On the resolvability of product spaces

István Juhász

Alfréd Rényi Institute of Mathematics

SETTOP 2022, Novi Sad, August 22-25, 2022

Introduction

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets. κ-irresolvable otherwise.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets. κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets. κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets. κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets. κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$. If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then $\operatorname{Int} A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets. κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.
FACT. For every $\kappa \geq \omega$ there is a 0-dimensional T_{2}-space X of size κ that is both OHI and neat.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets. κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OHI then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.
FACT. For every $\kappa \geq \omega$ there is a 0-dimensional T_{2}-space X of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa=\omega$.)

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OH if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.
FACT. For every $\kappa \geq \omega$ there is a 0-dimensional T_{2}-space X of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa=\omega$.)
X is maximally resolvable if it is $\Delta(X)$-resolvable, where $\Delta(X)=\min \left\{|U|: U \in \tau^{+}(X)\right\}$.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OH if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.
FACT. For every $\kappa \geq \omega$ there is a 0-dimensional T_{2}-space X of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa=\omega$.)
X is maximally resolvable if it is $\Delta(X)$-resolvable, where $\Delta(X)=\min \left\{|U|: U \in \tau^{+}(X)\right\}$.
FACT. Finite spaces are maximally resolvable.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.
FACT. For every $\kappa \geq \omega$ there is a 0-dimensional T_{2}-space X of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa=\omega$.)
X is maximally resolvable if it is $\Delta(X)$-resolvable, where $\Delta(X)=\min \left\{|U|: U \in \tau^{+}(X)\right\}$.
FACT. Finite spaces are maximally resolvable.
So, in what follows, for any X we assume $|U| \geq \omega$ for all $U \in \tau^{+}(X)$.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.
FACT. For every $\kappa \geq \omega$ there is a 0-dimensional T_{2}-space X of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa=\omega$.)
X is maximally resolvable if it is $\Delta(X)$-resolvable, where $\Delta(X)=\min \left\{|U|: U \in \tau^{+}(X)\right\}$.
FACT. Finite spaces are maximally resolvable.
So, in what follows, for any X we assume $|U| \geq \omega$ for all $U \in \tau^{+}(X)$. All crowded T_{0}-spaces are such.

Introduction

A space X is κ-resolvable if it has κ pairwise disjoint dense sets.
κ-irresolvable otherwise.
(ir)resolvable = 2-(ir)resolvable)
X is OHI if every $U \in \tau^{+}(X)$ is irresolvable.
FACT. If X is irresolvable then there is an $\mathrm{OHI} U \in \tau^{+}(X)$.
If X is OH then Int $A=\emptyset \Leftrightarrow A \in \mathcal{N}(X)$ for any $A \subset X$.
X is neat if $|U|=|X|$ for every $U \in \tau^{+}(X)$.
Clearly, $\left\{U \in \tau^{+}(X): U\right.$ is neat $\}$ is a π-base of X.
FACT. For every $\kappa \geq \omega$ there is a 0-dimensional T_{2}-space X of size κ that is both OHI and neat. (Hewitt, 1943 for $\kappa=\omega$.)
X is maximally resolvable if it is $\Delta(X)$-resolvable, where $\Delta(X)=\min \left\{|U|: U \in \tau^{+}(X)\right\}$.
FACT. Finite spaces are maximally resolvable.
So, in what follows, for any X we assume $|U| \geq \omega$ for all $U \in \tau^{+}(X)$. All crowded T_{0}-spaces are such.

Part I: irresolvable products

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable?

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable?
(He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable?
(He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)
Malychin, 1973:

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable? (He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable?
(He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)
Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.
(17) Can T_{1} be improved to T_{2} or T_{3} ?

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable?
(He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)
Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.
(II) Can T_{1} be improved to T_{2} or T_{3} ?
(12) Is the measurable cardinal necessary?

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable?
(He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)
Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.
(II) Can T_{1} be improved to T_{2} or T_{3} ?
(12) Is the measurable cardinal necessary?
(13) Can both factors be "small"?

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable? (He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.
(II) Can T_{1} be improved to T_{2} or T_{3} ?
(12) Is the measurable cardinal necessary?
(13) Can both factors be "small"?
(044) Can we find three spaces whose product is irresolvable?

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable? (He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.
(II) Can T_{1} be improved to T_{2} or T_{3} ?
(12) Is the measurable cardinal necessary?
(13) Can both factors be "small"?
(n44) Can we find three spaces whose product is irresolvable?
FACT. Any product of infinitely many non-singleton spaces is \mathfrak{c}-resolvable.

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable? (He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.
(iv) Can T_{1} be improved to T_{2} or T_{3} ?
(12) Is the measurable cardinal necessary?
(13) Can both factors be "small"?
(n44) Can we find three spaces whose product is irresolvable?
FACT. Any product of infinitely many non-singleton spaces is \mathfrak{c}-resolvable.
Proof: For $x, y \in \prod\left\{X_{n}: n<\omega\right\}$ let $x \sim y$ iff $|\{n: x(n) \neq y(n)\}|<\omega$.

Part I: irresolvable products

El'kin: Are there two spaces whose product is irresolvable? (He proved: X is irresolvable iff $\tau^{+}(X)$ contains an ultrafilter base.)

