A plethora of big Ramsey degrees

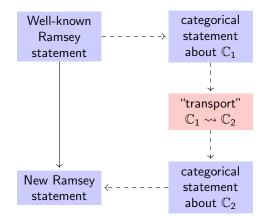
Dragan Mašulović

Department of Mathematics and Informatics University of Novi Sad, Serbia

> SETTOP 2022 23 Aug 2022

Benefits of categorification

- ► Duality Principle facilitates reasoning about dual Ramsey phenomena → "automatic dualization";
- "transport principles" enable piggyback proof strategies:



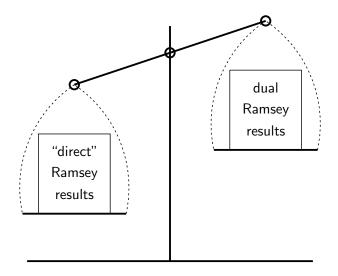
Duality Principle of Category Theory If φ holds for all cat's then φ^{op} holds for all cat's.

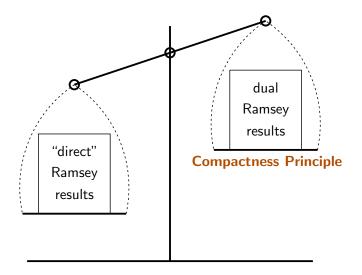
Example.

If $\mathbb C$ is a locally small directed category with the Ramsey property then $\mathbb C$ has amalgamation.

If \mathbb{C} is a locally small dually directed category with the dual Ramsey property then \mathbb{C} has projective amalgamation.

Why bother?





Theorem. Infinite Ramsey Theorem \Rightarrow Finite Ramsey Theorem.

Theorem. Infinite Ramsey Theorem \Rightarrow Finite Ramsey Theorem.

Theorem (General Compactness Principle – "direct").

Let \mathbb{D} be a full subcategory of \mathbb{C} such that hom(A, B) is finite for all $A, B \in Ob(\mathbb{D})$ and let S be a universal and weakly locally finite object for \mathbb{D} . Then for every $A \in Ob(\mathbb{D})$:

 $t_{\mathbb{D}}(A) \leqslant T_{\mathbb{C}}(A,S).$

Theorem. Infinite Ramsey Theorem \Rightarrow Finite Ramsey Theorem.

Theorem (General Compactness Principle – "direct").

Let \mathbb{D} be a full subcategory of \mathbb{C} such that hom(A, B) is finite for all $A, B \in Ob(\mathbb{D})$ and let S be a universal and weakly locally finite object for \mathbb{D} . Then for every $A \in Ob(\mathbb{D})$:

 $t_{\mathbb{D}}(A) \leqslant T_{\mathbb{C}}(A,S).$

Theorem. Infinite Dual Ramsey Theorem \Rightarrow Finite Dual Ramsey Theorem.

Theorem. Infinite Ramsey Theorem \Rightarrow Finite Ramsey Theorem.

Theorem (General Compactness Principle – "direct"). Let \mathbb{D} be a full subcategory of \mathbb{C} such that hom(A, B) is finite for

all $A, B \in Ob(\mathbb{D})$ and let S be a universal and weakly locally finite object for \mathbb{D} . Then for every $A \in Ob(\mathbb{D})$:

 $t_{\mathbb{D}}(A) \leqslant T_{\mathbb{C}}(A,S).$

Theorem. Infinite Dual Ramsey Theorem \Rightarrow Finite Dual Ramsey Theorem.

Useful statement in the dual case???

Big Ramsey degrees	embedding	structural	
"direct"	$T_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}_{\mathbb{C}}(A,S)$	no topology involved
dual	$T^\partial_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}^\partial_\mathbb{C}(A,S)$	topology is essential
	coloring morphisms	coloring subobjects	_

Big Ramsey degrees	embedding	structural	
"direct"	$T_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}_{\mathbb{C}}(A,S)$	no topology involved
dual	$T^\partial_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}^\partial_\mathbb{C}(A,S)$	topology is essential
	coloring morphisms	coloring subobjects	-

For small Ramsey degrees: $t^{\partial}_{\mathbb{C}}(A) = t_{\mathbb{C}^{op}}(A)$.

