On the resolvability of product spaces

István Juhász

Alfréd Rényi Institute of Mathematics

SETTOP 2022, Novi Sad, August 22 - 25, 2022

István Juhász (Rényi Institute)

resolvability of products

2022 1/13

István Juhász (Rényi Institute)

2

イロト イヨト イヨト イヨト

A space X is κ -resolvable if it has κ pairwise disjoint dense sets.

< 4 →

.

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

< 4 →

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

< 4 →

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

```
(ir)resolvable = 2-(ir)resolvable)
```

```
X is OHI if every U \in \tau^+(X) is irresolvable.
```

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable.

FACT. If X is irresolvable then there is an OHI $U \in \tau^+(X)$.

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$.

- E - - E -

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of X.

- A I I I A I I I I

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of *X*. FACT. For every $\kappa \ge \omega$ there is a 0-dimensional *T*₂-space *X* of size κ that is both OHI and neat.

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of *X*. FACT. For every $\kappa \ge \omega$ there is a 0-dimensional T_2 -space *X* of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa = \omega$.)

(4回) (4回) (4回)

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of *X*. FACT. For every $\kappa \ge \omega$ there is a 0-dimensional T_2 -space *X* of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa = \omega$.)

X is maximally resolvable if it is $\Delta(X)$ -resolvable, where $\Delta(X) = \min\{|U| : U \in \tau^+(X)\}.$

イロト イ団ト イヨト イヨト

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of *X*. FACT. For every $\kappa \ge \omega$ there is a 0-dimensional T_2 -space *X* of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa = \omega$.)

X is maximally resolvable if it is $\Delta(X)$ -resolvable, where $\Delta(X) = \min\{|U| : U \in \tau^+(X)\}.$

FACT. Finite spaces are maximally resolvable.

イロト イ理ト イヨト イヨト

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of *X*. FACT. For every $\kappa \ge \omega$ there is a 0-dimensional T_2 -space *X* of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa = \omega$.)

X is maximally resolvable if it is $\Delta(X)$ -resolvable, where $\Delta(X) = \min\{|U| : U \in \tau^+(X)\}.$

FACT. Finite spaces are maximally resolvable.

So, in what follows, for any X we assume $|U| \ge \omega$ for all $U \in \tau^+(X)$.

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of *X*. FACT. For every $\kappa \ge \omega$ there is a 0-dimensional T_2 -space *X* of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa = \omega$.)

X is maximally resolvable if it is $\Delta(X)$ -resolvable, where $\Delta(X) = \min\{|U| : U \in \tau^+(X)\}.$

FACT. Finite spaces are maximally resolvable.

So, in what follows, for any X we assume $|U| \ge \omega$ for all $U \in \tau^+(X)$. All crowded T_0 -spaces are such.

A space X is κ -resolvable if it has κ pairwise disjoint dense sets. κ -irresolvable otherwise.

(ir)resolvable = 2-(ir)resolvable)

X is OHI if every $U \in \tau^+(X)$ is irresolvable. FACT. If *X* is irresolvable then there is an OHI $U \in \tau^+(X)$. If *X* is OHI then Int $A = \emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

X is neat if |U| = |X| for every $U \in \tau^+(X)$. Clearly, $\{U \in \tau^+(X) : U \text{ is neat}\}$ is a π -base of *X*. FACT. For every $\kappa \ge \omega$ there is a 0-dimensional T_2 -space *X* of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa = \omega$.)

X is maximally resolvable if it is $\Delta(X)$ -resolvable, where $\Delta(X) = \min\{|U| : U \in \tau^+(X)\}.$

FACT. Finite spaces are maximally resolvable.

So, in what follows, for any X we assume $|U| \ge \omega$ for all $U \in \tau^+(X)$. All crowded T_0 -spaces are such.

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

El'kin: Are there two spaces whose product is irresolvable?

∃ >

El'kin: Are there two spaces whose product is irresolvable? (He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

El'kin: Are there two spaces whose product is irresolvable? (He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.) Malychin, 1973:

El'kin: Are there two spaces whose product is irresolvable?

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

El'kin: Are there two spaces whose product is irresolvable?

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ -complete free ultrafilter on κ then the product of the T_1 -space $\langle \kappa, \mathcal{U} \cup \{\emptyset\} \rangle$ with any countable irresolvable space is irresolvable.

• Can T_1 be improved to T_2 or T_3 ?

El'kin: Are there two spaces whose product is irresolvable?

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

- **W** Can T_1 be improved to T_2 or T_3 ?
- Is the measurable cardinal necessary?

El'kin: Are there two spaces whose product is irresolvable?

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

- Can T_1 be improved to T_2 or T_3 ?
- Is the measurable cardinal necessary?
- Can both factors be "small"?

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

• Can
$$T_1$$
 be improved to T_2 or T_3 ?

- Is the measurable cardinal necessary?
- Can both factors be "small"?
- Can we find three spaces whose product is irresolvable?

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ -complete free ultrafilter on κ then the product of the T_1 -space $\langle \kappa, \mathcal{U} \cup \{\emptyset\} \rangle$ with any countable irresolvable space is irresolvable.

