Free group of Hamel bijections

Mateusz Lichman
joint work with M. Pawlikowski, Sz. Smolarek and J. Swaczyna
Łódź University of Technology

August 22, 2022

Novi Sad Conference in Set Theory and General Topology

Introduction and motivation

- A set $H \subset \mathbb{R}^{2}$ is called a Hamel basis if it is a basis of the linear space \mathbb{R}^{2} over \mathbb{Q}.

Introduction and motivation

- A set $H \subset \mathbb{R}^{2}$ is called a Hamel basis if it is a basis of the linear space \mathbb{R}^{2} over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}.

Introduction and motivation

- A set $H \subset \mathbb{R}^{2}$ is called a Hamel basis if it is a basis of the linear space \mathbb{R}^{2} over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}. The class of Hamel functions we will denote by HF.

Introduction and motivation

- A set $H \subset \mathbb{R}^{2}$ is called a Hamel basis if it is a basis of the linear space \mathbb{R}^{2} over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}. The class of Hamel functions we will denote by HF.

Theorem (K. Płotka, 2003)

Introduction and motivation

- A set $H \subset \mathbb{R}^{2}$ is called a Hamel basis if it is a basis of the linear space \mathbb{R}^{2} over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}. The class of Hamel functions we will denote by HF.

Theorem (K. Płotka, 2003)

$\mathrm{HF}+\mathrm{HF}=\mathbb{R}^{\mathbb{R}}$.

Introduction and motivation

Theorem (G. Matusik, T. Natkaniec, 2010)

Introduction and motivation

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Introduction and motivation

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.

Introduction and motivation

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.
Indeed, $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $A(x, y)=\langle y, x\rangle$ is a linear automorphism, so it preserves Hamel basis.

Introduction and motivation

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.
Indeed, $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $A(x, y)=\langle y, x\rangle$ is a linear automorphism, so it preserves Hamel basis.

$$
(\mathrm{HF} \cup\{\mathrm{id}\}, \circ) \text { is not a group. }
$$

The goal

Definition

We say that a group (G, \star) is free if there exists a set $S \subset G$ of free generators: every element of G can be expressed in exactly one reduced way using generators ($a^{2} \star a^{3}, a \star a^{-1}$ are not in reduced form).

The goal

Definition

We say that a group (G, \star) is free if there exists a set $S \subset G$ of free generators: every element of G can be expressed in exactly one reduced way using generators ($a^{2} \star a^{3}, a \star a^{-1}$ are not in reduced form). Elements of a free group are called words.

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

$$
\begin{array}{l|l|l|l|l}
\hline{ }_{o} f_{0}=\emptyset & { }_{0} f_{1}=\emptyset & \ldots & { }_{0} f_{\gamma}=\emptyset & \ldots \ldots \ldots \ldots \ldots
\end{array}
$$

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots .$.	${ }_{0} f_{\gamma}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
${ }_{1} f_{0}$	${ }_{1} f_{1}$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }_{1} f_{\gamma}$	$\ldots \ldots \ldots \ldots \ldots \ldots$

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }_{0} f_{\gamma}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
${ }_{1} f_{0}$	${ }_{1} f_{1}$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }_{1} f_{\gamma}$	$\ldots \ldots \ldots \ldots \ldots \ldots$
\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots
$\xi_{0} f_{0}$	ξ_{1}	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }^{\prime} f_{\gamma}$	$\ldots \ldots \ldots \ldots \ldots \ldots$

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$	${ }_{0} f_{\gamma}=\emptyset$
${ }_{1} f_{0}$	${ }_{1} f_{1}$	${ }_{1} f_{\gamma}$
...	\ldots	\ldots	\ldots	\ldots
...	\ldots	\ldots
${ }_{\xi} f_{0}$	${ }_{\xi} f_{1}$	${ }_{\xi}{ }_{\gamma}$	\ldots
...	\ldots	\ldots	\cdots	...
\ldots	\ldots	\ldots	\ldots	\ldots

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$	${ }_{0} f_{\gamma}=\emptyset$
${ }_{1} f_{0}$	${ }_{1} f_{1}$	\ldots.	${ }_{1} f_{\gamma}$
...	...	\ldots	...	\ldots
...	\ldots	\ldots
${ }_{\xi} f_{0}$	$\xi^{f_{1}}$	${ }_{\xi} f_{\gamma}$
...	...	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	..
$\begin{gathered} f_{0}:= \\ \bigcup_{\alpha<\mathfrak{c} \alpha} f_{0} \end{gathered}$	$\begin{gathered} f_{1}:= \\ \bigcup_{\alpha<\mathfrak{c} \alpha} f_{1} \end{gathered}$	$\begin{gathered} f_{\gamma}:= \\ \bigcup_{\alpha<\mathfrak{c} \alpha} f_{\gamma} \end{gathered}$

Preparation for the construction

- The class of partial functions that are linearly independent will be denoted by PLIF.

Preparation for the construction

- The class of partial functions that are linearly independent will be denoted by PLIF.
- The linear span of $A \subset \mathbb{R}^{2}$ will be denoted by $\operatorname{LIN}_{\mathbb{Q}}(A)$.

