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Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)

X is OHI if every U ∈ τ+(X ) is irresolvable.
FACT. If X is irresolvable then there is an OHI U ∈ τ+(X ).
If X is OHI then Int A = ∅ ⇔ A ∈ N (X ) for any A ⊂ X .

X is neat if |U| = |X | for every U ∈ τ+(X ).
Clearly, {U ∈ τ+(X ) : U is neat} is a π-base of X .
FACT. For every κ ≥ ω there is a 0-dimensional T2-space X of size κ
that is both OHI and neat. (Hewitt, 1943 for κ = ω.)

X is maximally resolvable if it is ∆(X )-resolvable, where
∆(X ) = min{|U| : U ∈ τ+(X )}.
FACT. Finite spaces are maximally resolvable.
So, in what follows, for any X we assume |U| ≥ ω for all U ∈ τ+(X ).
All crowded T0-spaces are such.
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Part I: irresolvable products

El’kin: Are there two spaces whose product is irresolvable?
(He proved: X is irresolvable iff τ+(X ) contains an ultrafilter base.)

Malychin, 1973: If U is a σ-complete free ultrafilter on κ then the
product of the T1-space 〈κ,U ∪ {∅}〉 with any countable irresolvable
space is irresolvable.
(M1) Can T1 be improved to T2 or T3?

(M2) Is the measurable cardinal necessary?

(M3) Can both factors be "small"?
(M4) Can we find three spaces whose product is irresolvable?

FACT. Any product of infinitely many non-singleton spaces
is c-resolvable.
Proof: For x , y ∈

∏
{Xn : n < ω} let x ∼ y iff |{n : x(n) 6= y(n)}| < ω.

Every ∼-equivalence class is dense in the product.
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Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the
resolvability of products, https://arxiv.org/pdf/2205.14896.pdf
DEFINITION. X is monotonically κ-resolvable if X =

⋃
{Aα : α < κ}

for {Aα : α < κ} increasing s.t. Int(Aα) = ∅ for all α < κ.
MR(X ) = {κ : X is monotonically κ-resolvable}.
EXAMPLES. (i) If κ ≥ ω and X is κ-resolvable then κ ∈ MR(X ).
(ii) If X is neat then |X | ∈ MR(X ).
(iii) If X is meager then ω ∈ MR(X ).

THEOREM
If X × Y is irresolvable then MR(X ) ∩MR(Y ) = ∅.

PROOF. If κ ∈ MR(X ) ∩MR(Y ) then there are monotone κ-resolutions
X =

⋃
{Aα : α < κ} and Y =

⋃
{Bα : α < κ}.

Let rkX (x) = min{α : x ∈ Aα} and rkY (y) = min{α : y ∈ Bα}.
Then {〈x , y〉 : rkX (x) ≤ rkY (y)} and {〈x , y〉 : rkX (x) > rkY (y)} are
disjoint dense sets in X × Y .
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Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)
If X × Y is irresolvable then there is an irresolvable Bare-space, hence
there is an inner model with a measurable cardinal.

PROOF. We may assume that X × Y is OHI, hence so are both X and
Y . Also, ω /∈ MR(X ) ∩MR(Y ), so X or Y is non-meager, say X is. It’s
known that then there is U ∈ τ+(X ) that is Baire. The rest follows from
Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY
If X is neat then X 2 is resolvable. (Equivalently: the product of two
neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X 2 always 3-resolvable?
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If X × Y is irresolvable then there is an irresolvable Bare-space, hence
there is an inner model with a measurable cardinal.

PROOF. We may assume that X × Y is OHI, hence so are both X and
Y . Also, ω /∈ MR(X ) ∩MR(Y ), so X or Y is non-meager, say X is. It’s
known that then there is U ∈ τ+(X ) that is Baire. The rest follows from
Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY
If X is neat then X 2 is resolvable. (Equivalently: the product of two
neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X 2 always 3-resolvable?

István Juhász (Rényi Institute) resolvability of products 2022 5 / 13



Part I: irresolvable products 4.

DEFINITION. S(κ, λ, µ) says that there is a coloring c : κ× λ→ µ
s.t. c[A× B] = µ for any A ∈ [κ]κ and B ∈ [λ]λ.

S(κ, λ, µ) implies that if X , Y are neat with |X | = κ and |Y | = λ then
X × Y is µ-resolvable. We have S(κ, κ,2) for any κ ≥ ω!

FACT. S(λ+, λ+, λ+) holds if λ is regular.
(This doesn’t work for ω or weakly compacts.)
Also, no topology is involved!

THEOREM (JSSz)

X 2 is ω-resolvable for any countable (crowded) T3-space X .

This does use topology!

PROBLEM. How about T2-spaces?

We dont even know if X 2 is 3-resolvable!
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Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?

DEFINITION. S is λ-closed if for any α < λ and monotone decreasing
{Sβ : β < α} ⊂ S there is S ∈ S s.t. S ⊂

⋂
{Sβ : β < α}.

THEOREM
If the OHI space X has a λ-closed π-base B then X × Y is irresolvable
whenever Y is irresolvable and |Y | < λ.