• Can
$$T_1$$
 be improved to T_2 or T_3 ?

- Is the measurable cardinal necessary?
- Can both factors be "small"?
- Can we find three spaces whose product is irresolvable?

FACT. Any product of infinitely many non-singleton spaces is c-resolvable.

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ -complete free ultrafilter on κ then the product of the T_1 -space $\langle \kappa, \mathcal{U} \cup \{\emptyset\} \rangle$ with any countable irresolvable space is irresolvable.

W Can
$$T_1$$
 be improved to T_2 or T_3 ?

- Is the measurable cardinal necessary?
- Can both factors be "small"?
- Can we find three spaces whose product is irresolvable?

FACT. Any product of infinitely many non-singleton spaces is c-resolvable.

Proof: For $x, y \in \prod \{X_n : n < \omega\}$ let $x \sim y$ iff $|\{n : x(n) \neq y(n)\}| < \omega$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

(He proved: X is irresolvable iff $\tau^+(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ -complete free ultrafilter on κ then the product of the T_1 -space $\langle \kappa, \mathcal{U} \cup \{\emptyset\} \rangle$ with any countable irresolvable space is irresolvable.

• Can
$$T_1$$
 be improved to T_2 or T_3 ?

- Is the measurable cardinal necessary?
- Can both factors be "small"?
- Can we find three spaces whose product is irresolvable?

FACT. Any product of infinitely many non-singleton spaces is c-resolvable.

Proof: For $x, y \in \prod \{X_n : n < \omega\}$ let $x \sim y$ iff $|\{n : x(n) \neq y(n)\}| < \omega$. Every \sim -equivalence class is dense in the product.

A (10) A (10)

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products,

< ロ > < 同 > < 回 > < 回 >

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf

イロト イ理ト イヨト イヨト

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ *-resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. *Int* $(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$.

- A I I I A I I I I

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ *-resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa$ *-resolvable*}.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ -*resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa$ -resolvable}. EXAMPLES. (i) If $\kappa > \omega$ and *X* is κ -resolvable then $\kappa \in MR(X)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ -*resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa$ -resolvable}. EXAMPLES. (i) If $\kappa \ge \omega$ and *X* is κ -resolvable then $\kappa \in MR(X)$. (ii) If *X* is neat then $|X| \in MR(X)$.

(日)

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ *-resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa$ *-resolvable*}. EXAMPLES. (i) If $\kappa \ge \omega$ and *X* is κ *-resolvable* then $\kappa \in MR(X)$. (ii) If *X* is neat then $|X| \in MR(X)$. (iii) If *X* is meager then $\omega \in MR(X)$.

(日)

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ -*resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa$ -resolvable}. EXAMPLES. (i) If $\kappa \ge \omega$ and *X* is κ -resolvable then $\kappa \in MR(X)$. (ii) If *X* is neat then $|X| \in MR(X)$. (iii) If *X* is meager then $\omega \in MR(X)$.

THEOREM

If $X \times Y$ is irresolvable then $MR(X) \cap MR(Y) = \emptyset$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ -*resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa\text{-resolvable}\}$. EXAMPLES. (i) If $\kappa \ge \omega$ and *X* is $\kappa\text{-resolvable}$ then $\kappa \in MR(X)$. (ii) If *X* is neat then $|X| \in MR(X)$. (iii) If *X* is meager then $\omega \in MR(X)$.

THEOREM

If $X \times Y$ is irresolvable then $MR(X) \cap MR(Y) = \emptyset$.

PROOF. If $\kappa \in MR(X) \cap MR(Y)$ then there are monotone κ -resolutions $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ and $Y = \bigcup \{B_{\alpha} : \alpha < \kappa\}$.

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ -*resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa$ -resolvable}. EXAMPLES. (i) If $\kappa \ge \omega$ and *X* is κ -resolvable then $\kappa \in MR(X)$. (ii) If *X* is neat then $|X| \in MR(X)$. (iii) If *X* is meager then $\omega \in MR(X)$.

THEOREM

If $X \times Y$ is irresolvable then $MR(X) \cap MR(Y) = \emptyset$.

PROOF. If $\kappa \in MR(X) \cap MR(Y)$ then there are monotone κ -resolutions $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ and $Y = \bigcup \{B_{\alpha} : \alpha < \kappa\}$. Let $rk_X(x) = \min \{\alpha : x \in A_{\alpha}\}$ and $rk_Y(y) = \min \{\alpha : y \in B_{\alpha}\}$.

イロト イ理ト イヨト イヨト

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ -*resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa\text{-resolvable}\}$. EXAMPLES. (i) If $\kappa \ge \omega$ and *X* is $\kappa\text{-resolvable}$ then $\kappa \in MR(X)$. (ii) If *X* is neat then $|X| \in MR(X)$. (iii) If *X* is meager then $\omega \in MR(X)$.

THEOREM

If $X \times Y$ is irresolvable then $MR(X) \cap MR(Y) = \emptyset$.

