Convex Embeddability on Countable Linear Orders and Knot Theory

Joint work with Alberto Marcone, Luca Motto Ros, and Vadim Weinstein (former Kulikov)

Martina Iannella Università degli Studi di Udine

> SETTOP 2022 22/08/2022

Classification problems and Borel reducibility

Definition

Given two classification problems (X, E) and (Y, F), we say that E reduces to F iff there exists a map $\varphi: X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y),$$

for all $x, y \in X$.

Classification problems and Borel reducibility

Definition

Given two classification problems (X, E) and (Y, F), we say that E reduces to F iff there exists a map $\varphi: X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y),$$

for all $x, y \in X$.

If X and Y are two standard Borel spaces and φ is Borel we say that E is **Borel reducible** to F, and write $E \leq_B F$.

We say that E and F are Borel bi-reducible, and write $E \sim_B F$, if $E \leq_B F$ and $F \leq_B E$.

Classification problems and Borel reducibility

Definition

Given two classification problems (X, E) and (Y, F), we say that E reduces to F iff there exists a map $\varphi: X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y),$$

for all $x, y \in X$.

If X and Y are two standard Borel spaces and φ is Borel we say that E is **Borel reducible** to F, and write $E \leq_B F$.

We say that E and F are Borel bi-reducible, and write $E \sim_B F$, if $E \leq_B F$ and $F \leq_B E$.

If X and Y are two topological spaces and φ is a Baire measurable map, we say that E is **Baire reducible** to F, and write $E \leq_{Baire} F$.

Example

Let LO be the Polish space of codes for linear orders on \mathbb{N} , i.e.

$$\mathsf{LO} = \{ L \in 2^{\mathbb{N} \times \mathbb{N}} : L \text{ codes a linear order} \},$$

and \cong_{LO} is the isomorphism relation on LO .

Example

Let LO be the Polish space of codes for linear orders on \mathbb{N} , i.e.

$$\mathsf{LO} = \{ L \in 2^{\mathbb{N} \times \mathbb{N}} : L \text{ codes a linear order} \},$$

and \cong_{LO} is the isomorphism relation on LO.

• \cong_{LO} is an analytic equivalence relation: it is induced by a continuous action of the infinite symmetric group S_{∞} .

Example

Let LO be the Polish space of codes for linear orders on \mathbb{N} , i.e.

$$\mathsf{LO} = \{ L \in 2^{\mathbb{N} \times \mathbb{N}} : L \text{ codes a linear order} \},$$

and \cong_{LO} is the isomorphism relation on LO.

- \cong_{LO} is an analytic equivalence relation: it is induced by a continuous action of the infinite symmetric group S_{∞} .
- \cong_{LO} is S_{∞} -complete, i.e. any other equivalence relation arising from a Borel action of the group S_{∞} Borel reduces to \cong_{LO} .

Connections between linear orders and knots

Definition

Let \bar{B} be a space homeomorphic to a closed ball in \mathbb{R}^3 . Given a map $f: [0,1] \to \bar{B}$, we say that the pair $(\bar{B}, \operatorname{Im} f)$ is a **proper arc** in \bar{B} if f is a topological embedding and $f(x) \in \partial \bar{B} \iff x = 0$ or x = 1. The collection of proper arcs is denoted by \mathcal{A} .

Connections between linear orders and knots

Definition

Let \bar{B} be a space homeomorphic to a closed ball in \mathbb{R}^3 . Given a map $f \colon [0,1] \to \bar{B}$, we say that the pair $(\bar{B}, \operatorname{Im} f)$ is a **proper arc** in \bar{B} if f is a topological embedding and $f(x) \in \partial \bar{B} \iff x = 0$ or x = 1. The collection of proper arcs is denoted by \mathcal{A} .

Definition

Two proper arcs (\bar{B}, f) and $(\bar{B'}, f')$ are **equivalent**, in symbols

$$(\bar{B}, f) \equiv_{\mathcal{A}} (\bar{B}', f'),$$

if there exists a homeomorphism $\varphi: \bar{B} \to \bar{B}'$ such that $\varphi(f) = f'$.