PROOF. Let X × Y = Z0 ∪ Z1. For y ∈ Y and i < 2 let
Zy ,i = {x ∈ X : 〈x , y〉 ∈ Zi}. Then X = Zy ,0 ∪ Zy ,1 and so
Int(Zy ,0) ∪ Int(Zy ,1) is dense open in X by OHI.
Fix Y = {yα : α < µ}. By transfinite recursion define Bα ∈ B, iα < 2 for
α < µ s.t. {Bα : α < µ} ⊂ B is decreasing and Bα ⊂ Zyα,iα , i.e.
Bα × {yα} ⊂ Ziα . By µ < λ there is B ∈ B s.t. B ⊂

⋂
{Bα : α < µ}.

Let Ai = {yα : iα = i} for i < 2, then Y = A0 ∪ A1, so V = Int(Ai) 6= ∅
for some i < 2. For any yα ∈ V we have B × {yα} ⊂ Bα × {yα} ⊂ Zi ,
hence B × V ⊂ Zi .
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Part I: irresolvable products 6.

DEFINITION. (i) S ⊂ P(κ) is λ-independent if for any p ∈ Fn(S,2;λ)
Bp =

⋂
{S : p(S) = 1} ∩

⋂
{κ \ S : p(S) = 0} 6= ∅.

(ii) MI(κ, λ) says that there is a separating maximal λ-independent
family S on κ.
(iii) The λ-closed B(S) = {Bp : p ∈ Fn(S,2;λ)} is the base of a
0-dimensional T2 topology τ(S) on κ that is irresolvable. So, there is
X (S) ∈ τ(S)+ that is OHI.

THEOREM (Kunen)
The existence of a measurable cardinal implies the consistency of
MI(κ, ω1) with κ ≤ 2ω1 , moreover MI(κ, ω1) implies CH.

COROLLARY
The existence of a measurable cardinal implies the consistency of
having a 0-dimensional T2-space of size ≤ 2ω1 whose product with any
countable irresolvable space is irresolvable.
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Part I: irresolvable products 7.

Π+(n) denotes that there are n + 1 0-dimensional T2-spaces whose
product is irresolvable. M(n) denotes that there are n measurables.

PROPOSITION
If λ0 = ω < λ1 ≤ κ1 < λ2 ≤ κ2 < · · · < λn ≤ κn are s.t. MI(κi , λi) for
each 0 < i ≤ n then Π+(n) holds.

THEOREM
M(n), (resp. M(ω)) implies that there are ω < κ1 < · · · < κn (resp.
ω < κ1 < κ2 < · · ·) s.t. MI(κi , κi) for each i . Consequently,
(i) for n < ω M(n) implies the consistency of Π+(n);
(ii) M(ω) implies the consistency of having infinitely many
0-dimensional T2-spaces s.t. the product of any finitely many of them
is irresolvable.

PROBLEM. Are M(n) and Π+(n) equiconsistent for any 1 < n ≤ ω?
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Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally
resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from MI(κ, κ) with κ > ω, so his space is "large"!

THEOREM
If X is OHI and |Y | < min

{
ĉ(X ),add

(
N (X )

)}
then X × Y is

ĉ(X )-irresolvable.

COROLLARY
MI(κ, ω1) implies the consistency of having a 0-dimensional T2-space
X s.t. ĉ(X ) = ω2 < ∆(X ) = |X | ≤ 2ω1 and ω1 ≤ add

(
N (X )

)
. Then e.g.

X ×Q is ω2-irresolvable, hence not maximally resolvable.

Our OHI X from MI(κ, ω1) works: c(X ) = ω1 follows from CH;
ω1 ≤ add

(
N (X )

)
follows from the ω1-closed base.

Such an example is OHI Baire, so implies CON(M(1).
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Part II: maximal resolvability of products 2.

Trivially, κ ∈ MR(X ) implies κ ∈ MR(X × Y ).

THEOREM
|Y | < κ = cf (κ) ∈ MR(X × Y ) implies κ ∈ MR(X ).

PROOF. There is a decreasing κ-sequence {Dα : α < κ} of dense sets
in X × Y with empty intersection. So, {Eα = πX [Dα] : α < κ} consists
of sets dense in X and is also decreasing. For x ∈ X there is α < κ s.t.
〈x , y〉 /∈ Dα for all y ∈ Y , hence x /∈ Eα. So,

⋂
{Eα : α < κ} = ∅.

COROLLARY
M(1) implies the consistency of having a monotonically normal space
X s.t. |X | = ∆(X ) = ℵω and ω1 /∈ MR(X ). Thus X ×Q is
ω1-irresolvable, hence not maximally resolvable.

X was constructed by J-Magidor, 2012. ω1 /∈ MR(X ) was proved by
Soukup, Stanley, 2017.
A MN and not max. res. X implies CON(M(1) by J-Magidor.
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Part II: maximal resolvability of products 3.

All known counterexamples to the Ceder-Pearson problem use M(1).

PROBLEMS.
1 Is the existence of a not maximally resolvable product with a

maximally resolvable factor equiconsistent with M(1)?

2 Does it follow from ZFC?

3 What is needed to have a space X and a regular cardinal κ s.t.
ω < κ < ∆(X ) and κ /∈ MR(X )?

I conjecture that if ω1 < |X | = ∆(X ) < ℵω then ω1 ∈ MR(X ).
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