PROOF. If $\kappa \in MR(X) \cap MR(Y)$ then there are monotone κ -resolutions $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ and $Y = \bigcup \{B_{\alpha} : \alpha < \kappa\}$. Let $rk_X(x) = \min \{\alpha : x \in A_{\alpha}\}$ and $rk_Y(y) = \min \{\alpha : y \in B_{\alpha}\}$. Then $\{\langle x, y \rangle : rk_X(x) \le rk_Y(y)\}$ and $\{\langle x, y \rangle : rk_X(x) > rk_Y(y)\}$ are disjoint dense sets in $X \times Y$.

Unlabeled items are from: J-Soukup-Szentmiklóssy, *On the resolvability of products*, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. *X* is *monotonically* κ -*resolvable* if $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ for $\{A_{\alpha} : \alpha < \kappa\}$ increasing s.t. $Int(A_{\alpha}) = \emptyset$ for all $\alpha < \kappa$. $MR(X) = \{\kappa : X \text{ is monotonically } \kappa\text{-resolvable}\}$. EXAMPLES. (i) If $\kappa \ge \omega$ and *X* is $\kappa\text{-resolvable}$ then $\kappa \in MR(X)$. (ii) If *X* is neat then $|X| \in MR(X)$. (iii) If *X* is meager then $\omega \in MR(X)$.

THEOREM

If $X \times Y$ is irresolvable then $MR(X) \cap MR(Y) = \emptyset$.

PROOF. If $\kappa \in MR(X) \cap MR(Y)$ then there are monotone κ -resolutions $X = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ and $Y = \bigcup \{B_{\alpha} : \alpha < \kappa\}$. Let $rk_X(x) = \min \{\alpha : x \in A_{\alpha}\}$ and $rk_Y(y) = \min \{\alpha : y \in B_{\alpha}\}$. Then $\{\langle x, y \rangle : rk_X(x) \le rk_Y(y)\}$ and $\{\langle x, y \rangle : rk_X(x) > rk_Y(y)\}$ are disjoint dense sets in $X \times Y$.

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space,

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y.

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is.

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire.

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^2 is resolvable.

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^2 is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^2 is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X^2 always 3-resolvable?

토 M 세 토 M ~

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^2 is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X^2 always 3-resolvable?

토 M 세 토 M ~

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin MR(X) \cap MR(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^+(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^2 is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X^2 always 3-resolvable?

토 M 세 토 M ~

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

< ∃ ►

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable.

★ ∃ > < ∃ >

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular. (This doesn't work for ω or weakly compacts.)

(二回)) (二回)) (二回))

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular. (This doesn't work for ω or weakly compacts.) Also, no topology is involved!

(日)

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular. (This doesn't work for ω or weakly compacts.) Also, no topology is involved!

THEOREM (JSSz)

 X^2 is ω -resolvable for any countable (crowded) T_3 -space X.

イロト イ押ト イヨト イヨト

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular. (This doesn't work for ω or weakly compacts.) Also, no topology is involved!

THEOREM (JSSz)

 X^2 is ω -resolvable for any countable (crowded) T_3 -space X.

This does use topology!

イロト イ押ト イヨト イヨト

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular. (This doesn't work for ω or weakly compacts.) Also, no topology is involved!

THEOREM (JSSz)

 X^2 is ω -resolvable for any countable (crowded) T_3 -space X.

This does use topology!

PROBLEM. How about T₂-spaces?

イロト イ押ト イヨト イヨト

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular. (This doesn't work for ω or weakly compacts.) Also, no topology is involved!

THEOREM (JSSz)

 X^2 is ω -resolvable for any countable (crowded) T_3 -space X.

This does use topology!

PROBLEM. How about T_2 -spaces?

We dont even know if X^2 is 3-resolvable!

イロト イ団ト イヨト イヨト

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c : \kappa \times \lambda \to \mu$ s.t. $c[A \times B] = \mu$ for any $A \in [\kappa]^{\kappa}$ and $B \in [\lambda]^{\lambda}$.

 $S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X| = \kappa$ and $|Y| = \lambda$ then $X \times Y$ is μ -resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \ge \omega$!

FACT. $S(\lambda^+, \lambda^+, \lambda^+)$ holds if λ is regular. (This doesn't work for ω or weakly compacts.) Also, no topology is involved!

THEOREM (JSSz)

 X^2 is ω -resolvable for any countable (crowded) T_3 -space X.

This does use topology!

PROBLEM. How about T_2 -spaces?

We dont even know if X^2 is 3-resolvable!

イロト イ団ト イヨト イヨト

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

How to get irresolvable products with "nice and small" factors?

글 🕨 🖌 글

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

- E - - E -

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$.

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}.$

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}$. Then $X = Z_{y,0} \cup Z_{y,1}$ and so $Int(Z_{y,0}) \cup Int(Z_{y,1})$ is dense open in X by OHI.

(日)

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}$. Then $X = Z_{y,0} \cup Z_{y,1}$ and so $Int(Z_{y,0}) \cup Int(Z_{y,1})$ is dense open in X by OHI. Fix $Y = \{y_\alpha : \alpha < \mu\}$.