Connections between linear orders and knots

Definition

Let \bar{B} be a space homeomorphic to a closed ball in \mathbb{R}^3 . Given a map $f: [0,1] \to \bar{B}$, we say that the pair $(\bar{B}, \operatorname{Im} f)$ is a **proper arc** in \bar{B} if f is a topological embedding and $f(x) \in \partial \bar{B} \iff x = 0$ or x = 1. The collection of proper arcs is denoted by \mathcal{A} .

Definition

Two proper arcs (\bar{B}, f) and $(\bar{B'}, f')$ are **equivalent**, in symbols

$$(\bar{B}, f) \equiv_{\mathcal{A}} (\bar{B}', f'),$$

if there exists a homeomorphism $\varphi: \bar{B} \to \bar{B}'$ such that $\varphi(f) = f'$.

A **knot** is a homeomorphic image of S^1 in S^3 . The collection of all knots is denoted by \mathcal{K} .

A **knot** is a homeomorphic image of S^1 in S^3 . The collection of all knots is denoted by \mathcal{K} .

Definition

Two knots $K, K' \in \mathcal{K}$ are **equivalent**, in symbols

$$K \equiv_{\mathcal{K}} K'$$
,

if there exists a homeomorphism $\varphi: S^3 \to S^3$ such that $\varphi(K) = K'$.

A **knot** is a homeomorphic image of S^1 in S^3 . The collection of all knots is denoted by \mathcal{K} .

Definition

Two knots $K, K' \in \mathcal{K}$ are **equivalent**, in symbols

$$K \equiv_{\mathcal{K}} K'$$
,

if there exists a homeomorphism $\varphi: S^3 \to S^3$ such that $\varphi(K) = K'$.

Trivial knot

Trefoil knot

- (a) $\cong_{\mathsf{LO}} \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}.$
- (b) There is a turbulent equivalence relation E such that $E \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$, hence $\equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \nleq_B \cong_{\mathsf{LO}}$. Thus $\cong_{\mathsf{LO}} <_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.

- (a) $\cong_{\mathsf{LO}} \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}.$
- (b) There is a turbulent equivalence relation E such that $E \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$, hence $\equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \nleq_B \cong_{\mathsf{LO}}$. Thus $\cong_{\mathsf{LO}} <_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.

Definition

Let $(\bar{B}, f), (\bar{B}', g) \in \mathcal{A}$. We say that (\bar{B}', g) is a **component** of (\bar{B}, f) , and set

$$(\bar{B}',g) \lesssim_{\mathcal{A}} (\bar{B},f),$$

if there exists a topological embedding $\varphi: \bar{B}' \to \bar{B}$ such that $\varphi(g) = f \cap \text{Im } \varphi$.

- (a) $\cong_{\mathsf{LO}} \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}.$
- (b) There is a turbulent equivalence relation E such that $E \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$, hence $\equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \nleq_B \cong_{\mathsf{LO}}$. Thus $\cong_{\mathsf{LO}} <_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.

Definition

Let $(\bar{B}, f), (\bar{B}', g) \in \mathcal{A}$. We say that (\bar{B}', g) is a **component** of (\bar{B}, f) , and set

$$(\bar{B}',g) \lesssim_{\mathcal{A}} (\bar{B},f),$$

if there exists a topological embedding $\varphi: \bar{B}' \to \bar{B}$ such that $\varphi(g) = f \cap \text{Im } \varphi$.

The relation $\lesssim_{\mathcal{A}}$ is an analytic quasi-order on \mathcal{A} .

- (a) $\cong_{\mathsf{LO}} \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}.$
- (b) There is a turbulent equivalence relation E such that $E \leq_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$, hence $\equiv_{\mathcal{A}}, \equiv_{\mathcal{K}} \nleq_B \cong_{\mathsf{LO}}$. Thus $\cong_{\mathsf{LO}} <_B \equiv_{\mathcal{A}}, \equiv_{\mathcal{K}}$.

Definition

Let $(\bar{B}, f), (\bar{B}', g) \in \mathcal{A}$. We say that (\bar{B}', g) is a **component** of (\bar{B}, f) , and set

$$(\bar{B}',g) \lesssim_{\mathcal{A}} (\bar{B},f),$$

if there exists a topological embedding $\varphi: \bar{B}' \to \bar{B}$ such that $\varphi(g) = f \cap \text{Im } \varphi$.