Big Ramsey degrees	embedding	structural	
"direct"	$T_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}_{\mathbb{C}}(A,S)$	no topology involved
dual	$T^\partial_\mathbb{C}(A,S)$	$ ilde{\mathcal{T}}^\partial_\mathbb{C}(A,S)$	topology is essential
	coloring morphisms	coloring subobjects	-

With this state of affairs it is **NOT** the case that $T^{\partial}_{\mathbb{C}}(A, B) = T_{\mathbb{C}^{op}}(A, B)$

Big Ramsey degrees	embedding	structural	
"direct"	$T_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}_{\mathbb{C}}(A,S)$	no topology involved
dual	$T^\partial_\mathbb{C}(A,S)$	$ ilde{\mathcal{T}}^\partial_\mathbb{C}(A,S)$	topology is essential
	coloring morphisms	coloring subobjects	-

With this state of affairs it is **NOT** the case that $T^{\partial}_{\mathbb{C}}(A, B) = T_{\mathbb{C}^{op}}(A, B) \leftarrow \text{Infrastructure needed!}$

The setup: Step 1 – enriched categories

Top ... topological spaces + continuous maps

$\mathbb C$ enriched over Top ...

- homsets are topological spaces and
- composition of morphisms is continuous

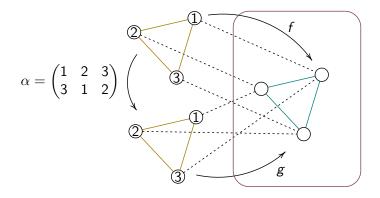
Note.

- 1 Every category enriched over **Top** is locally small
- 2 Every category has a trivial (discrete) enrichment over Top

"Embeddings:" hom(A, B)

"Subobjects:"

$$\binom{B}{A} = \operatorname{hom}(A, B) / \sim_A$$
, where
 $f \sim_A g$ iff $\exists \alpha \in \operatorname{Aut}(A) : f = g \cdot \alpha$



"Embedding degree:"

 $\chi: \mathsf{hom}(A, B) \to k$

"Structural degree:"

 $\chi : \hom(A, B)/\sim_A \to k$, where $f \sim_A g$ iff $\exists \alpha \in \operatorname{Aut}(A) : f = g \cdot \alpha$

"Embedding degree:" $\chi : hom(A, B) \rightarrow k$

"Structural degree:" $\chi: \hom(A,B)/{\sim_A} \to k$, where

$$f \sim_A g \text{ iff } \exists \alpha \in \operatorname{Aut}(A) : f = g \cdot \alpha$$

"Embedding degree (bis):" $\chi : hom(A, B) / \approx_A \rightarrow k$, where $f \approx_A g$ iff f = g

 $\mathbb C$. . . a locally small category

$$\mathfrak{G} = (G_A)_{A \in \mathsf{Ob}(\mathbb{C})} \dots G_A \leq \mathsf{Aut}_{\mathbb{C}}(A)$$

$$\sim_\mathfrak{G} \dots f \sim_\mathfrak{G} g \text{ if } \exists \alpha \in G_A : f = g \cdot \alpha \text{ (where } f, g \in \mathsf{hom}_{\mathbb{C}}(A, B))$$

$$\binom{B}{A}_\mathfrak{G} = \mathsf{hom}(A, B) / \sim_\mathfrak{G}$$

NB. In the two extreme cases:

• if
$$\mathfrak{G} = (\{\mathrm{id}_A\})_{A \in \mathrm{Ob}(\mathbb{C})}$$
 then $\binom{B}{A}_{\mathfrak{G}}$ "=" hom (A, B) ;

• if
$$\mathfrak{G} = (\operatorname{Aut}(A))_{A \in \operatorname{Ob}(\mathbb{C})}$$
 then $\binom{B}{A}_{\mathfrak{G}} = \binom{B}{A}$.

