The refinement relation and its associated cardinal invariants

Francesco Parente

2022-08-25

Introduction

Given a notion of forcing \mathbb{P} , we aim to study the directed set of all maximal antichains in \mathbb{P} from the point of view of Tukey reducibility.

This is a joint work (in progress) with Jörg Brendle.

Relational systems

We shall consider relational systems $\mathbf{A} = \langle A_-, A_+, A \rangle$, with $A \subseteq A_- \times A_+$.

Relational systems

We shall consider relational systems $\mathbf{A} = \langle A_-, A_+, A \rangle$, with $A \subseteq A_- \times A_+$.

Definition

Given a relational system A, let us define

- ▶ $\mathfrak{b}(\mathbf{A}) = \min\{|F| \mid F \subseteq A_{-} \text{ is unbounded}\},$
- $\mathfrak{d}(\mathbf{A}) = \min\{|D| \mid D \subseteq A_+ \text{ is dominating}\}.$

Relational systems

We shall consider relational systems $\mathbf{A} = \langle A_-, A_+, A \rangle$, with $A \subseteq A_- \times A_+$.

Definition

Given a relational system A, let us define

- ▶ $\mathfrak{b}(\mathbf{A}) = \min\{|F| \mid F \subseteq A_{-} \text{ is unbounded}\},$
- ▶ $\mathfrak{d}(\mathbf{A}) = \min\{|D| \mid D \subseteq A_+ \text{ is dominating}\}.$

Example

Let ${\bf \it D}=\langle ^\omega\omega, ^\omega\omega, \leq^* \rangle$, where

$$f \leq^* g \iff$$
 the set $\{n < \omega \mid g(n) < f(n)\}$ is finite.

Then $\mathfrak{b}(\boldsymbol{D}) = \mathfrak{b}$ and $\mathfrak{d}(\boldsymbol{D}) = \mathfrak{d}$.

Tukey reductions

Definition (Tukey [1940])

Let ${\pmb A}=\langle A_-,A_+,A\rangle$ and ${\pmb B}=\langle B_-,B_+,B\rangle$ be relational systems.

A Tukey reduction from A to B consists of two functions

$$\varphi_-: A_- \to B_-$$
 and $\varphi_+: B_+ \to A_+$

such that for all $a \in A_-$ and all $b \in B_+$

$$\varphi_{-}(a) B b \implies a A \varphi_{+}(b).$$

Tukey reductions

Definition (Tukey [1940])

Let ${\pmb A}=\langle A_-,A_+,A\rangle$ and ${\pmb B}=\langle B_-,B_+,B\rangle$ be relational systems.

A Tukey reduction from **A** to **B** consists of two functions

$$\varphi_-: A_- \to B_-$$
 and $\varphi_+: B_+ \to A_+$

such that for all $a \in A_-$ and all $b \in B_+$

$$\varphi_{-}(a) B b \implies a A \varphi_{+}(b).$$

Definition

Write $\mathbf{A} \leq_T \mathbf{B}$ if there exists a Tukey reduction from \mathbf{A} to \mathbf{B} .

Finally, $\mathbf{A} \equiv_{\mathsf{T}} \mathbf{B}$ means $\mathbf{A} \leq_{\mathsf{T}} \mathbf{B}$ and $\mathbf{B} \leq_{\mathsf{T}} \mathbf{A}$.

Tukey reductions

Definition (Tukey [1940])

Let ${\pmb A}=\langle A_-,A_+,A\rangle$ and ${\pmb B}=\langle B_-,B_+,B\rangle$ be relational systems.

A Tukey reduction from **A** to **B** consists of two functions

$$\varphi_-: A_- \to B_-$$
 and $\varphi_+: B_+ \to A_+$

such that for all $a \in A_-$ and all $b \in B_+$

$$\varphi_{-}(a) B b \implies a A \varphi_{+}(b).$$

Definition

Write $\mathbf{A} \leq_{\mathsf{T}} \mathbf{B}$ if there exists a Tukey reduction from \mathbf{A} to \mathbf{B} .