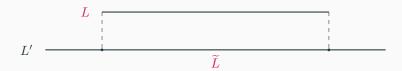
The relation $\lesssim_{\mathcal{A}}$ is an analytic quasi-order on \mathcal{A} .

$$? \leq_B \lesssim_{\mathcal{A}}$$

Convex embeddability on LO

Consider the relation of **convex embeddability** \leq_{LO} between two linear orders L and L' (R. Bonnet, E. Corominas and M. Pouzet, 1973):

 $L \leq_{\mathsf{LO}} L'$ if L is isomorphic to a convex subset \widetilde{L} of L'.



We call **convex bi-embeddability**, and denote by \boxtimes_{LO} , the equivalence relation on LO induced by \trianglelefteq_{LO} .

Clearly, for $L, L' \in LO$,

$$L \cong_{\mathsf{LO}} L' \Rightarrow L \bowtie_{\mathsf{LO}} L',$$

but the converse is not true.

Example

$$\omega + \mathbb{Z}\omega \succeq_{\mathsf{LO}} \mathbb{Z}\omega$$
, but $\omega + \mathbb{Z}\omega \ncong_{\mathsf{LO}} \mathbb{Z}\omega$.

We call **convex bi-embeddability**, and denote by \boxtimes_{LO} , the equivalence relation on LO induced by \trianglelefteq_{LO} .

Clearly, for $L, L' \in LO$,

$$L\cong_{\mathsf{LO}} L'\Rightarrow L\boxtimes_{\mathsf{LO}} L',$$

but the converse is not true.

Example

$$\omega + \mathbb{Z}\omega \succeq_{\mathsf{LO}} \mathbb{Z}\omega$$
, but $\omega + \mathbb{Z}\omega \ncong_{\mathsf{LO}} \mathbb{Z}\omega$.

$$? \leq_B \lesssim_{\mathcal{A}}$$

We call **convex bi-embeddability**, and denote by \boxtimes_{LO} , the equivalence relation on LO induced by \trianglelefteq_{LO} .

Clearly, for $L, L' \in LO$,

$$L \cong_{\mathsf{LO}} L' \Rightarrow L \bowtie_{\mathsf{LO}} L',$$

but the converse is not true.

Example

 $\omega + \mathbb{Z}\omega \underline{\bowtie}_{\mathsf{LO}} \mathbb{Z}\omega$, but $\omega + \mathbb{Z}\omega \ncong_{\mathsf{LO}} \mathbb{Z}\omega$.

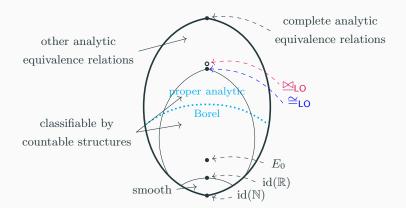
Theorem [I. - Motto Ros]

 $\leq_{\mathsf{LO}} \leq_B \lesssim_{\mathcal{A}}$. Thus also $\boxtimes_{\mathsf{LO}} \leq_B \approx_{\mathcal{A}}$, where $\approx_{\mathcal{A}}$ is the analytic equivalence relation associated to $\lesssim_{\mathcal{A}}$.

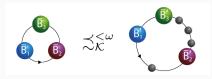
Complexity with respect to Borel Reducibility

Theorem [I. - Marcone - Motto Ros - Weinstein]

- (a) $\cong_{\mathsf{LO}} \leq_B \boxtimes_{\mathsf{LO}}$.
- (b) $\bowtie_{\mathsf{LO}} \leq_{Baire} \cong_{\mathsf{LO}}$.
- (c) If X is a turbulent Polish G-space, then the equivalence relation induced by the group G on X is not Borel reducible to \bowtie_{LO} .



