The refinement relation and its associated cardinal invariants

Francesco Parente

2022-08-25

Introduction

Given a notion of forcing \mathbb{P}, we aim to study the directed set of all maximal antichains in \mathbb{P} from the point of view of Tukey reducibility.

This is a joint work (in progress) with Jörg Brendle.

Relational systems

We shall consider relational systems $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$, with $A \subseteq A_{-} \times A_{+}$.

Relational systems

We shall consider relational systems $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$, with $A \subseteq A_{-} \times A_{+}$.

Definition
Given a relational system \boldsymbol{A}, let us define

- $\mathfrak{b}(\boldsymbol{A})=\min \left\{|F| \mid F \subseteq A_{-}\right.$is unbounded $\}$,
- $\mathfrak{o}(\boldsymbol{A})=\min \left\{|D| \mid D \subseteq A_{+}\right.$is dominating $\}$.

Relational systems

We shall consider relational systems $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$, with $A \subseteq A_{-} \times A_{+}$.

Definition
Given a relational system \boldsymbol{A}, let us define

- $\mathfrak{b}(\boldsymbol{A})=\min \left\{|F| \mid F \subseteq A_{-}\right.$is unbounded $\}$,
- $\mathfrak{d}(\boldsymbol{A})=\min \left\{|D| \mid D \subseteq A_{+}\right.$is dominating $\}$.

Example
Let $\boldsymbol{D}=\left\langle{ }^{\omega} \omega,{ }^{\omega} \omega, \leq^{*}\right\rangle$, where
$f \leq^{*} g \Longleftrightarrow$ the set $\{n<\omega \mid g(n)<f(n)\}$ is finite.
Then $\mathfrak{b}(\boldsymbol{D})=\mathfrak{b}$ and $\mathfrak{d}(\boldsymbol{D})=\mathfrak{d}$.

Tukey reductions

Definition (Tukey [1940])
Let $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$ and $\boldsymbol{B}=\left\langle B_{-}, B_{+}, B\right\rangle$ be relational systems. A Tukey reduction from \boldsymbol{A} to \boldsymbol{B} consists of two functions

$$
\varphi_{-}: A_{-} \rightarrow B_{-} \quad \text { and } \quad \varphi_{+}: B_{+} \rightarrow A_{+}
$$

such that for all $a \in A_{-}$and all $b \in B_{+}$

$$
\varphi_{-}(a) B b \Longrightarrow a A \varphi_{+}(b)
$$

Tukey reductions

Definition (Tukey [1940])
Let $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$ and $\boldsymbol{B}=\left\langle B_{-}, B_{+}, B\right\rangle$ be relational systems. A Tukey reduction from \boldsymbol{A} to \boldsymbol{B} consists of two functions

$$
\varphi_{-}: A_{-} \rightarrow B_{-} \quad \text { and } \quad \varphi_{+}: B_{+} \rightarrow A_{+}
$$

such that for all $a \in A_{-}$and all $b \in B_{+}$

$$
\varphi_{-}(a) B b \Longrightarrow a A \varphi_{+}(b)
$$

Definition
Write $\boldsymbol{A} \leq_{\mathrm{T}} \boldsymbol{B}$ if there exists a Tukey reduction from \boldsymbol{A} to \boldsymbol{B}.
Finally, $\boldsymbol{A} \equiv_{\mathrm{T}} \boldsymbol{B}$ means $\boldsymbol{A} \leq_{\mathrm{T}} \boldsymbol{B}$ and $\boldsymbol{B} \leq_{\mathrm{T}} \boldsymbol{A}$.