Malychin, 1973: If \mathcal{U} is a σ-complete free ultrafilter on κ then the product of the T_{1}-space $\langle\kappa, \mathcal{U} \cup\{\emptyset\}\rangle$ with any countable irresolvable space is irresolvable.
(iv) Can T_{1} be improved to T_{2} or T_{3} ?
(12) Is the measurable cardinal necessary?
(13) Can both factors be "small"?
(n44) Can we find three spaces whose product is irresolvable?
FACT. Any product of infinitely many non-singleton spaces is \mathfrak{c}-resolvable.
Proof: For $x, y \in \prod\left\{X_{n}: n<\omega\right\}$ let $x \sim y$ iff $|\{n: x(n) \neq y(n)\}|<\omega$. Every \sim-equivalence class is dense in the product.

Part I: irresolvable products 2.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products,

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. \boldsymbol{X} is monotonically κ-resolvable if $X=\bigcup\left\{\boldsymbol{A}_{\alpha}: \alpha<\kappa\right\}$ for $\left\{\boldsymbol{A}_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(\boldsymbol{A}_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{\boldsymbol{A}_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(\boldsymbol{A}_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $M R(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in M R(X)$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the reso/vability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in \operatorname{MR}(X)$. (ii) If X is neat then $|X| \in \operatorname{MR}(X)$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in M R(X)$. (ii) If X is neat then $|X| \in M R(X)$.
(iii) If X is meager then $\omega \in \operatorname{MR}(X)$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the reso/vability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in M R(X)$. (ii) If X is neat then $|X| \in M R(X)$.
(iii) If X is meager then $\omega \in \operatorname{MR}(X)$.

THEOREM

If $X \times Y$ is irresolvable then $M R(X) \cap M R(Y)=\emptyset$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in M R(X)$. (ii) If X is neat then $|X| \in M R(X)$.
(iii) If X is meager then $\omega \in \operatorname{MR}(X)$.

THEOREM

If $X \times Y$ is irresolvable then $M R(X) \cap M R(Y)=\emptyset$.
PROOF. If $\kappa \in M R(X) \cap M R(Y)$ then there are monotone κ-resolutions $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ and $Y=\bigcup\left\{B_{\alpha}: \alpha<\kappa\right\}$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in M R(X)$. (ii) If X is neat then $|X| \in M R(X)$.
(iii) If X is meager then $\omega \in \operatorname{MR}(X)$.

THEOREM

If $X \times Y$ is irresolvable then $M R(X) \cap M R(Y)=\emptyset$.
PROOF. If $\kappa \in M R(X) \cap M R(Y)$ then there are monotone κ-resolutions $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ and $Y=\bigcup\left\{B_{\alpha}: \alpha<\kappa\right\}$.
Let $r k_{X}(x)=\min \left\{\alpha: x \in A_{\alpha}\right\}$ and $r k_{Y}(y)=\min \left\{\alpha: y \in B_{\alpha}\right\}$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in M R(X)$. (ii) If X is neat then $|X| \in M R(X)$.
(iii) If X is meager then $\omega \in \operatorname{MR}(X)$.

THEOREM

If $X \times Y$ is irresolvable then $M R(X) \cap M R(Y)=\emptyset$.
PROOF. If $\kappa \in M R(X) \cap M R(Y)$ then there are monotone κ-resolutions $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ and $Y=\bigcup\left\{B_{\alpha}: \alpha<\kappa\right\}$.
Let $r k_{X}(x)=\min \left\{\alpha: x \in A_{\alpha}\right\}$ and $r k_{Y}(y)=\min \left\{\alpha: y \in B_{\alpha}\right\}$. Then $\left\{\langle x, y\rangle: r k_{x}(x) \leq r k_{y}(y)\right\}$ and $\left\{\langle x, y\rangle: r k_{x}(x)>r k_{Y}(y)\right\}$ are disjoint dense sets in $X \times Y$.

Part I: irresolvable products 2.

Unlabeled items are from: J-Soukup-Szentmiklóssy, On the resolvability of products, https://arxiv.org/pdf/2205.14896.pdf DEFINITION. X is monotonically κ-resolvable if $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ for $\left\{A_{\alpha}: \alpha<\kappa\right\}$ increasing s.t. $\operatorname{Int}\left(A_{\alpha}\right)=\emptyset$ for all $\alpha<\kappa$. $\operatorname{MR}(X)=\{\kappa: X$ is monotonically κ-resolvable $\}$.
EXAMPLES. (i) If $\kappa \geq \omega$ and X is κ-resolvable then $\kappa \in M R(X)$. (ii) If X is neat then $|X| \in M R(X)$.
(iii) If X is meager then $\omega \in \operatorname{MR}(X)$.

THEOREM

If $X \times Y$ is irresolvable then $M R(X) \cap M R(Y)=\emptyset$.
PROOF. If $\kappa \in M R(X) \cap M R(Y)$ then there are monotone κ-resolutions $X=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$ and $Y=\bigcup\left\{B_{\alpha}: \alpha<\kappa\right\}$.
Let $r k_{X}(x)=\min \left\{\alpha: x \in A_{\alpha}\right\}$ and $r k_{Y}(y)=\min \left\{\alpha: y \in B_{\alpha}\right\}$. Then $\left\{\langle x, y\rangle: r k_{x}(x) \leq r k_{y}(y)\right\}$ and $\left\{\langle x, y\rangle: r k_{x}(x)>r k_{Y}(y)\right\}$ are disjoint dense sets in $X \times Y$.

Part I: irresolvable products 3.

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space,

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y.

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is.

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire.

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.
This answers question (M2).

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.
This answers question (M2).

COROLLARY

If X is neat then X^{2} is resolvable.

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^{2} is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^{2} is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X^{2} always 3-resolvable?

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^{2} is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X^{2} always 3-resolvable?