A notion of component for Knots



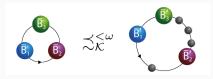
Definition

Let $K, K' \in \mathcal{K}$. Then K is a (finite) piecewise component of K', in symbols

$$K \lesssim_{\mathcal{K}}^{<\omega} K',$$

if and only if there is an orientation of K' and a finite number of closed balls $\bar{B_1'},...,\bar{B_n'}$ such that

A notion of component for Knots



Definition

Let $K, K' \in \mathcal{K}$. Then K is a (finite) piecewise component of K', in symbols

$$K \lesssim_{\mathcal{K}}^{<\omega} K'$$
,

if and only if there is an orientation of K' and a finite number of closed balls $\bar{B}'_1, ..., \bar{B}'_n$ such that

- (a) the $(\bar{B}'_i, K' \cap \bar{B}'_i)$ are (almost) pairwise disjoint sub-arcs of K', oriented according to the chosen orientation of K', of which K is an "ordered" (finite) tame sum;
- (b) if an endpoint of some $(\bar{B}'_i, K' \cap \bar{B}'_i)$ is singular, then it is not isolated.

Countable Circular Orders

$$? \leq_B \lesssim_{\mathcal{K}}^{<\omega}$$

Countable Circular Orders

$$? \leq_B \lesssim_{\mathcal{K}}^{<\omega}$$

Definition (Cěch, 1969)

A ternary relation $C \subset X^3$ on a set X is said to be a **circular** order if the following conditions are satisfied:

- Cyclicity: $(x, y, z) \in C \Rightarrow (y, z, x) \in C$;
- Asymmetry: $(x, y, z) \in C \Rightarrow (y, x, z) \notin C$;
- Transitivity: $(x, y, z), (x, z, w) \in C \Rightarrow (x, y, w) \in C$;
- Totality: if $x, y, z \in X$ are distinct, then $(x, y, z) \in C$ or $(x, z, y) \in C$.

Denote by CO the Polish space of codes for circular orders on \mathbb{N} , i.e.

$$\mathsf{CO} = \{ C \in 2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}} : C \text{ codes a circular order} \}.$$

The isomorphism relation on CO

Definition

Let $C, C' \in \mathsf{CO}$. We say that C and C' are **circularly isomorphic**, and write $C \cong_{\mathsf{CO}} C'$, if there exists a bijective function between them which preserves the circular order.

The isomorphism relation on CO

Definition

Let $C, C' \in \mathsf{CO}$. We say that C and C' are **circularly isomorphic**, and write $C \cong_{\mathsf{CO}} C'$, if there exists a bijective function between them which preserves the circular order.

Every $L \in \mathsf{LO}$ defines a standard circular order $C_L \in \mathsf{CO}$ as follows:

$$C_L(n,m,k) \iff (n <_L m <_L k) \vee (m <_L k <_L n) \vee (k <_L n <_L m).$$

Clearly, for $L, L' \in \mathsf{LO}$,

$$L \cong_{\mathsf{LO}} L' \Rightarrow C_L \cong_{\mathsf{CO}} C_{L'}.$$

Example

$$\omega + 1 \ncong_{\mathsf{LO}} \omega$$
, but $C_{\omega+1} \cong_{\mathsf{CO}} C_{\omega}$.

The isomorphism relation on CO

Definition

Let $C, C' \in \mathsf{CO}$. We say that C and C' are **circularly isomorphic**, and write $C \cong_{\mathsf{CO}} C'$, if there exists a bijective function between them which preserves the circular order.

Every $L \in \mathsf{LO}$ defines a standard circular order $C_L \in \mathsf{CO}$ as follows:

$$C_L(n, m, k) \iff (n <_L m <_L k) \lor (m <_L k <_L n) \lor (k <_L n <_L m).$$

Clearly, for $L, L' \in \mathsf{LO}$,

$$L \cong_{\mathsf{LO}} L' \Rightarrow C_L \cong_{\mathsf{CO}} C_{L'}.$$

Example

 $\omega + 1 \ncong_{\mathsf{LO}} \omega$, but $C_{\omega+1} \cong_{\mathsf{CO}} C_{\omega}$.

Theorem [I. - Marcone]

- $\cong_{\mathsf{CO}} \sim_B \cong_{\mathsf{LO}}$.
- $\cong_{\mathsf{CO}} <_B \equiv_{\mathcal{K}}$.

Convex embeddability on CO

Definition (B. Kulpeshov, H. D. Macpherson, 2005)

Let $A \subseteq C$, where C is a circular order. The set A is said to be **convex** in C if for any $x, y \in A$ one of the following holds:

- 1. for any $z \in C$ with C(x, z, y) we have $z \in A$;
- 2. for any $z \in C$ with C(y, z, x) we have $z \in A$.