Tukey reductions

Definition (Tukey [1940])

Let $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$ and $\boldsymbol{B}=\left\langle B_{-}, B_{+}, B\right\rangle$ be relational systems. A Tukey reduction from \boldsymbol{A} to \boldsymbol{B} consists of two functions

$$
\varphi_{-}: A_{-} \rightarrow B_{-} \quad \text { and } \quad \varphi_{+}: B_{+} \rightarrow A_{+}
$$

such that for all $a \in A_{-}$and all $b \in B_{+}$

$$
\varphi_{-}(a) B b \Longrightarrow a A \varphi_{+}(b)
$$

Definition
Write $\boldsymbol{A} \leq_{\mathrm{T}} \boldsymbol{B}$ if there exists a Tukey reduction from \boldsymbol{A} to \boldsymbol{B}.
Finally, $\boldsymbol{A} \equiv_{\mathrm{T}} \boldsymbol{B}$ means $\boldsymbol{A} \leq_{\mathrm{T}} \boldsymbol{B}$ and $\boldsymbol{B} \leq_{\mathrm{T}} \boldsymbol{A}$.

Proposition (Schmidt [1955])
If $\boldsymbol{A} \leq{ }_{\mathrm{T}} \boldsymbol{B}$ then $\mathfrak{d}(\boldsymbol{A}) \leq \mathfrak{d}(\boldsymbol{B})$ and $\mathfrak{b}(\boldsymbol{B}) \leq \mathfrak{b}(\boldsymbol{A})$.

The σ operation

Given a relational system $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$, we define

$$
\boldsymbol{A}_{\sigma}=\left\langle A_{-},{ }^{\omega} A_{+}, A_{\sigma}\right\rangle
$$

where a $A_{\sigma} f \Longleftrightarrow$ there exists $n<\omega$ such that a $A f(n)$.

The σ operation

Given a relational system $\boldsymbol{A}=\left\langle A_{-}, A_{+}, A\right\rangle$, we define

$$
\boldsymbol{A}_{\sigma}=\left\langle A_{-},{ }^{\omega} A_{+}, A_{\sigma}\right\rangle
$$

where a $A_{\sigma} f \Longleftrightarrow$ there exists $n<\omega$ such that a $A f(n)$.

Remark

- Always $\boldsymbol{A}_{\sigma} \leq \mathrm{T} \boldsymbol{A}$
- If $\boldsymbol{A} \leq \mathrm{T} \boldsymbol{B}$ then $\boldsymbol{A}_{\sigma} \leq_{\mathrm{T}} \boldsymbol{B}_{\sigma}$

The refinement relation

Let \mathbb{P} be a notion of forcing. An antichain is a subset $A \subseteq \mathbb{P}$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

The refinement relation

Let \mathbb{P} be a notion of forcing. An antichain is a subset $A \subseteq \mathbb{P}$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.
Definition

- Let $\operatorname{Part}(\mathbb{P})$ be the set of all maximal antichains of \mathbb{P}.

The refinement relation

Let \mathbb{P} be a notion of forcing. An antichain is a subset $A \subseteq \mathbb{P}$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.
Definition

- Let $\operatorname{Part}(\mathbb{P})$ be the set of all maximal antichains of \mathbb{P}.
- Given $A, B \in \operatorname{Part}(\mathbb{P})$, we say that B refines A, in symbols $A \preceq B$, if for all $q \in B$ there exists $p \in A$ such that $q \leq p$.

The refinement relation

Let \mathbb{P} be a notion of forcing. An antichain is a subset $A \subseteq \mathbb{P}$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

Definition

- Let $\operatorname{Part}(\mathbb{P})$ be the set of all maximal antichains of \mathbb{P}.
- Given $A, B \in \operatorname{Part}(\mathbb{P})$, we say that B refines A, in symbols $A \preceq B$, if for all $q \in B$ there exists $p \in A$ such that $q \leq p$.
- The corresponding relational system is $\operatorname{Part}(\mathbb{P})=\langle\operatorname{Part}(\mathbb{P}), \operatorname{Part}(\mathbb{P}), \preceq\rangle$.