Part I: irresolvable products 3.

COROLLARY (Bešlagić and Levy, 1996)

If $X \times Y$ is irresolvable then there is an irresolvable Bare-space, hence there is an inner model with a measurable cardinal.

PROOF. We may assume that $X \times Y$ is OHI, hence so are both X and Y. Also, $\omega \notin M R(X) \cap M R(Y)$, so X or Y is non-meager, say X is. It's known that then there is $U \in \tau^{+}(X)$ that is Baire. The rest follows from Kunen-Szymanski-Tall.

This answers question (M2).

COROLLARY

If X is neat then X^{2} is resolvable. (Equivalently: the product of two neat spaces of the same size is resolvable.)

QUESTION. Can we do better? E.g., is X^{2} always 3-resolvable?

Part I: irresolvable products 4.

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable.

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega!$

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.
(This doesn't work for ω or weakly compacts.)

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.
(This doesn't work for ω or weakly compacts.)
Also, no topology is involved!

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.
(This doesn't work for ω or weakly compacts.)
Also, no topology is involved!

THEOREM (JSSz)

X^{2} is ω-resolvable for any countable (crowded) T_{3}-space X.

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.
(This doesn't work for ω or weakly compacts.)
Also, no topology is involved!

THEOREM (JSSz)

X^{2} is ω-resolvable for any countable (crowded) T_{3}-space X.
This does use topology!

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.
(This doesn't work for ω or weakly compacts.)
Also, no topology is involved!

THEOREM (JSSz)

X^{2} is ω-resolvable for any countable (crowded) T_{3}-space X.
This does use topology!
PROBLEM. How about T_{2}-spaces?

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.
(This doesn't work for ω or weakly compacts.)
Also, no topology is involved!

THEOREM (JSSz)

X^{2} is ω-resolvable for any countable (crowded) T_{3}-space X.
This does use topology!
PROBLEM. How about T_{2}-spaces?
We dont even know if X^{2} is 3 -resolvable!

Part I: irresolvable products 4.

DEFINITION. $S(\kappa, \lambda, \mu)$ says that there is a coloring $c: \kappa \times \lambda \rightarrow \mu$ s.t. $c[A \times B]=\mu$ for any $A \in[\kappa]^{\kappa}$ and $B \in[\lambda]^{\lambda}$.
$S(\kappa, \lambda, \mu)$ implies that if X, Y are neat with $|X|=\kappa$ and $|Y|=\lambda$ then $X \times Y$ is μ-resolvable. We have $S(\kappa, \kappa, 2)$ for any $\kappa \geq \omega$!

FACT. $S\left(\lambda^{+}, \lambda^{+}, \lambda^{+}\right)$holds if λ is regular.
(This doesn't work for ω or weakly compacts.)
Also, no topology is involved!

THEOREM (JSSz)

X^{2} is ω-resolvable for any countable (crowded) T_{3}-space X.
This does use topology!
PROBLEM. How about T_{2}-spaces?
We dont even know if X^{2} is 3 -resolvable!

Part I: irresolvable products 5.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$. Then $X=Z_{y, 0} \cup Z_{y, 1}$ and so $\operatorname{Int}\left(Z_{y, 0}\right) \cup \operatorname{Int}\left(Z_{y, 1}\right)$ is dense open in X by OHI.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$. Then $X=Z_{y, 0} \cup Z_{y, 1}$ and so $\operatorname{Int}\left(Z_{y, 0}\right) \cup \operatorname{Int}\left(Z_{y, 1}\right)$ is dense open in X by OHI.
Fix $Y=\left\{y_{\alpha}: \alpha<\mu\right\}$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$. Then $X=Z_{y, 0} \cup Z_{y, 1}$ and so $\operatorname{Int}\left(Z_{y, 0}\right) \cup \operatorname{Int}\left(Z_{y, 1}\right)$ is dense open in X by OHI.
Fix $Y=\left\{y_{\alpha}: \alpha<\mu\right\}$. By transfinite recursion define $B_{\alpha} \in \mathcal{B}, i_{\alpha}<2$ for $\alpha<\mu$ s.t. $\left\{B_{\alpha}: \alpha<\mu\right\} \subset \mathcal{B}$ is decreasing and $B_{\alpha} \subset Z_{y_{\alpha}, i_{\alpha}}$, i.e. $B_{\alpha} \times\left\{y_{\alpha}\right\} \subset Z_{i_{\alpha}}$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$. Then $X=Z_{y, 0} \cup Z_{y, 1}$ and so $\operatorname{Int}\left(Z_{y, 0}\right) \cup \operatorname{Int}\left(Z_{y, 1}\right)$ is dense open in X by OHI.
Fix $Y=\left\{y_{\alpha}: \alpha<\mu\right\}$. By transfinite recursion define $B_{\alpha} \in \mathcal{B}, i_{\alpha}<2$ for $\alpha<\mu$ s.t. $\left\{B_{\alpha}: \alpha<\mu\right\} \subset \mathcal{B}$ is decreasing and $B_{\alpha} \subset Z_{y_{\alpha}, i_{\alpha}}$, i.e. $B_{\alpha} \times\left\{y_{\alpha}\right\} \subset Z_{i_{\alpha}}$. By $\mu<\lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap\left\{B_{\alpha}: \alpha<\mu\right\}$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$. Then $X=Z_{y, 0} \cup Z_{y, 1}$ and so $\operatorname{Int}\left(Z_{y, 0}\right) \cup \operatorname{Int}\left(Z_{y, 1}\right)$ is dense open in X by OHI.
Fix $Y=\left\{y_{\alpha}: \alpha<\mu\right\}$. By transfinite recursion define $B_{\alpha} \in \mathcal{B}, i_{\alpha}<2$ for $\alpha<\mu$ s.t. $\left\{B_{\alpha}: \alpha<\mu\right\} \subset \mathcal{B}$ is decreasing and $B_{\alpha} \subset Z_{y_{\alpha}, i_{\alpha}}$, i.e. $B_{\alpha} \times\left\{y_{\alpha}\right\} \subset Z_{i_{\alpha}}$. By $\mu<\lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap\left\{B_{\alpha}: \alpha<\mu\right\}$. Let $A_{i}=\left\{y_{\alpha}: i_{\alpha}=i\right\}$ for $i<2$, then $Y=A_{0} \cup A_{1}$, so $V=\operatorname{Int}\left(A_{i}\right) \neq \emptyset$ for some $i<2$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$. Then $X=Z_{y, 0} \cup Z_{y, 1}$ and so $\operatorname{Int}\left(Z_{y, 0}\right) \cup \operatorname{Int}\left(Z_{y, 1}\right)$ is dense open in X by OHI.
Fix $Y=\left\{y_{\alpha}: \alpha<\mu\right\}$. By transfinite recursion define $B_{\alpha} \in \mathcal{B}, i_{\alpha}<2$ for $\alpha<\mu$ s.t. $\left\{B_{\alpha}: \alpha<\mu\right\} \subset \mathcal{B}$ is decreasing and $B_{\alpha} \subset Z_{y_{\alpha}, i_{\alpha}}$, i.e. $B_{\alpha} \times\left\{y_{\alpha}\right\} \subset Z_{i_{\alpha}}$. By $\mu<\lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap\left\{B_{\alpha}: \alpha<\mu\right\}$. Let $A_{i}=\left\{y_{\alpha}: i_{\alpha}=i\right\}$ for $i<2$, then $Y=A_{0} \cup A_{1}$, so $V=\operatorname{lnt}\left(A_{i}\right) \neq \emptyset$ for some $i<2$. For any $y_{\alpha} \in V$ we have $B \times\left\{y_{\alpha}\right\} \subset B_{\alpha} \times\left\{y_{\alpha}\right\} \subset Z_{i}$, hence $B \times V \subset Z_{i}$.

