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Local function

⟨X , τ⟩ - topological space

Cl(A) = {x ∈ X : A ∩ U ̸= ∅ for each U ∈ τ(x)}

I - an ideal on X
⟨X , τ, I⟩ - ideal topological space [Kuratowski 1933]

A∗
(τ,I) = {x ∈ X : A ∩ U ̸∈ I for each U ∈ τ(x)}

A∗
(τ,I) (brie�y A∗) - local function
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Local function

For I = {∅} we have that A∗(I, τ) = Cl(A).
For I = P(X ) we have that A∗(I, τ) = ∅.
For I = Fin we have that A∗(I, τ) is the set of ω-accumulation
points of A.
For I = Icount we have that A∗(I, τ) is the set of condensation
points of A.
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Local function

(1) A ⊆ B ⇒ A∗ ⊆ B∗;
(2) A∗ = Cl(A∗) ⊆ Cl(A);
(3) (A∗)∗ ⊆ A∗;
(4) (A ∪ B)∗ = A∗ ∪ B∗

(5) If I ∈ I, then (A ∪ I )∗ = A∗ = (A \ I )∗.
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Topology τ ∗

De�nition

Cl
∗(A) = A ∪ A∗ is a Kuratowski closure operator, and

therefore it generates a topology on X

τ∗(I) = {A : Cl
∗(X \ A) = X \ A}.

Set A is closed in τ∗ i� A∗ ⊆ A.

ψ(A) = X \ (X \ A)∗

O ∈ τ∗ ⇔ O ⊆ ψ(O); ψ(τ) = {ψ(U) : U ∈ τ}.

ψ(τ) ⊆ ⟨ψ(τ)⟩ ⊆ τ ⊆ τ∗ = τ∗∗

β(I, τ) = {V \ I : V ∈ τ, I ∈ I} is a basis for τ∗



Continuity

A. Pavlovi¢,
A. Njamcul

Idealism

"Idealized"
topology

Problem

Previous
results

Continuity

Open and
closed
mappings

Topology τ ∗

For I = {∅} we have that τ∗(I) = τ .
For I = P(X ) we have that τ∗(I) = P(X ).
If I ⊆ J then τ∗(I) ⊆ τ∗(J ).
If Fin ⊆ I then ⟨X , τ∗⟩ is T1 space.
If I = Fin , then τ∗ad(I) is the co�nite topology on X .
If I = Im0 - ideal of the sets of measure zero, then τ∗-Borel sets
are precisely the Lebesgue measurable sets. (Scheinberg 1971)
For I = Inwd then A∗ = Cl(Int(Cl(A))) and τ∗(Inwd) = τα.
(α-open sets, A ⊆ Int(Cl(Int(A))). (Njástad 1965)
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Compatibility

De�nition (Njástad 1966)

Let ⟨X , τ, I⟩ be an ideal topological space. We say τ is
compatible with the ideal I, denoted τ ∼ I if the following
holds for every A ⊆ X : if for every x ∈ A there exists a
U ∈ τ(x) such that U ∩ A ∈ I, then A ∈ I.

Theorem

τ ∼ I implies β = τ∗. (Njástad 1966)
τ ∼ I i� A \ A∗ ∈ I, for each A. (Vaidyanathaswamy, 1960)

Theorem

⟨X , τ⟩ is hereditarily Lindelöf i� τ ∼ Icount ;
τ ∼ Inwd ; τ ∼ Imgr .
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X = X ∗

Theorem (Samules 1975)

Let ⟨X , τ, I⟩ be an ideal topological space. Then X = X ∗ i�
τ ∩ I = {∅}.

Theorem (Jankovi¢, Hamlett 1990)

Let ⟨X , τ⟩ be a space with an ideal I on X . If X = X ∗ then
τs = τ∗s , where τs is the topology generated by the basis of
regular open sets (U = Int(Cl(U))) in τ .

Theorem

Semiregular properties (properties shared by ⟨X , τ⟩ and ⟨X , τs⟩,
like Hausdor�ness, property of a space being Urysohn (T2 1

2
),

connectedness, H-closedness, . . . ) are shared by ⟨X , τ⟩ and
⟨X , τ∗⟩ if X = X ∗.
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Problem

Question

If
f : ⟨X , τ⟩ → ⟨Y , σ⟩

is continuous (open, closed, homeomorphism), what are
su�cient conditions for

f : ⟨X , τ∗⟩ → ⟨Y , σ∗⟩

to remain continuous (open, closed, homeomorphism)?
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Previous results

Theorem (Samuels 1971)

If X = X ∗ (I ∩ τ = {∅}) and Y is regular then
f : ⟨X , τ⟩ → Y is continuous i� f : ⟨X , τ∗⟩ → Y is continuous.

Theorem (Natkaniec 1986)

Let f : X → R, where X is a Polish space with topology τ , and
I a σ-complete ideal on X such that Fin ⊂ I and I ∩ τ = {∅}.
If f : ⟨X , τ∗⟩ → ⟨R,Onat⟩ is a continuous function, then
f : ⟨X , τ⟩ → ⟨R,Onat⟩ is also continuous.
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Previous results

De�nition (Newcomb 1968, Ran£in 1972)

⟨X , τ, I⟩ is I-compact i� for each open cover {Uλ : λ ∈ Λ}
exists �nite subcollection {Uλk

: k ≤ n} such that
X \

⋃
{Uλk

: k ≤ n} ∈ I.

