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Benefits of categorification

▶ Duality Principle facilitates reasoning about dual Ramsey
phenomena → “automatic dualization”;

▶ “transport principles” enable piggyback proof strategies:

Well-known
Ramsey
statement

categorical
statement
about C1

categorical
statement
about C2

New Ramsey
statement

“transport”
C1 ⇝ C2



“Automatic” dualization

Duality Principle of Category Theory
If φ holds for all cat’s then φop holds for all cat’s.

Example.

If C is a locally small directed category with the Ramsey property
then C has amalgamation.

∂

xy
If C is a locally small dually directed category with the
dual Ramsey property then C has projective amalgamation.



“Automatic” dualization

Why bother?
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Compactnes Principle

Theorem. Infinite Ramsey Theorem ⇒ Finite Ramsey Theorem.

Theorem (General Compactness Principle – “direct”).
Let D be a full subcategory of C such that hom(A,B) is finite for
all A,B ∈ Ob(D) and let S be a universal and weakly locally finite
object for D. Then for every A ∈ Ob(D):

tD(A) ⩽ TC(A,S).

Theorem. Infinite Dual Ramsey Theorem ⇒ Finite Dual Ramsey
Theorem.

Useful statement in the dual case???
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Taxonomy of big Ramsey degrees
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Taxonomy of big Ramsey degrees

Big Ramsey
embedding structural

degrees

“direct” TC(A,S) T̃C(A,S) no topology
involved

dual T ∂
C(A,S) T̃ ∂

C(A,S) topology is
essential

coloring coloring
morphisms subobjects

With this state of affairs it is NOT the case that
T ∂
C(A,B) = TCop(A,B) ← Infrastructure needed!



The setup: Step 1 – enriched categories

Top . . . topological spaces + continuous maps

C enriched over Top . . .

▶ homsets are topological spaces and

▶ composition of morphisms is continuous

Note.

1 Every category enriched over Top is locally small

2 Every category has a trivial (discrete) enrichment over Top



The setup: Step 2 – subobjects

“Embeddings:” hom(A,B)

“Subobjects:”
(B
A

)
= hom(A,B)/∼A, where

f ∼A g iff ∃α ∈ Aut(A) : f = g · α

1
2

3

1
2

3

α =

(
1 2 3
3 1 2

)

g

f



The setup: Step 2 – subobjects

“Embedding degree:” χ : hom(A,B)→ k

“Structural degree:” χ : hom(A,B)/∼A → k , where

f ∼A g iff ∃α ∈ Aut(A) : f = g · α

“Embedding degree (bis):” χ : hom(A,B)/≈A → k , where

f ≈A g iff f = g
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The setup: Step 2 – subobjects

C . . . a locally small category

G = (GA)A∈Ob(C) . . . GA ⩽ AutC(A)

∼G . . . f∼Gg if ∃α ∈ GA : f = g · α (where f , g ∈ homC(A,B))(B
A

)
G
= hom(A,B)/∼G

NB. In the two extreme cases:

▶ if G = ({idA})A∈Ob(C) then
(B
A

)
G
“=” hom(A,B);

▶ if G = (Aut(A))A∈Ob(C) then
(B
A

)
G
=

(B
A

)
.



The setup: Putting it all together

(C,G) . . . C enriched over Top

G = (GA)A∈Ob(C) where GA ⩽ Aut(A)

C
G−→♭ (B)

A
k,t . . . ∀ Borel coloring χ :

(C
A

)
G
→ k

∃ w ∈ hom(B,C ) s.t. |χ(w ·
(B
A

)
G
)| ⩽ t

TG
C (A,S) . . . S

G−→♭ (S)
A
k,t

Fact. (TG
C )∂(A,S) = TG

Cop(A,S)



The setup: Putting it all together

(C,G) . . . C enriched over Top

G = (GA)A∈Ob(C) where GA ⩽ Aut(A)

C
G−→♭ (B)

A
k,t . . . ∀ Borel coloring χ :

(C
A

)
G
→ k

∃ w ∈ hom(B,C ) s.t. |χ(w ·
(B
A

)
G
)| ⩽ t

TG
C (A,S) . . . S

G−→♭ (S)
A
k,t

Fact. (TG
C )∂(A,S) = TG

Cop(A,S)