Preparation for the construction

- The class of partial functions that are linearly independent will be denoted by PLIF.
- The linear span of $A \subset \mathbb{R}^{2}$ will be denoted by $\operatorname{LIN}_{\mathbb{Q}}(A)$.

Observation

$\{0\} \times \mathbb{R} \subset \operatorname{LIN}_{\mathbb{Q}}(f) \Longrightarrow \mathbb{R}^{2} \subset \operatorname{LIN}_{\mathbb{Q}}(f)$.

Preparation for the construction

- The class of partial functions that are linearly independent will be denoted by PLIF.
- The linear span of $A \subset \mathbb{R}^{2}$ will be denoted by $\operatorname{LIN}_{\mathbb{Q}}(A)$.

Observation

$\{0\} \times \mathbb{R} \subset \operatorname{LIN}_{\mathbb{Q}}(f) \Longrightarrow \mathbb{R}^{2} \subset \operatorname{LIN}_{\mathbb{Q}}(f)$.
Indeed, let $\langle x, y\rangle \in \mathbb{R}^{2}$. Then

$$
\langle x, y\rangle=\langle 0, y-f(x)\rangle+\langle x, f(x)\rangle .
$$

Preparation for the construction

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\}
$$

Preparation for the construction

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\}
$$

Now consider a set W of all the reduced words that can be composed of the generators, i. e. functions of the form

$$
h=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}} .
$$

where $m \geqslant 1, k_{i} \in \mathbb{Z} \backslash\{0\}, \gamma_{i}<\mathfrak{c}$ and $\gamma_{i} \neq \gamma_{i+1}$.

Preparation for the construction

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\}
$$

Now consider a set W of all the reduced words that can be composed of the generators, i. e. functions of the form

$$
h=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}} .
$$

where $m \geqslant 1, k_{i} \in \mathbb{Z} \backslash\{0\}, \gamma_{i}<\mathfrak{c}$ and $\gamma_{i} \neq \gamma_{i+1}$. Let

$$
W=\left\{h_{\alpha}: \alpha<\mathfrak{c}\right\}
$$

Preparation for the construction

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\}
$$

Now consider a set W of all the reduced words that can be composed of the generators, i. e. functions of the form

$$
h=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}} .
$$

where $m \geqslant 1, k_{i} \in \mathbb{Z} \backslash\{0\}, \gamma_{i}<\mathfrak{c}$ and $\gamma_{i} \neq \gamma_{i+1}$. Let

$$
W=\left\{h_{\alpha}: \alpha<\mathfrak{c}\right\}
$$

If $W \ni h=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}}$ then by ${ }_{\xi} h$ we will denote

$$
\xi_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\xi} f_{\gamma_{m}}^{k_{m}},
$$

i. e. the word h_{α} at the ξ-stage of the construction.

Conditions

For every $\beta<\mathfrak{c}$ (number of the generator/word) and for every $\kappa<\mathfrak{c}$ (number of the stage of construction):

Conditions

For every $\beta<\mathfrak{c}$ (number of the generator/word) and for every $\kappa<\mathfrak{c}$ (number of the stage of construction):
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (it has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
$(\mathrm{VI})\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

At the end for every $\beta<\mathfrak{c}$ let

$$
f_{\beta}:=\bigcup_{\kappa<\mathfrak{c}} \kappa f_{\beta}
$$

Why do these conditions suffice?

These conditions assure that for every $\beta<\mathfrak{c}, f_{\beta} \in \mathbb{R}^{\mathbb{R}}$.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

These conditions assure that we get bijections.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) ${ }_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

These conditions assure that every word is a Hamel basis.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) ${ }_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

This condition assures that the set of generators is free (and therefore its cardinality is \mathfrak{c}).
(I) $\kappa_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) ${ }_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

This condition assures that the set of generators is free (and therefore its cardinality is \mathfrak{c}).
(I) $\kappa_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Indeed, if it was not, some function would have two representations that do not reduce. Composing the function with its inverse would lead to a nontrivial representation of the identity function, a contradiction.

Why do these conditions suffice?

We will see that this condition will enable us to make the inductive step.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) ${ }_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

How do we care about them?

The highlighted conditions are true from the very beginning of our construction. We just need to make sure we don't break any of these.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) ${ }_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

How do we care about them?

On the other hand, conditions (VI)-(VII) are the conditions that we need to satisfy.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) ${ }_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Construction

Assume that for each β (number of generator) ${ }_{\xi} f_{\beta}$ are constructed for $\xi<\eta$. If η is a limit ordinal then for each β we let

$$
{ }_{\eta} f_{\beta}=\bigcup_{\xi<\eta}{ }_{\xi} f_{\beta} .
$$

Otherwise $\eta=\kappa+1$ for some κ.

Construction

Assume that for each β (number of generator) ${ }_{\xi} f_{\beta}$ are constructed for $\xi<\eta$. If η is a limit ordinal then for each β we let

$$
{ }_{\eta} f_{\beta}=\bigcup_{\xi<\eta}{ }_{\xi} f_{\beta}
$$

Otherwise $\eta=\kappa+1$ for some κ.