The refinement relation

Let \mathbb{P} be a notion of forcing. An antichain is a subset $A \subseteq \mathbb{P}$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

Definition

- Let Part (\mathbb{P}) be the set of all maximal antichains of \mathbb{P}.
- Given $A, B \in \operatorname{Part}(\mathbb{P})$, we say that B refines A, in symbols $A \preceq B$, if for all $q \in B$ there exists $p \in A$ such that $q \leq p$.
- The corresponding relational system is $\operatorname{Part}(\mathbb{P})=\langle\operatorname{Part}(\mathbb{P}), \operatorname{Part}(\mathbb{P}), \preceq\rangle$.

For the purpose of this analysis, we may assume that \mathbb{P} is in fact a complete Boolean algebra.

Almost refinement

Remark

$\mathfrak{b}(\operatorname{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ-distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Almost refinement

Remark

$\mathfrak{b}(\operatorname{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ-distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Definition

- Given $A, B \in \operatorname{Part}(\mathbb{B})$, we say that B almost refines A, in symbols $A \preceq^{*} B$, if for all but finitely many $a \in A$ there exists $X \subseteq B$ such that $a=\sup (X)$.

Almost refinement

Remark

$\mathfrak{b}(\operatorname{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ-distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Definition

- Given $A, B \in \operatorname{Part}(\mathbb{B})$, we say that B almost refines A, in symbols $A \preceq^{*} B$, if for all but finitely many $a \in A$ there exists $X \subseteq B$ such that $a=\sup (X)$.
- The corresponding relational system is $\operatorname{Part}{ }^{*}(\mathbb{B})=\left\langle\operatorname{Part}(\mathbb{B}), \operatorname{Part}(\mathbb{B}), \preceq^{*}\right\rangle$.

Almost refinement

Remark

$\mathfrak{b}(\operatorname{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ-distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Definition

- Given $A, B \in \operatorname{Part}(\mathbb{B})$, we say that B almost refines A, in symbols $A \preceq^{*} B$, if for all but finitely many $a \in A$ there exists $X \subseteq B$ such that $a=\sup (X)$.
- The corresponding relational system is $\operatorname{Part}^{*}(\mathbb{B})=\left\langle\operatorname{Part}(\mathbb{B}), \operatorname{Part}(\mathbb{B}), \preceq^{*}\right\rangle$.

Lemma

A c.c.c. algebra \mathbb{B} is ${ }^{\omega} \omega$-bounding if and only if $\mathfrak{b}\left(\boldsymbol{P a r t}^{*}(\mathbb{B})\right)>\aleph_{0}$.

Two Tukey reductions

Two Tukey reductions

Lemma
If \mathbb{B} is an c.c.c. atomless Boolean algebra, then

$$
\left\langle\mathbb{B}^{+}, \mathbb{B}^{+}, \geq\right\rangle_{\sigma} \leq_{\top} \operatorname{Part}(\mathbb{B})_{\sigma} .
$$

Two Tukey reductions

Lemma
If \mathbb{B} is an c.c.c. atomless Boolean algebra, then

$$
\left\langle\mathbb{B}^{+}, \mathbb{B}^{+}, \geq\right\rangle_{\sigma} \leq_{\mathrm{T}} \operatorname{Part}(\mathbb{B})_{\sigma} .
$$

Definition (Horn and Tarski)
A Boolean algebra \mathbb{B} is σ-finite c.c. if there are subsets $S_{n} \subseteq \mathbb{B}$, for $n<\omega$, such that $\mathbb{B}^{+}=\bigcup_{n<\omega} S_{n}$ and every antichain in S_{n} is finite.

Two Tukey reductions

Lemma
If \mathbb{B} is an c.c.c. atomless Boolean algebra, then

$$
\left\langle\mathbb{B}^{+}, \mathbb{B}^{+}, \geq\right\rangle_{\sigma} \leq_{\mathrm{T}} \operatorname{Part}(\mathbb{B})_{\sigma} .
$$

Definition (Horn and Tarski)
A Boolean algebra \mathbb{B} is σ-finite c.c. if there are subsets $S_{n} \subseteq \mathbb{B}$, for $n<\omega$, such that $\mathbb{B}^{+}=\bigcup_{n<\omega} S_{n}$ and every antichain in S_{n} is finite.