Finally, $\mathbf{A} \equiv_{\mathsf{T}} \mathbf{B}$ means $\mathbf{A} \leq_{\mathsf{T}} \mathbf{B}$ and $\mathbf{B} \leq_{\mathsf{T}} \mathbf{A}$.

Proposition (Schmidt [1955])

If $\mathbf{A} \leq_{\mathsf{T}} \mathbf{B}$ then $\mathfrak{d}(\mathbf{A}) \leq \mathfrak{d}(\mathbf{B})$ and $\mathfrak{b}(\mathbf{B}) \leq \mathfrak{b}(\mathbf{A})$.

The σ operation

Given a relational system $\mathbf{A} = \langle A_-, A_+, A \rangle$, we define

$$\mathbf{A}_{\sigma} = \langle A_{-}, {}^{\omega}A_{+}, A_{\sigma} \rangle,$$

where $a A_{\sigma} f \iff$ there exists $n < \omega$ such that a A f(n).

The σ operation

Given a relational system $\mathbf{A} = \langle A_-, A_+, A \rangle$, we define

$$\textbf{\textit{A}}_{\sigma} = \big\langle \textit{\textit{A}}_{-}, {}^{\omega}\textit{\textit{A}}_{+}, \textit{\textit{A}}_{\sigma} \big\rangle,$$

where $a A_{\sigma} f \iff$ there exists $n < \omega$ such that a A f(n).

Remark

- ▶ Always $\mathbf{A}_{\sigma} \leq_{\mathsf{T}} \mathbf{A}$
- ▶ If $\mathbf{A} \leq_{\mathsf{T}} \mathbf{B}$ then $\mathbf{A}_{\sigma} \leq_{\mathsf{T}} \mathbf{B}_{\sigma}$

Let $\mathbb P$ be a notion of forcing. An antichain is a subset $A\subseteq \mathbb P$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

Let $\mathbb P$ be a notion of forcing. An antichain is a subset $A\subseteq \mathbb P$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

Definition

Let $Part(\mathbb{P})$ be the set of all maximal antichains of \mathbb{P} .

Let $\mathbb P$ be a notion of forcing. An antichain is a subset $A\subseteq \mathbb P$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

Definition

- Let $Part(\mathbb{P})$ be the set of all maximal antichains of \mathbb{P} .
- ▶ Given $A, B \in \text{Part}(\mathbb{P})$, we say that B refines A, in symbols $A \leq B$, if for all $q \in B$ there exists $p \in A$ such that $q \leq p$.

Let $\mathbb P$ be a notion of forcing. An antichain is a subset $A\subseteq \mathbb P$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

Definition

- Let $Part(\mathbb{P})$ be the set of all maximal antichains of \mathbb{P} .
- ▶ Given $A, B \in Part(\mathbb{P})$, we say that B refines A, in symbols $A \leq B$, if for all $q \in B$ there exists $p \in A$ such that $q \leq p$.
- ► The corresponding relational system is $\mathbf{Part}(\mathbb{P}) = \langle \mathsf{Part}(\mathbb{P}), \mathsf{Part}(\mathbb{P}), \preceq \rangle$.

Let $\mathbb P$ be a notion of forcing. An antichain is a subset $A\subseteq \mathbb P$ consisting of pairwise incompatible elements. A maximal antichain is an antichain which is maximal with respect to inclusion.

Definition

- Let $Part(\mathbb{P})$ be the set of all maximal antichains of \mathbb{P} .
- ▶ Given $A, B \in Part(\mathbb{P})$, we say that B refines A, in symbols $A \leq B$, if for all $q \in B$ there exists $p \in A$ such that $q \leq p$.
- ► The corresponding relational system is $\mathbf{Part}(\mathbb{P}) = \langle \mathsf{Part}(\mathbb{P}), \mathsf{Part}(\mathbb{P}), \preceq \rangle$.