Convex embeddability on CO

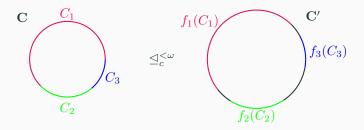
Definition (B. Kulpeshov, H. D. Macpherson, 2005)

Let $A \subseteq C$, where C is a circular order. The set A is said to be **convex** in C if for any $x, y \in A$ one of the following holds:

- 1. for any $z \in C$ with C(x, z, y) we have $z \in A$;
- 2. for any $z \in C$ with C(y, z, x) we have $z \in A$.

Definition

Let C and C' be circular orders. We say that C is a **convex** of C', and write $C \subseteq_c C'$, if there exists a convex subset A of C' such that $C \cong_{\mathsf{CO}} A$. We denote by $(\subseteq_c)_{\mathsf{CO}}$ the restriction of the convexity relation to the set CO of (codes for) countable circular linear orders.



Let $C, C' \in \mathsf{CO}$. Then $C \leq_c^{<\omega} C'$ if and only if there exists $k \in \omega$ and (non necessarily infinite) convex subsets C_1, \ldots, C_k of C such that

- $C = C_1 + ... + C_k$, and
- for every i = 1, ..., k there exists $f_i : C_i \to C'$ witnessing $C_i \leq_c C'$ such that the $f_i(C_i)$'s are pairwise disjoint in C' and

$$C'(f_i(x_i), f_j(y_j), f_h(z_h))$$

for every $x_i \in C_i, y_j \in C_j, z_h \in C_h$ and $i < j < h \le k$.

 $(\unlhd_c^{<\omega})_{\mathsf{CO}}$ is an analytic quasi-order on CO . Denote by $(\boxtimes_c^{<\omega})_{\mathsf{CO}}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$\cong_{\mathsf{LO}} \leq_B ({\boxtimes_c^{<\omega}})_{\mathsf{CO}}.$$

 $(\unlhd_c^{<\omega})_{\mathsf{CO}}$ is an analytic quasi-order on CO . Denote by $(\boxtimes_c^{<\omega})_{\mathsf{CO}}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$\cong_{\mathsf{LO}} \leq_B (\boxtimes_c^{<\omega})_{\mathsf{CO}}.$$

Consider the equivalence relation E_1 , that is defined on $\mathbb{R}^{\mathbb{N}}$ as

$$x E_1 y \iff \exists m \ \forall n \geq m \ x(n) = y(n).$$

 E_1 is not reducible to any orbit equivalence relation.

 $(\unlhd_c^{<\omega})_{\mathsf{CO}}$ is an analytic quasi-order on CO. Denote by $(\boxtimes_c^{<\omega})_{\mathsf{CO}}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$\cong_{\mathsf{LO}} \leq_B (\boxtimes_c^{<\omega})_{\mathsf{CO}}.$$

Consider the equivalence relation E_1 , that is defined on $\mathbb{R}^{\mathbb{N}}$ as

$$x E_1 y \iff \exists m \ \forall n \geq m \ x(n) = y(n).$$

 E_1 is not reducible to any orbit equivalence relation.

Theorem [Weinstein]

$$E_1 \leq_B ({\boxtimes_c^{<\omega}})_{\mathsf{CO}}.$$

 $(\trianglelefteq_c^{<\omega})_{\mathsf{CO}}$ is an analytic quasi-order on CO. Denote by $(\bowtie_c^{<\omega})_{\mathsf{CO}}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$\cong_{\mathsf{LO}} \leq_B (\boxtimes_c^{<\omega})_{\mathsf{CO}}.$$

Consider the equivalence relation E_1 , that is defined on $\mathbb{R}^{\mathbb{N}}$ as

$$x E_1 y \iff \exists m \ \forall n \geq m \ x(n) = y(n).$$

 E_1 is not reducible to any orbit equivalence relation.