イロト イポト イヨト イヨト

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}$. Then $X = Z_{y,0} \cup Z_{y,1}$ and so $Int(Z_{y,0}) \cup Int(Z_{y,1})$ is dense open in X by OHI. Fix $Y = \{y_\alpha : \alpha < \mu\}$. By transfinite recursion define $B_\alpha \in \mathcal{B}$, $i_\alpha < 2$ for $\alpha < \mu$ s.t. $\{B_\alpha : \alpha < \mu\} \subset \mathcal{B}$ is decreasing and $B_\alpha \subset Z_{y_\alpha, i_\alpha}$, i.e. $B_\alpha \times \{y_\alpha\} \subset Z_{i_\alpha}$.

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}$. Then $X = Z_{y,0} \cup Z_{y,1}$ and so $Int(Z_{y,0}) \cup Int(Z_{y,1})$ is dense open in X by OHI. Fix $Y = \{y_\alpha : \alpha < \mu\}$. By transfinite recursion define $B_\alpha \in \mathcal{B}$, $i_\alpha < 2$ for $\alpha < \mu$ s.t. $\{B_\alpha : \alpha < \mu\} \subset \mathcal{B}$ is decreasing and $B_\alpha \subset Z_{y_\alpha, i_\alpha}$, i.e. $B_\alpha \times \{y_\alpha\} \subset Z_{i_\alpha}$. By $\mu < \lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap \{B_\alpha : \alpha < \mu\}$.

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}$. Then $X = Z_{y,0} \cup Z_{y,1}$ and so $Int(Z_{y,0}) \cup Int(Z_{y,1})$ is dense open in X by OHI. Fix $Y = \{y_\alpha : \alpha < \mu\}$. By transfinite recursion define $B_\alpha \in \mathcal{B}$, $i_\alpha < 2$ for $\alpha < \mu$ s.t. $\{B_\alpha : \alpha < \mu\} \subset \mathcal{B}$ is decreasing and $B_\alpha \subset Z_{y_\alpha, i_\alpha}$, i.e. $B_\alpha \times \{y_\alpha\} \subset Z_{i_\alpha}$. By $\mu < \lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap \{B_\alpha : \alpha < \mu\}$. Let $A_i = \{y_\alpha : i_\alpha = i\}$ for i < 2, then $Y = A_0 \cup A_1$, so $V = Int(A_i) \neq \emptyset$ for some i < 2.

イロト イポト イヨト イヨト 二日

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}$. Then $X = Z_{y,0} \cup Z_{y,1}$ and so $Int(Z_{y,0}) \cup Int(Z_{y,1})$ is dense open in X by OHI. Fix $Y = \{y_\alpha : \alpha < \mu\}$. By transfinite recursion define $B_\alpha \in \mathcal{B}$, $i_\alpha < 2$ for $\alpha < \mu$ s.t. $\{B_\alpha : \alpha < \mu\} \subset \mathcal{B}$ is decreasing and $B_\alpha \subset Z_{y_\alpha, i_\alpha}$, i.e. $B_\alpha \times \{y_\alpha\} \subset Z_{i_\alpha}$. By $\mu < \lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap \{B_\alpha : \alpha < \mu\}$. Let $A_i = \{y_\alpha : i_\alpha = i\}$ for i < 2, then $Y = A_0 \cup A_1$, so $V = Int(A_i) \neq \emptyset$ for some i < 2. For any $y_\alpha \in V$ we have $B \times \{y_\alpha\} \subset B_\alpha \times \{y_\alpha\} \subset Z_i$, hence $B \times V \subset Z_i$.

István Juhász (Rényi Institute)

How to get irresolvable products with "nice and small" factors? DEFINITION. S is λ -closed if for any $\alpha < \lambda$ and monotone decreasing $\{S_{\beta} : \beta < \alpha\} \subset S$ there is $S \in S$ s.t. $S \subset \bigcap \{S_{\beta} : \beta < \alpha\}$.

THEOREM

If the OHI space X has a λ -closed π -base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y| < \lambda$.

PROOF. Let $X \times Y = Z_0 \cup Z_1$. For $y \in Y$ and i < 2 let $Z_{y,i} = \{x \in X : \langle x, y \rangle \in Z_i\}$. Then $X = Z_{y,0} \cup Z_{y,1}$ and so $Int(Z_{y,0}) \cup Int(Z_{y,1})$ is dense open in X by OHI. Fix $Y = \{y_\alpha : \alpha < \mu\}$. By transfinite recursion define $B_\alpha \in \mathcal{B}$, $i_\alpha < 2$ for $\alpha < \mu$ s.t. $\{B_\alpha : \alpha < \mu\} \subset \mathcal{B}$ is decreasing and $B_\alpha \subset Z_{y_\alpha, i_\alpha}$, i.e. $B_\alpha \times \{y_\alpha\} \subset Z_{i_\alpha}$. By $\mu < \lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap \{B_\alpha : \alpha < \mu\}$. Let $A_i = \{y_\alpha : i_\alpha = i\}$ for i < 2, then $Y = A_0 \cup A_1$, so $V = Int(A_i) \neq \emptyset$ for some i < 2. For any $y_\alpha \in V$ we have $B \times \{y_\alpha\} \subset B_\alpha \times \{y_\alpha\} \subset Z_i$, hence $B \times V \subset Z_i$.