For the purpose of this analysis, we may assume that \mathbb{P} is in fact a complete Boolean algebra.

Remark

 $\mathfrak{b}(\mathbf{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ -distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Remark

 $\mathfrak{b}(\mathbf{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ -distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Definition

▶ Given $A, B \in \operatorname{Part}(\mathbb{B})$, we say that B almost refines A, in symbols $A \leq^* B$, if for all but finitely many $a \in A$ there exists $X \subseteq B$ such that $a = \sup(X)$.

Remark

 $\mathfrak{b}(\mathbf{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ -distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Definition

- ▶ Given $A, B \in \operatorname{Part}(\mathbb{B})$, we say that B almost refines A, in symbols $A \preceq^* B$, if for all but finitely many $a \in A$ there exists $X \subseteq B$ such that $a = \sup(X)$.
- ► The corresponding relational system is $\operatorname{Part}^*(\mathbb{B}) = \langle \operatorname{Part}(\mathbb{B}), \operatorname{Part}(\mathbb{B}), \preceq^* \rangle$.

Remark

 $\mathfrak{b}(\mathbf{Part}(\mathbb{B}))$ is the least cardinal κ such that \mathbb{B} is not κ -distributive. In particular, for many forcing notions of interest (such as Cohen, random...), this bounding number will be countable!

Definition

- ▶ Given $A, B \in \text{Part}(\mathbb{B})$, we say that B almost refines A, in symbols $A \leq^* B$, if for all but finitely many $a \in A$ there exists $X \subseteq B$ such that $a = \sup(X)$.
- ► The corresponding relational system is $\operatorname{Part}^*(\mathbb{B}) = \langle \operatorname{Part}(\mathbb{B}), \operatorname{Part}(\mathbb{B}), \preceq^* \rangle$.

Lemma

A c.c.c. algebra \mathbb{B} is ${}^{\omega}\omega$ -bounding if and only if $\mathfrak{b}(\mathbf{Part}^*(\mathbb{B})) > \aleph_0$.

Lemma

If $\mathbb B$ is an c.c.c. atomless Boolean algebra, then

$$\langle \mathbb{B}^+, \mathbb{B}^+, \geq \rangle_{\sigma} \leq_{\mathsf{T}} \mathsf{Part}(\mathbb{B})_{\sigma}.$$

Lemma

If \mathbb{B} is an c.c.c. atomless Boolean algebra, then

$$\langle \mathbb{B}^+, \mathbb{B}^+, \geq \rangle_{\sigma} \leq_{\mathsf{T}} \mathsf{Part}(\mathbb{B})_{\sigma}.$$

Definition (Horn and Tarski)

A Boolean algebra $\mathbb B$ is σ -finite c.c. if there are subsets $S_n \subseteq \mathbb B$, for $n < \omega$, such that $\mathbb B^+ = \bigcup_{n < \omega} S_n$ and every antichain in S_n is finite.

Lemma

If \mathbb{B} is an c.c.c. atomless Boolean algebra, then

$$\langle \mathbb{B}^+, \mathbb{B}^+, \geq \rangle_{\sigma} \leq_{\mathsf{T}} \mathsf{Part}(\mathbb{B})_{\sigma}.$$

Definition (Horn and Tarski)

A Boolean algebra \mathbb{B} is σ -finite c.c. if there are subsets $S_n \subseteq \mathbb{B}$, for $n < \omega$, such that $\mathbb{B}^+ = \bigcup_{n < \omega} S_n$ and every antichain in S_n is finite.

Proposition

If $\mathbb B$ is a σ -finite c.c. atomless Boolean algebra, then

$$\langle {}^{\omega}\omega, {}^{\omega}\omega, \leq^* \rangle \leq_{\mathsf{T}} \mathsf{Part}^*(\mathbb{B}).$$

In particular, it follows that $\mathfrak{b}(\mathbf{Part}^*(\mathbb{B})) \leq \mathfrak{d} \leq \mathfrak{d}(\mathbf{Part}(\mathbb{B}))$.