Part I: irresolvable products 5.

How to get irresolvable products with "nice and small" factors?
DEFINITION. \mathcal{S} is λ-closed if for any $\alpha<\lambda$ and monotone decreasing $\left\{S_{\beta}: \beta<\alpha\right\} \subset \mathcal{S}$ there is $S \in \mathcal{S}$ s.t. $S \subset \bigcap\left\{S_{\beta}: \beta<\alpha\right\}$.

THEOREM

If the OHI space X has a λ-closed π-base \mathcal{B} then $X \times Y$ is irresolvable whenever Y is irresolvable and $|Y|<\lambda$.

PROOF. Let $X \times Y=Z_{0} \cup Z_{1}$. For $y \in Y$ and $i<2$ let
$Z_{y, i}=\left\{x \in X:\langle x, y\rangle \in Z_{i}\right\}$. Then $X=Z_{y, 0} \cup Z_{y, 1}$ and so $\operatorname{Int}\left(Z_{y, 0}\right) \cup \operatorname{Int}\left(Z_{y, 1}\right)$ is dense open in X by OHI.
Fix $Y=\left\{y_{\alpha}: \alpha<\mu\right\}$. By transfinite recursion define $B_{\alpha} \in \mathcal{B}, i_{\alpha}<2$ for $\alpha<\mu$ s.t. $\left\{B_{\alpha}: \alpha<\mu\right\} \subset \mathcal{B}$ is decreasing and $B_{\alpha} \subset Z_{y_{\alpha}, i_{\alpha}}$, i.e. $B_{\alpha} \times\left\{y_{\alpha}\right\} \subset Z_{i_{\alpha}}$. By $\mu<\lambda$ there is $B \in \mathcal{B}$ s.t. $B \subset \bigcap\left\{B_{\alpha}: \alpha<\mu\right\}$. Let $A_{i}=\left\{y_{\alpha}: i_{\alpha}=i\right\}$ for $i<2$, then $Y=A_{0} \cup A_{1}$, so $V=\operatorname{lnt}\left(A_{i}\right) \neq \emptyset$ for some $i<2$. For any $y_{\alpha} \in V$ we have $B \times\left\{y_{\alpha}\right\} \subset B_{\alpha} \times\left\{y_{\alpha}\right\} \subset Z_{i}$, hence $B \times V \subset Z_{i}$.

Part I: irresolvable products 6.

Part I: irresolvable products 6.

DEFINITION. (i) $\mathcal{S} \subset \mathcal{P}(\kappa)$ is λ-independent if for any $p \in F n(\mathcal{S}, 2 ; \lambda)$ $B_{p}=\bigcap\{S: p(S)=1\} \cap \bigcap\{\kappa \backslash S: p(S)=0\} \neq \emptyset$.

Part I: irresolvable products 6.

DEFINITION. (i) $\mathcal{S} \subset \mathcal{P}(\kappa)$ is λ-independent if for any $p \in F n(\mathcal{S}, 2 ; \lambda)$ $B_{p}=\bigcap\{S: p(S)=1\} \cap \bigcap\{\kappa \backslash S: p(S)=0\} \neq \emptyset$.
(ii) $M I(\kappa, \lambda)$ says that there is a separating maximal λ-independent family \mathcal{S} on κ.