PART I

In this part we make sure that $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN} \mathbb{Q}_{\mathbb{Q}}\left(\kappa+1 h_{\alpha_{\kappa}}\right)$ holds.

Construction

Assume that for each β (number of generator) ${ }_{\xi} f_{\beta}$ are constructed for $\xi<\eta$. If η is a limit ordinal then for each β we let

$$
{ }_{\eta} f_{\beta}=\bigcup_{\xi<\eta}{ }_{\xi} f_{\beta} .
$$

Otherwise $\eta=\kappa+1$ for some κ.

PART I

In this part we make sure that $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$ holds.
If $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa} h_{\alpha_{\kappa}}\right)$, we don't change anything. Let's look at the other case. set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points.

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ \circ_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the span of the set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points. From condition (IV): $\left|\bigcup_{\gamma<\beta \kappa}{ }_{\kappa}\right| \leqslant|\kappa|+\omega$ we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ \circ_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the span of the set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points. From condition (IV): $\left|\bigcup_{\gamma<\beta \kappa}{ }_{\kappa}\right| \leqslant|\kappa|+\omega$ we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F.

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ \circ_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the span of the set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points. From condition (IV): $\left|\bigcup_{\gamma<\beta}{ }_{\kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$ we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$.

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the span of the set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points. From condition (IV): $\left|\bigcup_{\gamma<\beta}{ }_{\kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$ we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$. Then we have to choose

$$
2 \cdot \sum\left|k_{i}\right|
$$

pairs of points and add them to appropiate $f_{\gamma_{i}}$'s in the way that $\langle x, y\rangle,\left\langle-x, x_{\kappa}-y\right\rangle$ are in the extended ${ }_{\kappa} h_{\alpha_{\kappa}}$.

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the span of the set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points. From condition (IV): $\left|\bigcup_{\gamma<\beta}{ }_{\kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$ we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$. Then we have to choose

$$
2 \cdot \sum\left|k_{i}\right|
$$

pairs of points and add them to appropiate $f_{\gamma_{i}}$'s in the way that $\langle x, y\rangle,\left\langle-x, x_{\kappa}-y\right\rangle$ are in the extended ${ }_{\kappa} h_{\alpha_{\kappa}}$. Then

- (VI): $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LI} \mathbb{N}_{\mathbb{Q}}\left(\kappa+1 h_{\alpha_{\kappa}}\right)$ is satisfied;

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the span of the set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points. From condition (IV): $\left|\bigcup_{\gamma<\beta}{ }_{\kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$ we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$. Then we have to choose

$$
2 \cdot \sum\left|k_{i}\right|
$$

pairs of points and add them to appropiate $f_{\gamma_{i}}$'s in the way that $\langle x, y\rangle,\left\langle-x, x_{\kappa}-y\right\rangle$ are in the extended ${ }_{\kappa} h_{\alpha_{\kappa}}$. Then

- (VI): $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$ is satisfied;
- (I)-(IV) clearly still hold;

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the span of the set of reals that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points. From condition (IV): $\left|\bigcup_{\gamma<\beta \kappa}{ }_{\kappa}\right| \leqslant|\kappa|+\omega$ we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$. Then we have to choose

$$
2 \cdot \sum\left|k_{i}\right|
$$

pairs of points and add them to appropiate $f_{\gamma_{i}}$'s in the way that $\langle x, y\rangle,\left\langle-x, x_{\kappa}-y\right\rangle$ are in the extended ${ }_{\kappa} h_{\alpha_{\kappa}}$. Then

- (VI): $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left(\kappa+1 h_{\alpha_{\kappa}}\right)$ is satisfied;
- (I)-(IV) clearly still hold;
- (V): ${ }_{\kappa} h_{\beta} \in$ PLIF remains true - we were chosing points that were linearly independent.

Construction

PART II and PART III

In these parts we have to satisfy conditions
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$,
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Construction

PART II and PART III

In these parts we have to satisfy conditions
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$,
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

The argument showing that it can be done without breaking conditions (I)-(V) is the same - the set of "forbidden" point is not equal to \mathbb{R}.

Construction

PART II and PART III

In these parts we have to satisfy conditions
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$,
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

The argument showing that it can be done without breaking conditions (I$)-(\mathrm{V})$ is the same - the set of "forbidden" point is not equal to \mathbb{R}. At the end we let ${ }_{\kappa+1} f_{\beta}$ be the extended version of ${ }_{\kappa} f_{\beta}$ or ${ }_{\kappa+1} f_{\beta}={ }_{\kappa} f_{\beta}$ if it was not changed in parts I-III.

Problems

Problem

Characterize these groups which isomorphic copies can be found within the family of Hamel bijections with identity function included.

Problems

Problem

Characterize these groups which isomorphic copies can be found within the family of Hamel bijections with identity function included.

Problem

Does there exists a free group of Hamel bijections with \mathbf{c}^{+}generators?

References

(1. G. Matusik, T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hungar., 126 (3), 2010, 209-229.
國 K. Płotka, On functions whose graph is a Hamel basis, Proc. Amer. Math. Soc., 131, 2003, 1031-1041.