Lemma

If \mathbb{B} is an c.c.c. atomless Boolean algebra, then

$$\langle \mathbb{B}^+, \mathbb{B}^+, \geq \rangle_{\sigma} \leq_{\mathsf{T}} \mathsf{Part}(\mathbb{B})_{\sigma}.$$

Definition (Horn and Tarski)

A Boolean algebra \mathbb{B} is σ -finite c.c. if there are subsets $S_n \subseteq \mathbb{B}$, for $n < \omega$, such that $\mathbb{B}^+ = \bigcup_{n < \omega} S_n$ and every antichain in S_n is finite.

Proposition

If \mathbb{B} is a σ -finite c.c. atomless Boolean algebra, then

$$\langle \omega, \omega, \omega, \leq^* \rangle \leq_T \mathsf{Part}^*(\mathbb{B}).$$

In particular, it follows that $\mathfrak{b}(\mathsf{Part}^*(\mathbb{B})) \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{d}(\mathsf{Part}(\mathbb{B}))$.

Note: If \mathbb{S} is a Suslin algebra, then $\mathfrak{d}(\mathbf{Part}(\mathbb{S})) = \aleph_1$. Such an algebra exists in the Cohen model, where $\mathfrak{d} = 2^{\aleph_0}$.

Definition

Let $\mathcal{B}(^{\omega}2)$ be the σ -algebra generated by the clopen subsets of the Cantor space $^{\omega}2$. Let

$$\mathbb{C}_{\omega} = \mathcal{B}(^{\omega}2)/\mathcal{M}$$
 and $\mathbb{B}_{\omega} = \mathcal{B}(^{\omega}2)/\mathcal{N}$

be the quotients modulo the meagre and null ideal, respectively.

Cohen forcing

Theorem (Brendle and P.)

Let nwd be the ideal of closed nowhere dense subsets of $^{\omega}2$. Then

$$\mathbf{Part}(\mathbb{C}_{\omega}) \equiv_{\mathsf{T}} \langle \mathrm{nwd}, \mathrm{nwd}, \subseteq \rangle.$$

In particular, $\mathfrak{d}(\mathbf{Part}(\mathbb{C}_{\omega})) = \mathsf{cof}(\mathcal{M})$ and $\mathfrak{b}(\mathbf{Part}(\mathbb{C}_{\omega})_{\sigma}) = \mathsf{add}(\mathcal{M})$.

Cohen forcing

Theorem (Brendle and P.)

Let nwd be the ideal of closed nowhere dense subsets of $^{\omega}2$. Then

$$\operatorname{Part}(\mathbb{C}_{\omega}) \equiv_{\mathsf{T}} \langle \operatorname{nwd}, \operatorname{nwd}, \subseteq \rangle.$$

In particular, $\mathfrak{d}(\mathbf{Part}(\mathbb{C}_{\omega})) = \mathsf{cof}(\mathcal{M})$ and $\mathfrak{b}(\mathbf{Part}(\mathbb{C}_{\omega})_{\sigma}) = \mathsf{add}(\mathcal{M})$.

Corollary

For a notion of forcing \mathbb{P} , the following conditions are equivalent:

- if c is a Cohen real and G is a ℙ-generic filter over V, then c is still a Cohen real in V[G];
- ▶ for every \mathbb{P} -name \dot{A} of a maximal antichain of \mathbb{C}_{ω} and every condition $p \in \mathbb{P}$ there exists $q \leq p$ and a maximal antichain B of \mathbb{C}_{ω} such that $q \Vdash \dot{A} \preceq \check{B}$;
- P preserves the base of the ideal of meagre sets.