Part I: irresolvable products 6.

DEFINITION. (i) $\mathcal{S} \subset \mathcal{P}(\kappa)$ is λ-independent if for any $p \in \operatorname{Fn}(\mathcal{S}, 2 ; \lambda)$ $B_{p}=\bigcap\{S: p(S)=1\} \cap \cap\{\kappa \backslash S: p(S)=0\} \neq \emptyset$.
(ii) $M I(\kappa, \lambda)$ says that there is a separating maximal λ-independent family \mathcal{S} on κ.
(iii) The λ-closed $\mathcal{B}(\mathcal{S})=\left\{B_{p}: p \in F n(\mathcal{S}, 2 ; \lambda)\right\}$ is the base of a 0 -dimensional T_{2} topology $\tau(\mathcal{S})$ on κ that is irresolvable.

Part I: irresolvable products 6.

DEFINITION. (i) $\mathcal{S} \subset \mathcal{P}(\kappa)$ is λ-independent if for any $p \in \operatorname{Fn}(\mathcal{S}, 2 ; \lambda)$ $B_{p}=\bigcap\{S: p(S)=1\} \cap \cap\{\kappa \backslash S: p(S)=0\} \neq \emptyset$.
(ii) $M I(\kappa, \lambda)$ says that there is a separating maximal λ-independent family \mathcal{S} on κ.
(iii) The λ-closed $\mathcal{B}(\mathcal{S})=\left\{B_{p}: p \in F n(\mathcal{S}, 2 ; \lambda)\right\}$ is the base of a 0 -dimensional T_{2} topology $\tau(\mathcal{S})$ on κ that is irresolvable. So, there is $X(\mathcal{S}) \in \tau(\mathcal{S})^{+}$that is OHI .

Part I: irresolvable products 6.

DEFINITION. (i) $\mathcal{S} \subset \mathcal{P}(\kappa)$ is λ-independent if for any $p \in F n(\mathcal{S}, 2 ; \lambda)$ $B_{p}=\bigcap\{S: p(S)=1\} \cap \bigcap\{\kappa \backslash S: p(S)=0\} \neq \emptyset$.
(ii) $M I(\kappa, \lambda)$ says that there is a separating maximal λ-independent family \mathcal{S} on κ.
(iii) The λ-closed $\mathcal{B}(\mathcal{S})=\left\{B_{p}: p \in F n(\mathcal{S}, 2 ; \lambda)\right\}$ is the base of a 0 -dimensional T_{2} topology $\tau(\mathcal{S})$ on κ that is irresolvable. So, there is $X(\mathcal{S}) \in \tau(\mathcal{S})^{+}$that is OHI .

THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of $\operatorname{MI}\left(\kappa, \omega_{1}\right)$ with $\kappa \leq 2^{\omega_{1}}$, moreover $\operatorname{MI}\left(\kappa, \omega_{1}\right)$ implies CH .

Part I: irresolvable products 6.

DEFINITION. (i) $\mathcal{S} \subset \mathcal{P}(\kappa)$ is λ-independent if for any $p \in F n(\mathcal{S}, 2 ; \lambda)$ $B_{p}=\bigcap\{S: p(S)=1\} \cap \bigcap\{\kappa \backslash S: p(S)=0\} \neq \emptyset$.
(ii) $M I(\kappa, \lambda)$ says that there is a separating maximal λ-independent family \mathcal{S} on κ.
(iii) The λ-closed $\mathcal{B}(\mathcal{S})=\left\{B_{p}: p \in F n(\mathcal{S}, 2 ; \lambda)\right\}$ is the base of a 0 -dimensional T_{2} topology $\tau(\mathcal{S})$ on κ that is irresolvable. So, there is $X(\mathcal{S}) \in \tau(\mathcal{S})^{+}$that is OHI .

THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of $\operatorname{MI}\left(\kappa, \omega_{1}\right)$ with $\kappa \leq 2^{\omega_{1}}$, moreover $\operatorname{MI}\left(\kappa, \omega_{1}\right)$ implies CH .

COROLLARY

The existence of a measurable cardinal implies the consistency of having a 0-dimensional T_{2}-space of size $\leq 2^{\omega_{1}}$ whose product with any countable irresolvable space is irresolvable.

Part I: irresolvable products 6.

DEFINITION. (i) $\mathcal{S} \subset \mathcal{P}(\kappa)$ is λ-independent if for any $p \in F n(\mathcal{S}, 2 ; \lambda)$ $B_{p}=\bigcap\{S: p(S)=1\} \cap \bigcap\{\kappa \backslash S: p(S)=0\} \neq \emptyset$.
(ii) $M I(\kappa, \lambda)$ says that there is a separating maximal λ-independent family \mathcal{S} on κ.
(iii) The λ-closed $\mathcal{B}(\mathcal{S})=\left\{B_{p}: p \in F n(\mathcal{S}, 2 ; \lambda)\right\}$ is the base of a 0 -dimensional T_{2} topology $\tau(\mathcal{S})$ on κ that is irresolvable. So, there is $X(\mathcal{S}) \in \tau(\mathcal{S})^{+}$that is OHI .

THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of $\operatorname{MI}\left(\kappa, \omega_{1}\right)$ with $\kappa \leq 2^{\omega_{1}}$, moreover $\operatorname{MI}\left(\kappa, \omega_{1}\right)$ implies CH .

COROLLARY

The existence of a measurable cardinal implies the consistency of having a 0-dimensional T_{2}-space of size $\leq 2^{\omega_{1}}$ whose product with any countable irresolvable space is irresolvable.