The setup: Putting it all together

$$(\mathbb{C}, \mathfrak{G}) \dots \mathbb{C}$$
 enriched over **Top**
 $\mathfrak{G} = (G_A)_{A \in Ob(\mathbb{C})}$ where $G_A \leq Aut(A)$

The setup: Putting it all together

$$(\mathbb{C}, \mathfrak{G}) \dots \mathbb{C}$$
 enriched over **Top**
 $\mathfrak{G} = (G_A)_{A \in Ob(\mathbb{C})}$ where $G_A \leq Aut(A)$

$$\begin{array}{l} C \stackrel{\mathfrak{G}}{\longrightarrow}_{\flat} (B)_{k,t}^{\mathcal{A}} \ldots \ \forall \text{ Borel coloring } \chi : \begin{pmatrix} C \\ \mathcal{A} \end{pmatrix}_{\mathfrak{G}} \rightarrow k \\ \exists \ w \in \hom(B, C) \text{ s.t. } |\chi(w \cdot \begin{pmatrix} B \\ \mathcal{A} \end{pmatrix}_{\mathfrak{G}})| \leqslant t \end{array}$$

The setup: Putting it all together

$$(\mathbb{C}, \mathfrak{G}) \dots \mathbb{C}$$
 enriched over **Top**
 $\mathfrak{G} = (G_A)_{A \in Ob(\mathbb{C})}$ where $G_A \leq Aut(A)$

$$\begin{array}{l} C \stackrel{\mathfrak{G}}{\longrightarrow}_{\flat} (B)_{k,t}^{\mathcal{A}} \ldots \ \forall \text{ Borel coloring } \chi : \begin{pmatrix} C \\ \mathcal{A} \end{pmatrix}_{\mathfrak{G}} \rightarrow k \\ \exists \ w \in \hom(B, C) \text{ s.t. } |\chi(w \cdot \begin{pmatrix} B \\ \mathcal{A} \end{pmatrix}_{\mathfrak{G}})| \leqslant t \end{array}$$

$$T^{\mathfrak{G}}_{\mathbb{C}}(A,S) \ldots S \stackrel{\mathfrak{G}}{\longrightarrow}_{\flat} (S)^{\mathcal{A}}_{k,t}$$

Fact. $(T^{\mathfrak{G}}_{\mathbb{C}})^{\partial}(A,S) = T^{\mathfrak{G}}_{\mathbb{C}^{op}}(A,S)$

Putting it all together

The extreme cases:

$\mathfrak{G} \rightarrow \\ \textbf{enrichment} \downarrow$	$(\{id_A\})_{A\inOb(\mathbb{C})}$	$(\operatorname{Aut}(A))_{A\in\operatorname{Ob}(\mathbb{C})}$
discrete	$T_{\mathbb{C}}(A,S)$	${ ilde{T}}_{\mathbb{C}}(A,S)$
loc comp 2nd ctble Hausdorff	$T^{\partial}_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}^{\partial}_{\mathbb{C}}(A,S)$

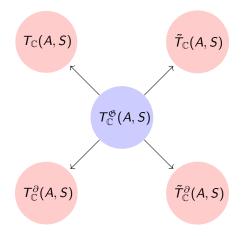
Putting it all together

The extreme cases:

$\mathfrak{G} \rightarrow \\ \textbf{enrichment} \downarrow$	$(\{id_A\})_{A\inOb(\mathbb{C})}$	$(\operatorname{Aut}(A))_{A\in\operatorname{Ob}(\mathbb{C})}$
discrete	$T_{\mathbb{C}}(A,S)$	${ ilde{T}}_{\mathbb{C}}(A,S)$
loc comp 2nd ctble Hausdorff	$T^{\partial}_{\mathbb{C}}(A,S)$	$ ilde{\mathcal{T}}^\partial_\mathbb{C}(A,S)$

Plethora of big Ramsey degrees $T^{\mathfrak{G}}_{\mathbb{C}}$ "between" $T_{\mathbb{C}}$ and $\tilde{T}_{\mathbb{C}}!$

Putting it all together



Fundamental relationships

Theorem. [M 2022+]

Let \mathbb{C} be a category enriched over **Top** whose morphisms are mono, and let $A, S \in Ob(\mathbb{C})$. Assume that

- the enrichment is discrete, or
- ▶ hom(A, A) and hom(A, S) are locally compact second countable Hausdorff and Aut(A) is a topological group closed in hom(A, A).

Then $T(A, S) \ge |\operatorname{Aut}(A)|$.

In particular, if Aut(A) is infinite then $T(A, S) = \infty$.

Question. What happens with $T^{\mathfrak{G}}_{\mathbb{C}}(A, S)$ if $[\operatorname{Aut}(A) : G_A] < \infty$?