Theorem (Brendle and P.) $\mathfrak{b}(\mathbf{Part}(\mathbb{B}_{\omega})_{\sigma}) = \mathrm{add}(\mathcal{N})$

Theorem (Brendle and P.)

$$\mathfrak{b}(\mathsf{Part}(\mathbb{B}_\omega)_\sigma) = \mathsf{add}(\mathcal{N})$$

Idea of the proof.

Since \mathbb{B}_{ω} is atomless c.c.c., we have $\langle \mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq \rangle_{\sigma} \leq_{\mathsf{T}} \mathsf{Part}(\mathbb{B}_{\omega})_{\sigma}$ and therefore $\mathfrak{b}(\mathsf{Part}(\mathbb{B}_{\omega})_{\sigma}) \leq \mathfrak{b}(\langle \mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq \rangle_{\sigma}) = \mathsf{add}(\mathcal{N})$ by a result of Cichoń-Kamburelis-Pawlikowski.

Theorem (Brendle and P.) $\mathfrak{b}(\mathbf{Part}(\mathbb{B}_{\omega})_{\sigma}) = \mathsf{add}(\mathcal{N})$

Idea of the proof.

Since \mathbb{B}_{ω} is atomless c.c.c., we have $\langle \mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq \rangle_{\sigma} \leq_{\mathsf{T}} \mathsf{Part}(\mathbb{B}_{\omega})_{\sigma}$ and therefore $\mathfrak{b}(\mathsf{Part}(\mathbb{B}_{\omega})_{\sigma}) \leq \mathfrak{b}(\langle \mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq \rangle_{\sigma}) = \mathsf{add}(\mathcal{N})$ by a result of Cichoń-Kamburelis-Pawlikowski. Conversely, if $\kappa < \mathsf{add}(\mathcal{N})$ then $\mathsf{MA}_{\kappa}(\mathbb{A})$ holds. Use Amoeba generics to construct a sufficiently "generic" element of $\mathsf{Part}(\mathbb{B}_{\omega})$ and conclude that $\kappa < \mathfrak{b}(\mathsf{Part}(\mathbb{B}_{\omega})_{\sigma})$.

Theorem (Brendle and P.) $\mathfrak{b}(\mathbf{Part}(\mathbb{B}_{\omega})_{\sigma}) = \mathsf{add}(\mathcal{N})$

Idea of the proof.

Since \mathbb{B}_{ω} is atomless c.c.c., we have $\langle \mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq \rangle_{\sigma} \leq_{\mathsf{T}} \mathbf{Part}(\mathbb{B}_{\omega})_{\sigma}$ and therefore $\mathfrak{b}(\mathbf{Part}(\mathbb{B}_{\omega})_{\sigma}) \leq \mathfrak{b}\left(\langle \mathbb{B}_{\omega}^{+}, \mathbb{B}_{\omega}^{+}, \geq \rangle_{\sigma}\right) = \mathsf{add}(\mathcal{N})$ by a result of Cichoń-Kamburelis-Pawlikowski. Conversely, if $\kappa < \mathsf{add}(\mathcal{N})$ then $\mathsf{MA}_{\kappa}(\mathbb{A})$ holds. Use Amoeba generics to construct a sufficiently "generic" element of $\mathsf{Part}(\mathbb{B}_{\omega})$ and conclude that $\kappa < \mathfrak{b}(\mathbf{Part}(\mathbb{B}_{\omega})_{\sigma})$.

Conjecture

We believe the above argument can be dualized to establish that $\mathfrak{d}(\mathbf{Part}(\mathbb{B}_{\omega})) = \mathsf{cof}(\mathcal{N}).$

Questions

- ▶ Is $\mathfrak{d}(\mathbf{Part}(\mathbb{B}_{\omega})) = \mathrm{cof}(\mathcal{N})$?
- What is the relation between $\mathfrak{d}(\mathbf{Part}(\mathbb{B}))$ and other cardinal invariants of \mathbb{B} , in particular the ultrafilter number?