Part I: irresolvable products 7.

Part I: irresolvable products 7.

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable.

Part I: irresolvable products 7.

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable. $M(n)$ denotes that there are n measurables.

Part I: irresolvable products 7.

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable. $M(n)$ denotes that there are n measurables.

PROPOSITION

If $\lambda_{0}=\omega<\lambda_{1} \leq \kappa_{1}<\lambda_{2} \leq \kappa_{2}<\cdots<\lambda_{n} \leq \kappa_{n}$ are s.t. $\mathrm{MI}\left(\kappa_{i}, \lambda_{i}\right)$ for each $0<i \leq n$ then $\Pi^{+}(n)$ holds.

Part I: irresolvable products 7 .

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable. $M(n)$ denotes that there are n measurables.

PROPOSITION

If $\lambda_{0}=\omega<\lambda_{1} \leq \kappa_{1}<\lambda_{2} \leq \kappa_{2}<\cdots<\lambda_{n} \leq \kappa_{n}$ are s.t. $M I\left(\kappa_{i}, \lambda_{i}\right)$ for each $0<i \leq n$ then $\Pi^{+}(n)$ holds.

THEOREM

$M(n)$, (resp. $M(\omega))$ implies that there are $\omega<\kappa_{1}<\cdots<\kappa_{n}$ (resp. $\left.\omega<\kappa_{1}<\kappa_{2}<\cdots\right)$ s.t. $\operatorname{MI}\left(\kappa_{i}, \kappa_{i}\right)$ for each i.

Part I: irresolvable products 7.

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable. $M(n)$ denotes that there are n measurables.

PROPOSITION

If $\lambda_{0}=\omega<\lambda_{1} \leq \kappa_{1}<\lambda_{2} \leq \kappa_{2}<\cdots<\lambda_{n} \leq \kappa_{n}$ are s.t. $M I\left(\kappa_{i}, \lambda_{i}\right)$ for each $0<i \leq n$ then $\Pi^{+}(n)$ holds.

THEOREM

$M(n)$, (resp. $M(\omega))$ implies that there are $\omega<\kappa_{1}<\cdots<\kappa_{n}$ (resp. $\left.\omega<\kappa_{1}<\kappa_{2}<\cdots\right)$ s.t. MI $\left(\kappa_{i}, \kappa_{i}\right)$ for each i. Consequently, (i) for $n<\omega M(n)$ implies the consistency of $\Pi^{+}(n)$;

Part I: irresolvable products 7.

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable. $M(n)$ denotes that there are n measurables.

PROPOSITION

If $\lambda_{0}=\omega<\lambda_{1} \leq \kappa_{1}<\lambda_{2} \leq \kappa_{2}<\cdots<\lambda_{n} \leq \kappa_{n}$ are s.t. $\mathrm{MI}\left(\kappa_{i}, \lambda_{i}\right)$ for each $0<i \leq n$ then $\Pi^{+}(n)$ holds.

THEOREM

$M(n)$, (resp. $M(\omega))$ implies that there are $\omega<\kappa_{1}<\cdots<\kappa_{n}$ (resp. $\left.\omega<\kappa_{1}<\kappa_{2}<\cdots\right)$ s.t. MI $\left(\kappa_{i}, \kappa_{i}\right)$ for each i. Consequently,
(i) for $n<\omega M(n)$ implies the consistency of $\Pi^{+}(n)$;
(ii) $M(\omega)$ implies the consistency of having infinitely many

0 -dimensional T_{2}-spaces s.t. the product of any finitely many of them is irresolvable.

Part I: irresolvable products 7.

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable. $M(n)$ denotes that there are n measurables.

PROPOSITION

If $\lambda_{0}=\omega<\lambda_{1} \leq \kappa_{1}<\lambda_{2} \leq \kappa_{2}<\cdots<\lambda_{n} \leq \kappa_{n}$ are s.t. $M I\left(\kappa_{i}, \lambda_{i}\right)$ for each $0<i \leq n$ then $\Pi^{+}(n)$ holds.

THEOREM

$M(n)$, (resp. $M(\omega))$ implies that there are $\omega<\kappa_{1}<\cdots<\kappa_{n}$ (resp. $\left.\omega<\kappa_{1}<\kappa_{2}<\cdots\right)$ s.t. $M I\left(\kappa_{i}, \kappa_{i}\right)$ for each i. Consequently,
(i) for $n<\omega M(n)$ implies the consistency of $\Pi^{+}(n)$;
(ii) $M(\omega)$ implies the consistency of having infinitely many

0 -dimensional T_{2}-spaces s.t. the product of any finitely many of them is irresolvable.

PROBLEM. Are $M(n)$ and $\Pi^{+}(n)$ equiconsistent for any $1<n \leq \omega$?

Part I: irresolvable products 7.

$\Pi^{+}(n)$ denotes that there are $n+10$-dimensional T_{2}-spaces whose product is irresolvable. $M(n)$ denotes that there are n measurables.

PROPOSITION

If $\lambda_{0}=\omega<\lambda_{1} \leq \kappa_{1}<\lambda_{2} \leq \kappa_{2}<\cdots<\lambda_{n} \leq \kappa_{n}$ are s.t. $M I\left(\kappa_{i}, \lambda_{i}\right)$ for each $0<i \leq n$ then $\Pi^{+}(n)$ holds.