István Juhász (Rényi Institute)

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

DEFINITION. (i) $S \subset \mathcal{P}(\kappa)$ is λ -independent if for any $p \in Fn(S, 2; \lambda)$ $B_p = \bigcap \{S : p(S) = 1\} \cap \bigcap \{\kappa \setminus S : p(S) = 0\} \neq \emptyset.$

イロト イ押ト イヨト イヨト

DEFINITION. (i) $S \subset \mathcal{P}(\kappa)$ is λ -independent if for any $p \in Fn(S, 2; \lambda)$ $B_p = \bigcap \{S : p(S) = 1\} \cap \bigcap \{\kappa \setminus S : p(S) = 0\} \neq \emptyset$. (ii) $MI(\kappa, \lambda)$ says that there is a separating maximal λ -independent

family S on κ .

イロト イ押ト イヨト イヨト

DEFINITION. (i) $S \subset \mathcal{P}(\kappa)$ is λ -independent if for any $p \in Fn(S, 2; \lambda)$ $B_p = \bigcap \{S : p(S) = 1\} \cap \bigcap \{\kappa \setminus S : p(S) = 0\} \neq \emptyset.$

(ii) $MI(\kappa, \lambda)$ says that there is a separating maximal λ -independent family S on κ .

(iii) The λ -closed $\mathcal{B}(S) = \{B_p : p \in Fn(S, 2; \lambda)\}$ is the base of a 0-dimensional T_2 topology $\tau(S)$ on κ that is irresolvable.

DEFINITION. (i) $S \subset \mathcal{P}(\kappa)$ is λ -independent if for any $p \in Fn(S, 2; \lambda)$ $B_p = \bigcap \{S : p(S) = 1\} \cap \bigcap \{\kappa \setminus S : p(S) = 0\} \neq \emptyset.$

(ii) $MI(\kappa, \lambda)$ says that there is a separating maximal λ -independent family S on κ .

(iii) The λ -closed $\mathcal{B}(S) = \{B_p : p \in Fn(S, 2; \lambda)\}$ is the base of a 0-dimensional T_2 topology $\tau(S)$ on κ that is irresolvable. So, there is $X(S) \in \tau(S)^+$ that is OHI.

(日)

DEFINITION. (i) $S \subset \mathcal{P}(\kappa)$ is λ -independent if for any $p \in Fn(S, 2; \lambda)$ $B_p = \bigcap \{S : p(S) = 1\} \cap \bigcap \{\kappa \setminus S : p(S) = 0\} \neq \emptyset.$

(ii) $MI(\kappa, \lambda)$ says that there is a separating maximal λ -independent family S on κ .

(iii) The λ -closed $\mathcal{B}(S) = \{B_p : p \in Fn(S, 2; \lambda)\}$ is the base of a 0-dimensional T_2 topology $\tau(S)$ on κ that is irresolvable. So, there is $X(S) \in \tau(S)^+$ that is OHI.

THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of $MI(\kappa, \omega_1)$ with $\kappa \leq 2^{\omega_1}$, moreover $MI(\kappa, \omega_1)$ implies CH.

(日)

DEFINITION. (i) $S \subset \mathcal{P}(\kappa)$ is λ -independent if for any $p \in Fn(S, 2; \lambda)$ $B_p = \bigcap \{S : p(S) = 1\} \cap \bigcap \{\kappa \setminus S : p(S) = 0\} \neq \emptyset.$

(ii) $MI(\kappa, \lambda)$ says that there is a separating maximal λ -independent family S on κ .

(iii) The λ -closed $\mathcal{B}(S) = \{B_p : p \in Fn(S, 2; \lambda)\}$ is the base of a 0-dimensional T_2 topology $\tau(S)$ on κ that is irresolvable. So, there is $X(S) \in \tau(S)^+$ that is OHI.

THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of $MI(\kappa, \omega_1)$ with $\kappa \leq 2^{\omega_1}$, moreover $MI(\kappa, \omega_1)$ implies CH.

COROLLARY

The existence of a measurable cardinal implies the consistency of having a 0-dimensional T_2 -space of size $\leq 2^{\omega_1}$ whose product with any countable irresolvable space is irresolvable.

DEFINITION. (i) $S \subset \mathcal{P}(\kappa)$ is λ -independent if for any $p \in Fn(S, 2; \lambda)$ $B_p = \bigcap \{S : p(S) = 1\} \cap \bigcap \{\kappa \setminus S : p(S) = 0\} \neq \emptyset.$

(ii) $MI(\kappa, \lambda)$ says that there is a separating maximal λ -independent family S on κ .

(iii) The λ -closed $\mathcal{B}(S) = \{B_p : p \in Fn(S, 2; \lambda)\}$ is the base of a 0-dimensional T_2 topology $\tau(S)$ on κ that is irresolvable. So, there is $X(S) \in \tau(S)^+$ that is OHI.

THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of $MI(\kappa, \omega_1)$ with $\kappa \leq 2^{\omega_1}$, moreover $MI(\kappa, \omega_1)$ implies CH.

COROLLARY

The existence of a measurable cardinal implies the consistency of having a 0-dimensional T_2 -space of size $\leq 2^{\omega_1}$ whose product with any countable irresolvable space is irresolvable.

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable.

< 47 ▶

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable. M(n) denotes that there are n measurables.

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable. M(n) denotes that there are n measurables.

PROPOSITION

If $\lambda_0 = \omega < \lambda_1 \le \kappa_1 < \lambda_2 \le \kappa_2 < \cdots < \lambda_n \le \kappa_n$ are s.t. $MI(\kappa_i, \lambda_i)$ for each $0 < i \le n$ then $\Pi^+(n)$ holds.

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable. M(n) denotes that there are n measurables.

PROPOSITION

If $\lambda_0 = \omega < \lambda_1 \le \kappa_1 < \lambda_2 \le \kappa_2 < \cdots < \lambda_n \le \kappa_n$ are s.t. $MI(\kappa_i, \lambda_i)$ for each $0 < i \le n$ then $\Pi^+(n)$ holds.

THEOREM

M(n), (resp. $M(\omega)$) implies that there are $\omega < \kappa_1 < \cdots < \kappa_n$ (resp. $\omega < \kappa_1 < \kappa_2 < \cdots$) s.t. $MI(\kappa_i, \kappa_i)$ for each *i*.

(日)

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable. M(n) denotes that there are n measurables.

PROPOSITION

If $\lambda_0 = \omega < \lambda_1 \le \kappa_1 < \lambda_2 \le \kappa_2 < \cdots < \lambda_n \le \kappa_n$ are s.t. $MI(\kappa_i, \lambda_i)$ for each $0 < i \le n$ then $\Pi^+(n)$ holds.

THEOREM

M(n), (resp. $M(\omega)$) implies that there are $\omega < \kappa_1 < \cdots < \kappa_n$ (resp. $\omega < \kappa_1 < \kappa_2 < \cdots$) s.t. $MI(\kappa_i, \kappa_i)$ for each *i*. Consequently, (i) for $n < \omega$ M(n) implies the consistency of $\Pi^+(n)$;

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable. M(n) denotes that there are n measurables.

PROPOSITION

If $\lambda_0 = \omega < \lambda_1 \le \kappa_1 < \lambda_2 \le \kappa_2 < \cdots < \lambda_n \le \kappa_n$ are s.t. $MI(\kappa_i, \lambda_i)$ for each $0 < i \le n$ then $\Pi^+(n)$ holds.

THEOREM

M(n), (resp. $M(\omega)$) implies that there are $\omega < \kappa_1 < \cdots < \kappa_n$ (resp. $\omega < \kappa_1 < \kappa_2 < \cdots$) s.t. $Ml(\kappa_i, \kappa_i)$ for each *i*. Consequently, (i) for $n < \omega$ M(n) implies the consistency of $\Pi^+(n)$; (ii) $M(\omega)$ implies the consistency of having infinitely many 0-dimensional T_2 -spaces s.t. the product of any finitely many of them is irresolvable.

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable. M(n) denotes that there are n measurables.

PROPOSITION

If $\lambda_0 = \omega < \lambda_1 \le \kappa_1 < \lambda_2 \le \kappa_2 < \cdots < \lambda_n \le \kappa_n$ are s.t. $MI(\kappa_i, \lambda_i)$ for each $0 < i \le n$ then $\Pi^+(n)$ holds.

THEOREM

M(n), (resp. $M(\omega)$) implies that there are $\omega < \kappa_1 < \cdots < \kappa_n$ (resp. $\omega < \kappa_1 < \kappa_2 < \cdots$) s.t. $Ml(\kappa_i, \kappa_i)$ for each *i*. Consequently, (i) for $n < \omega$ M(n) implies the consistency of $\Pi^+(n)$; (ii) $M(\omega)$ implies the consistency of having infinitely many 0-dimensional T_2 -spaces s.t. the product of any finitely many of them is irresolvable.

PROBLEM. Are M(n) and $\Pi^+(n)$ equiconsistent for any $1 < n \le \omega$?

 $\Pi^+(n)$ denotes that there are n + 1 0-dimensional T_2 -spaces whose product is irresolvable. M(n) denotes that there are n measurables.

PROPOSITION

If $\lambda_0 = \omega < \lambda_1 \le \kappa_1 < \lambda_2 \le \kappa_2 < \cdots < \lambda_n \le \kappa_n$ are s.t. $MI(\kappa_i, \lambda_i)$ for each $0 < i \le n$ then $\Pi^+(n)$ holds.