Theorem [Weinstein]

$$E_1 \leq_B ({\boxtimes_c^{<\omega}})_{\mathsf{CO}}.$$

As corollaries, we have

• $({\underline{\bowtie}}_c^{<\omega})_{\mathsf{CO}}$ is not reducible to any orbit equivalence relation;

 $(\unlhd_c^{<\omega})_{\mathsf{CO}}$ is an analytic quasi-order on CO. Denote by $(\boxtimes_c^{<\omega})_{\mathsf{CO}}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$\cong_{\mathsf{LO}} \leq_B (\boxtimes_c^{<\omega})_{\mathsf{CO}}.$$

Consider the equivalence relation E_1 , that is defined on $\mathbb{R}^{\mathbb{N}}$ as

$$x E_1 y \iff \exists m \ \forall n \geq m \ x(n) = y(n).$$

 E_1 is not reducible to any orbit equivalence relation.

Theorem [Weinstein]

$$E_1 \leq_B ({\boxtimes_c^{<\omega}})_{\mathsf{CO}}.$$

As corollaries, we have

- $({\boxtimes_c^{<\omega}})_{CO}$ is not reducible to any orbit equivalence relation;
- $\cong_{\mathsf{LO}} <_B (\boxtimes_c^{<\omega})_{\mathsf{CO}};$

 $(\unlhd_c^{<\omega})_{\mathsf{CO}}$ is an analytic quasi-order on CO. Denote by $(\boxtimes_c^{<\omega})_{\mathsf{CO}}$ its induced (analytic) equivalence relation.

Theorem [I. - Marcone - Motto Ros]

$$\cong_{\mathsf{LO}} \leq_B (\boxtimes_c^{<\omega})_{\mathsf{CO}}.$$

Consider the equivalence relation E_1 , that is defined on $\mathbb{R}^{\mathbb{N}}$ as

$$x E_1 y \iff \exists m \ \forall n \geq m \ x(n) = y(n).$$

 E_1 is not reducible to any orbit equivalence relation.

Theorem [Weinstein]

$$E_1 \leq_B ({\boxtimes_c^{<\omega}})_{\mathsf{CO}}.$$

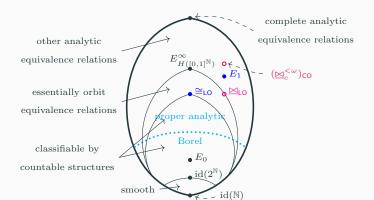
As corollaries, we have

- $({\underline{\bowtie}}_c^{<\omega})_{\mathsf{CO}}$ is not reducible to any orbit equivalence relation;
- $\cong_{\mathsf{LO}} <_B (\bowtie_c^{<\omega})_{\mathsf{CO}};$
- $(\boxtimes_c^{<\omega})_{CO}$ does not reduce to \boxtimes_{LO} .

Denote by $\approx_{\mathcal{K}}^{<\omega}$ its associated (analytic) equivalence relation and call it the (finite) piecewise mutual component relation.

Theorem [I. - Marcone - Motto Ros - Weinstein]

- $(\unlhd_c^{<\omega})_{\mathsf{CO}} \leq_B \lesssim_{\mathcal{K}}^{<\omega}$. Then, we have $(\boxtimes_c^{<\omega})_{\mathsf{CO}} \leq_B \approx_{\mathcal{K}}^{<\omega}$.
- $\cong_{\mathsf{CO}} \sim_B \cong_{\mathsf{LO}} <_B \approx_{\mathcal{K}}^{<\omega}$.
- $E_1 \leq_B \approx_{\mathcal{K}}^{<\omega}$. Thus $\approx_{\mathcal{K}}^{<\omega}$ is not reducible to any orbit equivalence relation.



References

- R. Bonnet, E. Corominas and M. Pouzet, Théorie des ensembles Simplification pour la moltiplication ordinale, gallica.bnf.fr/Archives de l'Académie des sciences, vol. 276 (1973).
- E. Cěch, Point Sets, Academia, Prague, (1969).
- B.Sh. Kulpeshov, H.D. Macpherson, Minimality conditions on circularly ordered structures, Math. Log. Quart., (2005).
- V. Kulikov, A Non-classification Result for Wild Knots, Trans. Amer. Math. Soc., vol. 369 (2017).
- Su Gao, Invariant Descriptive Set Theory, Pure and Applied Mathematics, Chapman and Hall/CRC, (2008).
- A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Springer-Verlag, (1995).

Thank you for your attention!