THEOREM

$M(n)$, (resp. $M(\omega))$ implies that there are $\omega<\kappa_{1}<\cdots<\kappa_{n}$ (resp. $\left.\omega<\kappa_{1}<\kappa_{2}<\cdots\right)$ s.t. $M I\left(\kappa_{i}, \kappa_{i}\right)$ for each i. Consequently,
(i) for $n<\omega M(n)$ implies the consistency of $\Pi^{+}(n)$;
(ii) $M(\omega)$ implies the consistency of having infinitely many

0 -dimensional T_{2}-spaces s.t. the product of any finitely many of them is irresolvable.

PROBLEM. Are $M(n)$ and $\Pi^{+}(n)$ equiconsistent for any $1<n \leq \omega$?

Part II: maximal resolvability of products

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from $M I(\kappa, \kappa)$ with $\kappa>\omega$, so his space is "large"!

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from $\operatorname{MI}(\kappa, \kappa)$ with $\kappa>\omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y|<\min \{\widehat{c}(X)$, add $(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$-irresolvable.

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from $M I(\kappa, \kappa)$ with $\kappa>\omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y|<\min \{\widehat{c}(X)$, add $(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$-irresolvable.

COROLLARY

MI $\left(\kappa, \omega_{1}\right)$ implies the consistency of having a 0 -dimensional T_{2}-space X s.t. $\widehat{c}(X)=\omega_{2}<\Delta(X)=|X| \leq 2^{\omega_{1}}$ and $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_{2}-irresolvable, hence not maximally resolvable.

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from $M I(\kappa, \kappa)$ with $\kappa>\omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y|<\min \{\widehat{c}(X)$, add $(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$-irresolvable.

COROLLARY

MI $\left(\kappa, \omega_{1}\right)$ implies the consistency of having a 0 -dimensional T_{2}-space X s.t. $\widehat{c}(X)=\omega_{2}<\Delta(X)=|X| \leq 2^{\omega_{1}}$ and $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_{2}-irresolvable, hence not maximally resolvable.

Our $\mathrm{OHI} X$ from $M I\left(\kappa, \omega_{1}\right)$ works: $c(X)=\omega_{1}$ follows from CH ;

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from $M I(\kappa, \kappa)$ with $\kappa>\omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y|<\min \{\widehat{c}(X)$, add $(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$-irresolvable.

COROLLARY

MI $\left(\kappa, \omega_{1}\right)$ implies the consistency of having a 0 -dimensional T_{2}-space X s.t. $\widehat{c}(X)=\omega_{2}<\Delta(X)=|X| \leq 2^{\omega_{1}}$ and $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_{2}-irresolvable, hence not maximally resolvable.

Our OHI X from $M I\left(\kappa, \omega_{1}\right)$ works: $c(X)=\omega_{1}$ follows from CH ; $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$ follows from the ω_{1}-closed base.

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from $M I(\kappa, \kappa)$ with $\kappa>\omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y|<\min \{\hat{c}(X), \operatorname{add}(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$-irresolvable.

COROLLARY

MI $\left(\kappa, \omega_{1}\right)$ implies the consistency of having a 0 -dimensional T_{2}-space X s.t. $\widehat{c}(X)=\omega_{2}<\Delta(X)=|X| \leq 2^{\omega_{1}}$ and $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_{2}-irresolvable, hence not maximally resolvable.

Our OHI X from $M I\left(\kappa, \omega_{1}\right)$ works: $c(X)=\omega_{1}$ follows from CH ; $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$ follows from the ω_{1}-closed base.
Such an example is OHI Baire, so implies $\operatorname{CON}(M(1)$.

Part II: maximal resolvability of products

QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally resolvable space with any space maximally resolvable?
Eckertson, 1997: NO from $M I(\kappa, \kappa)$ with $\kappa>\omega$, so his space is "large"!

THEOREM

If X is OHI and $|Y|<\min \{\hat{c}(X), \operatorname{add}(\mathcal{N}(X))\}$ then $X \times Y$ is $\widehat{c}(X)$-irresolvable.

COROLLARY

MI $\left(\kappa, \omega_{1}\right)$ implies the consistency of having a 0 -dimensional T_{2}-space X s.t. $\widehat{c}(X)=\omega_{2}<\Delta(X)=|X| \leq 2^{\omega_{1}}$ and $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$. Then e.g. $X \times \mathbb{Q}$ is ω_{2}-irresolvable, hence not maximally resolvable.

Our OHI X from $M I\left(\kappa, \omega_{1}\right)$ works: $c(X)=\omega_{1}$ follows from CH ; $\omega_{1} \leq \operatorname{add}(\mathcal{N}(X))$ follows from the ω_{1}-closed base.
Such an example is OHI Baire, so implies $\operatorname{CON}(M(1)$.

Part II: maximal resolvability of products 2.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=\operatorname{cf}(\kappa) \in M R(X \times Y)$ implies $\kappa \in \operatorname{MR}(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection. So, $\left\{E_{\alpha}=\pi_{X}\left[D_{\alpha}\right]: \alpha<\kappa\right\}$ consists of sets dense in X and is also decreasing.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection. So, $\left\{E_{\alpha}=\pi_{X}\left[D_{\alpha}\right]: \alpha<\kappa\right\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha<\kappa$ s.t. $\langle x, y\rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection. So, $\left\{E_{\alpha}=\pi_{X}\left[D_{\alpha}\right]: \alpha<\kappa\right\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha<\kappa$ s.t. $\langle x, y\rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\cap\left\{E_{\alpha}: \alpha<\kappa\right\}=\emptyset$.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection. So, $\left\{E_{\alpha}=\pi_{X}\left[D_{\alpha}\right]: \alpha<\kappa\right\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha<\kappa$ s.t. $\langle x, y\rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\cap\left\{E_{\alpha}: \alpha<\kappa\right\}=\emptyset$.

