 -dense closed $Z \subset L$.

Definition

Assume L is as above. P_L is the set of all conditions $p = (Z_p, A_p)$ such that:

- $Z_p \subset L$ is countable and non-empty,
- A_p is a countable antichain of T such that $Z_p \cap A_p = \emptyset$.
- P_L is $\Omega(T)$ -complete and has the $\Omega(T)$ -cic. In particular preserves \aleph_1, \aleph_2 .
- Assume $G \subset P_L$ is generic. Then $\bigcup_{p \in G} Z_p \cup \{b \in K : \exists p \in G \ b \cap A_p \neq \emptyset\} = K$.
- After forcing with P_L , $2^{\omega_1} = 2^{\omega_2}$.

イロト 不得 トイヨト イヨト

By iterating these posets over a model of GCH we can get reach a model in which the following hold.

- T is Kurepa.
- T is club isomorphic to all of its everywhere Kurepa subtrees and has no Aronszajn subtree.
- $\bigcirc \ \Omega(T) \text{ is stationary.}$
- If X, Y are two suborders of K = B(T) and $|X| = |Y| = \aleph_1$ and their closure has cardinality \aleph_2 then X embeds into Y as a linear order.
- K embeds in all of its \aleph_2 -dense suborders.

(日)

Isomorphism Forcings

- $L \subset K$ is \aleph_2 -dense and there is no $x \in L$ with countable cofinality or coinitiality.
- If $t \in T$, L_t refers to the set of all $b \in K$ such that $t \in b$.

Definition

Assume L is as above and $U = \bigcup L$. For each $(t, s) \in T \otimes U$ fix embeddings $i_{ts} : K_t \longrightarrow L_s$ and $j_{st} : L_s \longrightarrow K_t$. The forcing I consists of conditions $p = (f_p, \phi_p)$ such that:

- $f_p: T \upharpoonright A_p \longrightarrow U \upharpoonright A_p$ is a lex order and level preserving tree isomorphism where $A_p \subset \omega_1$ is countable and closed with $\max A_p = \alpha_p$.
- ϕ_p is a countable partial injection from K to L such that for all $b \in dom(\phi_p)$ there $(t,s) \in T \otimes U$ such that $\phi_p(b) = i_{ts}(b)$ or $\phi_p(b) = j_{st}(b)$.
- For each $t \in T_{\alpha_p}$ there are at most finitely many $b \in K$ with $t \in b \in dom(\phi_p)$.
- for all $b \in dom(\phi_p)$, $f_p(b(\alpha_p)) = [\phi_p(b)](\alpha_p)$.

This poset is $\Omega(T)\text{-complete}$ and has the $\Omega(T)\text{-cic.}$

14/14

イロト イ団ト イヨト イヨト 二日