Proposition
If \mathbb{B} is a σ-finite c.c. atomless Boolean algebra, then

$$
\left\langle{ }^{\omega} \omega,{ }^{\omega} \omega, \leq^{*}\right\rangle \leq_{\top} \operatorname{Part}^{*}(\mathbb{B}) .
$$

In particular, it follows that $\mathfrak{b}\left(\operatorname{Part}^{*}(\mathbb{B})\right) \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{d}(\operatorname{Part}(\mathbb{B}))$.

Two Tukey reductions

Lemma

If \mathbb{B} is an c.c.c. atomless Boolean algebra, then

$$
\left\langle\mathbb{B}^{+}, \mathbb{B}^{+}, \geq\right\rangle_{\sigma} \leq_{\mathrm{T}} \operatorname{Part}(\mathbb{B})_{\sigma}
$$

Definition (Horn and Tarski)
A Boolean algebra \mathbb{B} is σ-finite c.c. if there are subsets $S_{n} \subseteq \mathbb{B}$, for $n<\omega$, such that $\mathbb{B}^{+}=\bigcup_{n<\omega} S_{n}$ and every antichain in S_{n} is finite.

Proposition
If \mathbb{B} is a σ-finite c.c. atomless Boolean algebra, then

$$
\left\langle{ }^{\omega} \omega,{ }^{\omega} \omega, \leq^{*}\right\rangle \leq_{\top} \operatorname{Part}^{*}(\mathbb{B}) .
$$

In particular, it follows that $\mathfrak{b}\left(\operatorname{Part}^{*}(\mathbb{B})\right) \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{d}(\operatorname{Part}(\mathbb{B}))$.

- Note: If \mathbb{S} is a Suslin algebra, then $\mathfrak{d}(\operatorname{Part}(\mathbb{S}))=\aleph_{1}$. Such an algebra exists in the Cohen model, where $\mathfrak{d}=2^{\aleph_{0}}$.

Definition

Let $\mathcal{B}\left({ }^{\omega} 2\right)$ be the σ-algebra generated by the clopen subsets of the Cantor space ${ }^{\omega} 2$. Let

$$
\mathbb{C}_{\omega}=\mathcal{B}\left({ }^{\omega} 2\right) / \mathcal{M} \quad \text { and } \quad \mathbb{B}_{\omega}=\mathcal{B}\left({ }^{\omega} 2\right) / \mathcal{N}
$$

be the quotients modulo the meagre and null ideal, respectively.

Cohen forcing

Theorem (Brendle and P.)
Let nwd be the ideal of closed nowhere dense subsets of ${ }^{\omega} 2$. Then

$$
\operatorname{Part}\left(\mathbb{C}_{\omega}\right) \equiv \mathrm{T}\langle\mathrm{nwd}, \mathrm{nwd}, \subseteq\rangle
$$

In particular, $\mathfrak{d}\left(\operatorname{Part}\left(\mathbb{C}_{\omega}\right)\right)=\operatorname{cof}(\mathcal{M})$ and $\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{C}_{\omega}\right)_{\sigma}\right)=\operatorname{add}(\mathcal{M})$.

Cohen forcing

Theorem (Brendle and P.)

Let nwd be the ideal of closed nowhere dense subsets of ${ }^{\omega} 2$. Then

$$
\operatorname{Part}\left(\mathbb{C}_{\omega}\right) \equiv \mathrm{T}\langle\mathrm{nwd}, \mathrm{nwd}, \subseteq\rangle
$$

In particular, $\mathfrak{d}\left(\operatorname{Part}\left(\mathbb{C}_{\omega}\right)\right)=\operatorname{cof}(\mathcal{M})$ and $\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{C}_{\omega}\right)_{\sigma}\right)=\operatorname{add}(\mathcal{M})$.