COROLLARY

$M(1)$ implies the consistency of having a monotonically normal space X s.t. $|X|=\Delta(X)=\aleph_{\omega}$ and $\omega_{1} \notin M R(X)$. Thus $X \times \mathbb{Q}$ is ω_{1}-irresolvable, hence not maximally resolvable.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection. So, $\left\{E_{\alpha}=\pi_{X}\left[D_{\alpha}\right]: \alpha<\kappa\right\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha<\kappa$ s.t. $\langle x, y\rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\cap\left\{E_{\alpha}: \alpha<\kappa\right\}=\emptyset$.

COROLLARY

$M(1)$ implies the consistency of having a monotonically normal space X s.t. $|X|=\Delta(X)=\aleph_{\omega}$ and $\omega_{1} \notin M R(X)$. Thus $X \times \mathbb{Q}$ is ω_{1}-irresolvable, hence not maximally resolvable.
X was constructed by J-Magidor, 2012.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection. So, $\left\{E_{\alpha}=\pi_{X}\left[D_{\alpha}\right]: \alpha<\kappa\right\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha<\kappa$ s.t. $\langle x, y\rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\cap\left\{E_{\alpha}: \alpha<\kappa\right\}=\emptyset$.

COROLLARY

$M(1)$ implies the consistency of having a monotonically normal space X s.t. $|X|=\Delta(X)=\aleph_{\omega}$ and $\omega_{1} \notin M R(X)$. Thus $X \times \mathbb{Q}$ is ω_{1}-irresolvable, hence not maximally resolvable.
X was constructed by J-Magidor, 2012. $\omega_{1} \notin M R(X)$ was proved by Soukup, Stanley, 2017.

Part II: maximal resolvability of products 2.

Trivially, $\kappa \in M R(X)$ implies $\kappa \in M R(X \times Y)$.

THEOREM

$|Y|<\kappa=c f(\kappa) \in M R(X \times Y)$ implies $\kappa \in M R(X)$.
PROOF. There is a decreasing κ-sequence $\left\{D_{\alpha}: \alpha<\kappa\right\}$ of dense sets in $X \times Y$ with empty intersection. So, $\left\{E_{\alpha}=\pi_{X}\left[D_{\alpha}\right]: \alpha<\kappa\right\}$ consists of sets dense in X and is also decreasing. For $x \in X$ there is $\alpha<\kappa$ s.t. $\langle x, y\rangle \notin D_{\alpha}$ for all $y \in Y$, hence $x \notin E_{\alpha}$. So, $\cap\left\{E_{\alpha}: \alpha<\kappa\right\}=\emptyset$.

COROLLARY

$M(1)$ implies the consistency of having a monotonically normal space X s.t. $|X|=\Delta(X)=\aleph_{\omega}$ and $\omega_{1} \notin M R(X)$. Thus $X \times \mathbb{Q}$ is ω_{1}-irresolvable, hence not maximally resolvable.
X was constructed by J-Magidor, 2012. $\omega_{1} \notin M R(X)$ was proved by Soukup, Stanley, 2017.
A MN and not max. res. X implies $\operatorname{CON}(M(1)$ by J-Magidor.

Part II: maximal resolvability of products 3 .

Part II: maximal resolvability of products 3.

All known counterexamples to the Ceder-Pearson problem use $M(1)$.

Part II: maximal resolvability of products 3.

All known counterexamples to the Ceder-Pearson problem use $M(1)$. PROBLEMS.

Part II: maximal resolvability of products 3.

All known counterexamples to the Ceder-Pearson problem use $M(1)$.
PROBLEMS.
(1) Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with $M(1)$?

Part II: maximal resolvability of products 3 .

All known counterexamples to the Ceder-Pearson problem use $M(1)$.
PROBLEMS.
(1) Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with $M(1)$?
(2) Does it follow from ZFC?

Part II: maximal resolvability of products 3 .

All known counterexamples to the Ceder-Pearson problem use $M(1)$.
PROBLEMS.
(1) Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with $M(1)$?
(2) Does it follow from ZFC?
(3) What is needed to have a space X and a regular cardinal κ s.t. $\omega<\kappa<\Delta(X)$ and $\kappa \notin M R(X)$?

Part II: maximal resolvability of products 3.

All known counterexamples to the Ceder-Pearson problem use $M(1)$.

PROBLEMS.

(1) Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with $M(1)$?
(2) Does it follow from ZFC?
(3) What is needed to have a space X and a regular cardinal κ s.t. $\omega<\kappa<\Delta(X)$ and $\kappa \notin M R(X)$?

I conjecture that if $\omega_{1}<|X|=\Delta(X)<\aleph_{\omega}$ then $\omega_{1} \in M R(X)$.

Part II: maximal resolvability of products 3.

All known counterexamples to the Ceder-Pearson problem use $M(1)$.

PROBLEMS.

(1) Is the existence of a not maximally resolvable product with a maximally resolvable factor equiconsistent with $M(1)$?
(2) Does it follow from ZFC?
(3) What is needed to have a space X and a regular cardinal κ s.t. $\omega<\kappa<\Delta(X)$ and $\kappa \notin M R(X)$?

I conjecture that if $\omega_{1}<|X|=\Delta(X)<\aleph_{\omega}$ then $\omega_{1} \in M R(X)$.

THANK YOU FOR YOUR ATTENTION!