The setup: Putting it all together

(C,G) . . . C enriched over Top

G = (GA)A∈Ob(C) where GA ⩽ Aut(A)

C
G−→♭ (B)

A
k,t . . . ∀ Borel coloring χ :

(C
A

)
G
→ k

∃ w ∈ hom(B,C ) s.t. |χ(w ·
(B
A

)
G
)| ⩽ t

TG
C (A, S) . . . S

G−→♭ (S)
A
k,t

Fact. (TG
C )∂(A,S) = TG

Cop(A,S)



Putting it all together

The extreme cases:

G→
({idA})A∈Ob(C) (Aut(A))A∈Ob(C)enrichment↓

discrete TC(A,S) T̃C(A,S)

loc comp

2nd ctble T ∂
C(A,S) T̃ ∂

C(A,S)
Hausdorff

Plethora of big Ramsey degrees TG
C “between” TC and T̃C!
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Putting it all together

TC(A,S) T̃C(A,S)

TG
C (A,S)

T̃ ∂
C (A,S)T ∂

C (A,S)



Fundamental relationships

Theorem. [M 2022+]
Let C be a category enriched over Top whose morphisms are
mono, and let A,S ∈ Ob(C). Assume that

▶ the enrichment is discrete, or

▶ hom(A,A) and hom(A,S) are locally compact second
countable Hausdorff and Aut(A) is a topological group closed
in hom(A,A).

Then T (A,S) ⩾ |Aut(A)|.

In particular, if Aut(A) is infinite then T (A,S) =∞.

Question. What happens with TG
C (A, S) if [Aut(A) : GA] <∞?



Fundamental relationships

Theorem. [Zucker 2019, M 2022+]
Let C be a category enriched over Top whose morphisms are
mono, and let G and H be two choices of finite automorphism
groups. Assume that

▶ the enrichment is discrete, or

▶ hom(A, S) is locally compact second countable Hausdorff and
both GA and HA are discrete groups.

Then |GA| · TG(A,S) = |HA| · TH(A,S).

In particular, T (A, S) = |GA| · TG(A, S).



Towards the General Compactness Principle

▶ T. J. Carlson, S. G. Simpson: A dual form of Ramsey’s theorem. Adv.

Math. 53 (1984), 265–290.

Theorem. Infinite Dual Ramsey Theorem ⇒ Finite Dual Ramsey
Theorem

∂Ramsey: YES ∂Ramsey: ?

m + 1 ω m n

r + 1 r

Countable chains
+ rigid surj’s (enriched)

Finite chains
+ rigid surj’s

f ′

u

f ′◦u f

φm(u)

f ◦φm(u)=φr (f ′◦u)



Towards the General Compactness Principle

A Borel pre-adjunction between C and B consists of

▶ a pair of maps F : Ob(B)⇄ Ob(C) : G , and

▶ Borel maps ΦX ,Y : homC(F (X ),Y )→ homB(X ,G (Y ))

such that:

C B

F (D) ∀C ∀D G (C )

F (E ) ∀E

∀u ΦD,C (u)

∃v u·v ∀f

ΦE ,C (u·v)=ΦD,C (u)·f



Towards the General Compactness Principle

C . . . a small category

Sub(C) . . .
▶ objects: all full subcategories of C
▶ morphisms B→ D:

(fB)B∈Ob(B) where dom(fB) = B and cod(fB) ∈ Ob(D)

NB. C ↪→ Sub(C) “canonically”

Theorem [M 2021]. tC(A) = TSub(C)(A,C).

Fun Fact [M 2021]. tC(A) = minS,S TS(A,S).
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General Compactness Principle – Iteration 0

(C,G) . . . category enriched over Top whose morphisms are mono
and with distinguished automorphism groups

D . . . directed small full subcategory of C

S ∈ Ob(C) . . . universal for D.

Theorem [M 2022+]. Assume that

▶ there is a Borel pre-adjunction F : Sub(D)⇆ C : G such that
G (S) = D and F (D)→ S ;

▶ the enrichment of D is discrete or D has a countable skeleton;

▶ hom(F (A), S) is locally compact second countable Hausdorff
and both GA and GF (A) are finite discrete groups.

Then tGD (A) ⩽ TG
C (F (A), S) for all A ∈ Ob(D).



General Compactness Principle

To be continued. . .