Corollary

For a notion of forcing \mathbb{P}, the following conditions are equivalent:

- if c is a Cohen real and G is a \mathbb{P}-generic filter over V, then c is still a Cohen real in $V[G]$;
- for every \mathbb{P}-name \dot{A} of a maximal antichain of \mathbb{C}_{ω} and every condition $p \in \mathbb{P}$ there exists $q \leq p$ and a maximal antichain B of \mathbb{C}_{ω} such that $q \Vdash \dot{A} \preceq \check{B}$;
- \mathbb{P} preserves the base of the ideal of meagre sets.

Random forcing

Theorem (Brendle and P.)
$\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right)=\operatorname{add}(\mathcal{N})$

Random forcing

Theorem (Brendle and P.)
$\mathfrak{b}\left(\boldsymbol{\operatorname { P a r t }}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right)=\operatorname{add}(\mathcal{N})$
Idea of the proof.
Since \mathbb{B}_{ω} is atomless c.c.c., we have $\left\langle\mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq\right\rangle_{\sigma} \leq_{\top} \operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}$ and therefore $\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right) \leq \mathfrak{b}\left(\left\langle\mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq\right\rangle_{\sigma}\right)=\operatorname{add}(\mathcal{N})$ by a result of Cichoń-Kamburelis-Pawlikowski.

Random forcing

Theorem (Brendle and P.)
$\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right)=\operatorname{add}(\mathcal{N})$
Idea of the proof.
Since \mathbb{B}_{ω} is atomless c.c.c., we have $\left\langle\mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq\right\rangle_{\sigma} \leq_{T} \operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}$ and therefore $\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right) \leq \mathfrak{b}\left(\left\langle\mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq\right\rangle_{\sigma}\right)=\operatorname{add}(\mathcal{N})$ by a result of Cichoń-Kamburelis-Pawlikowski.
Conversely, if $\kappa<\operatorname{add}(\mathcal{N})$ then $\mathrm{MA}_{\kappa}(\mathbb{A})$ holds. Use Amoeba generics to construct a sufficiently "generic" element of $\operatorname{Part}\left(\mathbb{B}_{\omega}\right)$ and conclude that $\kappa<\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right)$.

Random forcing

Theorem (Brendle and P.)
$\mathfrak{b}\left(\boldsymbol{\operatorname { P a r t }}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right)=\operatorname{add}(\mathcal{N})$
Idea of the proof.
Since \mathbb{B}_{ω} is atomless c.c.c., we have $\left\langle\mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq\right\rangle_{\sigma} \leq_{T} \operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}$ and therefore $\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right) \leq \mathfrak{b}\left(\left\langle\mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq\right\rangle_{\sigma}\right)=\operatorname{add}(\mathcal{N})$ by a result of Cichoń-Kamburelis-Pawlikowski.
Conversely, if $\kappa<\operatorname{add}(\mathcal{N})$ then $\mathrm{MA}_{\kappa}(\mathbb{A})$ holds. Use Amoeba generics to construct a sufficiently "generic" element of $\operatorname{Part}\left(\mathbb{B}_{\omega}\right)$ and conclude that $\kappa<\mathfrak{b}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)_{\sigma}\right)$.

Conjecture

We believe the above argument can be dualized to establish that $\mathfrak{d}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)\right)=\operatorname{cof}(\mathcal{N})$.

Questions

- Is $\mathfrak{d}\left(\operatorname{Part}\left(\mathbb{B}_{\omega}\right)\right)=\operatorname{cof}(\mathcal{N})$?
- What is the relation between $\mathfrak{d}(\operatorname{Part}(\mathbb{B}))$ and other cardinal invariants of \mathbb{B}, in particular the ultrafilter number?

Thank you!