THEOREM

M(n), (resp. $M(\omega)$) implies that there are $\omega < \kappa_1 < \cdots < \kappa_n$ (resp. $\omega < \kappa_1 < \kappa_2 < \cdots$) s.t. $Ml(\kappa_i, \kappa_i)$ for each *i*. Consequently, (i) for $n < \omega$ M(n) implies the consistency of $\Pi^+(n)$; (ii) $M(\omega)$ implies the consistency of having infinitely many 0-dimensional T_2 -spaces s.t. the product of any finitely many of them is irresolvable.

PROBLEM. Are M(n) and $\Pi^+(n)$ equiconsistent for any $1 < n \le \omega$?

István Juhász (Rényi Institute)

イロト イポト イヨト イヨ

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Eckertson, 1997: NO from $MI(\kappa, \kappa)$ with $\kappa > \omega$, so his space is "large"!

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Eckertson, 1997: NO from $MI(\kappa, \kappa)$ with $\kappa > \omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y| < \min \{\widehat{c}(X), add(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$ -irresolvable.

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Eckertson, 1997: NO from $MI(\kappa, \kappa)$ with $\kappa > \omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y| < \min \{\widehat{c}(X), add(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$ -irresolvable.

COROLLARY

 $MI(\kappa, \omega_1)$ implies the consistency of having a 0-dimensional T_2 -space X s.t. $\hat{c}(X) = \omega_2 < \Delta(X) = |X| \le 2^{\omega_1}$ and $\omega_1 \le add(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_2 -irresolvable, hence not maximally resolvable.

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Eckertson, 1997: NO from $MI(\kappa, \kappa)$ with $\kappa > \omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y| < \min \{\hat{c}(X), add(\mathcal{N}(X))\}$ then $X \times Y$ is $\hat{c}(X)$ -irresolvable.

COROLLARY

 $MI(\kappa, \omega_1)$ implies the consistency of having a 0-dimensional T_2 -space X s.t. $\widehat{c}(X) = \omega_2 < \Delta(X) = |X| \le 2^{\omega_1}$ and $\omega_1 \le add(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_2 -irresolvable, hence not maximally resolvable.

Our OHI X from $MI(\kappa, \omega_1)$ works: $c(X) = \omega_1$ follows from CH;

イロト イ理ト イヨト イヨト

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Eckertson, 1997: NO from $MI(\kappa, \kappa)$ with $\kappa > \omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y| < \min \{\widehat{c}(X), add(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$ -irresolvable.

COROLLARY

 $MI(\kappa, \omega_1)$ implies the consistency of having a 0-dimensional T_2 -space X s.t. $\widehat{c}(X) = \omega_2 < \Delta(X) = |X| \le 2^{\omega_1}$ and $\omega_1 \le add(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_2 -irresolvable, hence not maximally resolvable.

Our OHI X from $MI(\kappa, \omega_1)$ works: $c(X) = \omega_1$ follows from CH; $\omega_1 \leq add(\mathcal{N}(X))$ follows from the ω_1 -closed base.

イロン イボン イヨン 一日

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Eckertson, 1997: NO from $MI(\kappa, \kappa)$ with $\kappa > \omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y| < \min \{\hat{c}(X), add(\mathcal{N}(X))\}$ then $X \times Y$ is $\hat{c}(X)$ -irresolvable.

COROLLARY

 $MI(\kappa, \omega_1)$ implies the consistency of having a 0-dimensional T_2 -space X s.t. $\hat{c}(X) = \omega_2 < \Delta(X) = |X| \le 2^{\omega_1}$ and $\omega_1 \le add(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_2 -irresolvable, hence not maximally resolvable.

Our OHI X from $MI(\kappa, \omega_1)$ works: $c(X) = \omega_1$ follows from CH; $\omega_1 \leq add(\mathcal{N}(X))$ follows from the ω_1 -closed base.

Such an example is OHI Baire, so implies CON(M(1)).

István Juhász (Rényi Institute)

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Eckertson, 1997: NO from $MI(\kappa, \kappa)$ with $\kappa > \omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y| < \min \{\hat{c}(X), add(\mathcal{N}(X))\}$ then $X \times Y$ is $\hat{c}(X)$ -irresolvable.

COROLLARY

 $MI(\kappa, \omega_1)$ implies the consistency of having a 0-dimensional T_2 -space X s.t. $\hat{c}(X) = \omega_2 < \Delta(X) = |X| \le 2^{\omega_1}$ and $\omega_1 \le add(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_2 -irresolvable, hence not maximally resolvable.

Our OHI X from $MI(\kappa, \omega_1)$ works: $c(X) = \omega_1$ follows from CH; $\omega_1 \leq add(\mathcal{N}(X))$ follows from the ω_1 -closed base.

Such an example is OHI Baire, so implies CON(M(1)).

István Juhász (Rényi Institute)

István Juhász (Rényi Institute)

2022 11/13

イロト イポト イヨト イヨ

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

István Juhász (Rényi Institute)

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

A D M A A A M M

- ∢ ∃ ▶

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection.

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection. So, $\{E_{\alpha} = \pi_X[D_{\alpha}] : \alpha < \kappa\}$ consists of sets dense in X and is also decreasing.