Theorem (Hamlett, Jankovi¢ 1990)

Let f : ⟨X , τ, I⟩ → ⟨Y , σ, f [I]⟩ be a bijection such that ⟨X , τ⟩
is I-compact and ⟨Y , σ⟩ is Hausdor�. If f : ⟨X , τ∗⟩ → ⟨Y , σ⟩ is
continuous, then f : ⟨X , τ∗⟩ → ⟨Y , σ∗⟩ is a homeomorphism.
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Previous results

Theorems (Hamlett, Rose 1990)

Let ⟨X , τ, I⟩, ⟨Y , σ,J ⟩ be ideal topological spaces.

If f : ⟨X , τ⟩ → ⟨Y , ⟨ψ(σ)⟩⟩ is a continuous injection, J ∼ σ
and f −1[J ] ⊂ I then ψ(f [A]) ⊆ f [ψ(A)], for each A ⊆ X .

If f : ⟨X , ⟨ψ(τ)⟩⟩ → ⟨Y , σ⟩ is an open bijection, I ∼ τ and
f [I] ⊂ J then f [ψ(A)] ⊆ ψ(f [A]), for each A ⊆ X .

Let f : X → Y be a bijection and f [I] = J . Then the
following conditions are equivalent
a) f : ⟨X , τ∗⟩ → ⟨Y , σ∗⟩ is a homeomorphism;
b) f [A∗] = (f [A])∗, for each A ⊆ X ;
c) f [ψ(A)] = ψ(f [A]), for each A ⊆ X .
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Continuity

Theorem

Let ⟨X , τX , IX ⟩ and ⟨Y , τY , IY ⟩ be ideal topological spaces. If
f : ⟨X , τX ⟩ → ⟨Y , τY ⟩ is a continuous function and for all
I ∈ IY we have f −1[I ] ∈ IX . Then there hold the following
equivalent conditions:
a) ∀A ⊆ X f [A∗] ⊆ (f [A])∗;
b) ∀B ⊆ Y (f −1[B])∗ ⊆ f −1[B∗].
which implies the following three equivalent conditions:

c) ∀A ⊆ X f [A
τ∗X ] ⊆ f [A]

τ∗Y ;

d) ∀B ⊆ Y (f −1[B])
τ∗X ⊆ f −1[B

τ∗Y ];
e) f : ⟨X , τ∗X ⟩ → ⟨Y , τ∗Y ⟩ is a continuous function.

Continuity of f : ⟨X , τ∗X ⟩ → ⟨Y , τ∗Y ⟩ does not imply conditions
a) and b)
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f is a bijection

Theorem

Let ⟨X , τX , IX ⟩ and ⟨Y , τY , IY ⟩ be ideal topological spaces. If
f : ⟨X , τX ⟩ → ⟨Y , τY ⟩ is a continuous bijection and for all
I ∈ IY we have f −1[I ] ∈ IX , then there hold the following
equivalent conditions:
a) ∀A ⊆ X ψ(f [A]) ⊆ f [ψ(A)];
b) ∀B ⊆ Y f −1[ψ(B)] ⊆ ψ(f −1[B]).

Example

If f is not a bijection mapping, then conditions a) and b) do not
have to hold.
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Open mappings

Theorem

Let ⟨X , τX , IX ⟩ and ⟨Y , τY , IY ⟩ be ideal topological spaces. If
f : ⟨X , τX ⟩ → ⟨Y , τY ⟩ is an open function and for all I ∈ IX we
have f [I ] ∈ IY , then there hold the following equivalent
conditions:
a) ∀A ⊆ X f [Ψ(A)] ⊆ Ψ(f [A]);
b) ∀B ⊆ Y Ψ(f −1[B]) ⊆ f −1[Ψ(B)].
which implies
c) f : ⟨X , τ∗X ⟩ → ⟨Y , τ∗Y ⟩ is an open function.

Example

c) is not equivalent with conditions a) and b).
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Open bijections and closed injections

Theorem

Let ⟨X , τX , IX ⟩ and ⟨Y , τY , IY ⟩ be ideal topological spaces. If
f : ⟨X , τX ⟩ → ⟨Y , τY ⟩ is an open bijection or closed injection
and for all I ∈ IX we have f [I ] ∈ IY , then there hold the
following equivalent conditions:
a) ∀A ⊆ X (f [A])∗ ⊆ f [A∗];
b) ∀B ⊆ Y f −1[B∗] ⊆ (f −1[B])∗.

Example

If f is open but not bijection, or closed but not injection then
conditions a) and b) do not have to hold.
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Homeomorphism

Finally, gathering all previous, we extended the result obtained
by Hamlett and Rose in 1990, which was already mentioned in
"Previous results" part.

Corollary

Let ⟨X , τX , IX ⟩ and ⟨Y , τY , IY ⟩ be ideal topological spaces. If
f : ⟨X , τX ⟩ → ⟨Y , τY ⟩ is homeomorphism and for each I ⊂ X
there holds I ∈ IX i� f [I ] ∈ IY . Then the following equivalent
conditions hold:
a) f : ⟨X , τ∗X ⟩ → ⟨Y , τ∗Y ⟩ is a homeomorphism;
b) ∀A ⊆ X (f [A])∗ = f [A∗];
c) ∀B ⊆ Y f −1[B∗] = (f −1[B])∗.
d) ∀A ⊆ X Ψ(f [A]) = f [Ψ(A)];
e) ∀B ⊆ Y f −1[Ψ(B)] = Ψ(f −1[B]).
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