Fundamental relationships

Theorem. [Zucker 2019, M 2022+]

Let $\mathbb C$ be a category enriched over Top whose morphisms are mono, and let $\mathfrak G$ and $\mathfrak H$ be two choices of finite automorphism groups. Assume that

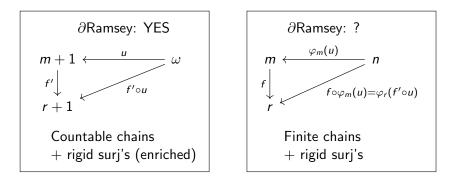
- ▶ the enrichment is discrete, or
- ▶ hom(A, S) is locally compact second countable Hausdorff and both G_A and H_A are discrete groups.

Then $|G_A| \cdot T^{\mathfrak{G}}(A, S) = |H_A| \cdot T^{\mathfrak{H}}(A, S).$

In particular, $T(A, S) = |G_A| \cdot T^{\mathfrak{G}}(A, S)$.

 T. J. CARLSON, S. G. SIMPSON: A dual form of Ramsey's theorem. Adv. Math. 53 (1984), 265–290.

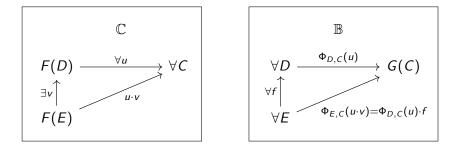
Theorem. Infinite Dual Ramsey Theorem \Rightarrow Finite Dual Ramsey Theorem



A Borel pre-adjunction between $\mathbb C$ and $\mathbb B$ consists of

▶ a pair of maps $F : Ob(\mathbb{B}) \rightleftharpoons Ob(\mathbb{C}) : G$, and

▶ Borel maps $\Phi_{X,Y}$: hom_ℂ(F(X), Y) → hom_ℝ(X, G(Y)) such that:



 $\mathbb C$ $\ldots\,$ a small category

 $\mathsf{Sub}(\mathbb{C})$. . .

 \blacktriangleright objects: all full subcategories of $\mathbb C$

▶ morphisms $\mathbb{B} \to \mathbb{D}$: $(f_B)_{B \in Ob(\mathbb{B})}$ where dom $(f_B) = B$ and $cod(f_B) \in Ob(\mathbb{D})$

NB. $\mathbb{C} \hookrightarrow \textbf{Sub}(\mathbb{C})$ "canonically"

Theorem [M 2021]. $t_{\mathbb{C}}(A) = T_{\mathsf{Sub}(\mathbb{C})}(A, \mathbb{C}).$

 $\mathbb C$ $\ldots\,$ a small category

 $\mathsf{Sub}(\mathbb{C})$. . .

 \blacktriangleright objects: all full subcategories of $\mathbb C$

▶ morphisms $\mathbb{B} \to \mathbb{D}$: $(f_B)_{B \in Ob(\mathbb{B})}$ where dom $(f_B) = B$ and $cod(f_B) \in Ob(\mathbb{D})$

NB. $\mathbb{C} \hookrightarrow \text{Sub}(\mathbb{C})$ "canonically"

Theorem [M 2021]. $t_{\mathbb{C}}(A) = T_{\mathsf{Sub}(\mathbb{C})}(A, \mathbb{C}).$

Fun Fact [M 2021]. $t_{\mathbb{C}}(A) = \min_{S,\mathbb{S}} T_{\mathbb{S}}(A, S)$.

General Compactness Principle – Iteration 0

 $(\mathbb{C},\mathfrak{G})$... category enriched over Top whose morphisms are mono and with distinguished automorphism groups

- $\mathbb D$ \ldots directed small full subcategory of $\mathbb C$
- $S \in \mathsf{Ob}(\mathbb{C}) \dots$ universal for \mathbb{D} .

Theorem [M 2022+]. Assume that

- there is a Borel pre-adjunction $F : \mathbf{Sub}(\mathbb{D}) \leftrightarrows \mathbb{C} : G$ such that $G(S) = \mathbb{D}$ and $F(\mathbb{D}) \to S$;
- \blacktriangleright the enrichment of $\mathbb D$ is discrete or $\mathbb D$ has a countable skeleton;
- ▶ hom(F(A), S) is locally compact second countable Hausdorff and both G_A and G_{F(A)} are finite discrete groups.

Then $t^{\mathfrak{G}}_{\mathbb{D}}(A) \leqslant T^{\mathfrak{G}}_{\mathbb{C}}(F(A), S)$ for all $A \in Ob(\mathbb{D})$.

General Compactness Principle

To be continued...