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection. So, $\{E_{\alpha} = \pi_X[D_{\alpha}] : \alpha < \kappa\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha < \kappa$ s.t. $\langle x, y \rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$.

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection. So, $\{E_{\alpha} = \pi_X[D_{\alpha}] : \alpha < \kappa\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha < \kappa$ s.t. $\langle x, y \rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\bigcap \{E_{\alpha} : \alpha < \kappa\} = \emptyset$.

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection. So, $\{E_{\alpha} = \pi_X[D_{\alpha}] : \alpha < \kappa\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha < \kappa$ s.t. $\langle x, y \rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\bigcap \{E_{\alpha} : \alpha < \kappa\} = \emptyset$.

COROLLARY

M(1) implies the consistency of having a monotonically normal space X s.t. $|X| = \Delta(X) = \aleph_{\omega}$ and $\omega_1 \notin MR(X)$. Thus $X \times \mathbb{Q}$ is ω_1 -irresolvable, hence not maximally resolvable.

イロト イポト イヨト イヨト 二日

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection. So, $\{E_{\alpha} = \pi_X[D_{\alpha}] : \alpha < \kappa\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha < \kappa$ s.t. $\langle x, y \rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\bigcap \{E_{\alpha} : \alpha < \kappa\} = \emptyset$.

COROLLARY

M(1) implies the consistency of having a monotonically normal space X s.t. $|X| = \Delta(X) = \aleph_{\omega}$ and $\omega_1 \notin MR(X)$. Thus $X \times \mathbb{Q}$ is ω_1 -irresolvable, hence not maximally resolvable.

X was constructed by J-Magidor, 2012.

イロト イポト イヨト イヨト 二日

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection. So, $\{E_{\alpha} = \pi_X[D_{\alpha}] : \alpha < \kappa\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha < \kappa$ s.t. $\langle x, y \rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\bigcap \{E_{\alpha} : \alpha < \kappa\} = \emptyset$.

COROLLARY

M(1) implies the consistency of having a monotonically normal space X s.t. $|X| = \Delta(X) = \aleph_{\omega}$ and $\omega_1 \notin MR(X)$. Thus $X \times \mathbb{Q}$ is ω_1 -irresolvable, hence not maximally resolvable.

X was constructed by J-Magidor, 2012. $\omega_1 \notin MR(X)$ was proved by Soukup, Stanley, 2017.

<ロト <回 > < 回 > < 回 > < 回 > … 回

Trivially, $\kappa \in MR(X)$ implies $\kappa \in MR(X \times Y)$.

THEOREM

 $|Y| < \kappa = cf(\kappa) \in MR(X \times Y)$ implies $\kappa \in MR(X)$.

PROOF. There is a decreasing κ -sequence $\{D_{\alpha} : \alpha < \kappa\}$ of dense sets in $X \times Y$ with empty intersection. So, $\{E_{\alpha} = \pi_X[D_{\alpha}] : \alpha < \kappa\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha < \kappa$ s.t. $\langle x, y \rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\bigcap \{E_{\alpha} : \alpha < \kappa\} = \emptyset$.

COROLLARY

M(1) implies the consistency of having a monotonically normal space X s.t. $|X| = \Delta(X) = \aleph_{\omega}$ and $\omega_1 \notin MR(X)$. Thus $X \times \mathbb{Q}$ is ω_1 -irresolvable, hence not maximally resolvable.

X was constructed by J-Magidor, 2012. $\omega_1 \notin MR(X)$ was proved by Soukup, Stanley, 2017.

A MN and not max. res. X implies CON(M(1) by J-Magidor.)

István Juhász (Rényi Institute)

István Juhász (Rényi Institute)

2022 12/13

イロト イ団ト イヨト イヨ

All known counterexamples to the Ceder-Pearson problem use M(1).

All known counterexamples to the Ceder-Pearson problem use M(1).

PROBLEMS.

PROBLEMS.

• Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with M(1)?

PROBLEMS.

- Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with M(1)?
- 2 Does it follow from ZFC?

PROBLEMS.

- Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with M(1)?
- 2 Does it follow from ZFC?
- Solution What is needed to have a space X and a regular cardinal κ s.t. $\omega < \kappa < \Delta(X)$ and $\kappa \notin MR(X)$?

PROBLEMS.

- Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with M(1)?
- 2 Does it follow from ZFC?
- Solution What is needed to have a space X and a regular cardinal κ s.t. $\omega < \kappa < \Delta(X)$ and $\kappa \notin MR(X)$?

I conjecture that if $\omega_1 < |X| = \Delta(X) < \aleph_{\omega}$ then $\omega_1 \in MR(X)$.

PROBLEMS.

- Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with M(1)?
- 2 Does it follow from ZFC?
- Solution What is needed to have a space X and a regular cardinal κ s.t. $\omega < \kappa < \Delta(X)$ and $\kappa \notin MR(X)$?

I conjecture that if $\omega_1 < |X| = \Delta(X) < \aleph_{\omega}$ then $\omega_1 \in MR(X)$.

THANK YOU FOR YOUR ATTENTION!

э

イロト イヨト イヨト イヨト